
LECTURE 7: CHARACTERISTIC CLASSES

Consider the following integrals:

• In Maxwell theory, let consider an embedded sphere in space and integrate the
field strength over it: ∫

S2
F = qm

As explained in the previous lectures, this measure the magnetic charge. Con-
sistency with Quantum Mechanics leads, as Dirac realized, to the condition that
this integral is always an integer (in appropriate units). We will explain in §??
that this observation leads to the fiber bundle formulation of Maxwell theory
where the gauge field is a connection on a line bundle.
• In Yang–Mills theory over a 4-dimensional space-time M, the integral

1
4π2

∫
M

Tr(F ∧ F)

measures the instanton number. In the SU(2)-example over S4 of the lecture,
the integral measure the winding number of the transition map S3 → SU(2) ∼= S3

and is always an integer.

It is truly remarkable that the values of these integrals is always an integer, and this
is by no means a coincidence: mathematically, such integrals are called Chern numbers.
The integrands are given by certain polynomials of field strengths of vector bundles,
and are called characteristic classes. Characteristic classes are certain cohomology classes
associated to vector bundles that measure how “non-trivial” vector bundles are. We can
give a mathematical definition:

Definition 0.1. A characteristic class is an assignment E 7→ c(E) ∈ H•(M) of a cohomol-
ogy class to a vector bundle E→ M that

i) depends only on the isomorphism class of E,
ii) is natural in the following sense: for any smooth map f : N → M, we have

c( f ∗E) = f ∗c(E).

1. THE CHERN–WEIL HOMOMORPHISM

Let E→ M be a complex vector bundle of rank r. Denote by Matr(C) the Lie algebra
of GL(r, C), given by r× r matrices with complex coefficients.
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2 LECTURE 7: CHARACTERISTIC CLASSES

Definition 1.1. An invariant homogeneous polynomial of degree k on Matr(C) is given by
a symmetric multilinear map

P : Matr(C)× . . .×Matr(C)︸ ︷︷ ︸
k times

→ C

which is invariant under the action of GL(r, C):

P(gA1g−1, . . . , gAkg−1) = P(A1, . . . , Ak), for Ai ∈ Matr(C) and g ∈ GL(r, C).

We denote the graded algebra of invariant polynomials of arbitrary degree by Iinv =⊕
k≥0 Ik

inv.

Given a vector bundle E → M and P ∈ Ik
inv, we pick a connection ∇ on E and

consider the differential form

(1) P(F(∇), . . . , F(∇)) ∈ Ω2k(M).

To make sense of this expression, choose, for a point x ∈ M an isomorphism Ex ∼= Cr

of the fiber of E. This induces an isomorphism End(E)x ∼= Matr(C), so that we can
apply P to F(∇) ∈ Ω2(M, End(E)) at that point. Since P is invariant, its value is in fact
independent of the chosen isomorphism, and combining with the wedge product, this
yields a smooth differential form of degree 2k.

Proposition 1.2.

i) The form P(F(∇), . . . , F(∇)) is closed.
ii) The induced cohomology class in H2k

dR(X) is independent of the chosen connection.

Proof. First remark that by invariance of P we have

k

∑
i=1

P(A1, . . . , [A, Ai], . . . , Ak) = 0, A, A1, . . . , Ak ∈ Matr(C).

This identity can be obtained by using invariance with respect to conjugation with g =

exp(tA) and differentiation. Therefore, in a local trivialization where we write ∇E =

d + A, we find

dP(F(∇E), . . . , F(∇E)) =
k

∑
i=1

P(F(∇E), . . . , dF(∇E), . . . , F(∇E))

=
k

∑
i=1

P(F(∇E), . . . ,∇End(E)F(∇E)− [A, F(∇E)], . . . , F(∇E))

= 0

by the Bianchi identity and the invariance of P. This proves the first claim.
For the second, let ∇′ be another connection. By Lemma ?? we have ∇′ = ∇+ α for

some α ∈ Ω1(M; End(E)). Therefore the convex combination ∇t = t∇′ + (1− t)∇ =
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∇+ tα, t ∈ [0, 1] is a family of connections interpolating between ∇ and ∇′. We now
consider the connection ∇aff := dt +∇t on the vector bundle E× [0, 1]→ M× [0, 1].

A small computation shows that

F(∇aff) = F(∇) + dt ∧ α + t∇α + t2α ∧ α ∈ Ω2(M× [0, 1], End(E)).

For an invariant polynomial of degree k, we now consider the fiber integral over t-
parameter:

L(∇,∇′) :=
∫ 1

0
P(F(∇aff)) ∈ Ω2k−1(M).

(To evaluate this integral, we pick the terms in P(F(∇aff)) which contain one factor dt
and then perform the integral.) This L is called the transgression form. Stokes’ theorem
now gives:

dL(∇,∇′) = d
∫ 1

0
P(F(∇aff))

=
∫ 1

0
dP(F(∇aff))− P(F(∇aff))

∣∣∣
t=1

+ P(F(∇aff))
∣∣∣
t=0

= P(F(∇))− P(F(∇′)).

This proves the second claim. �

Corollary 1.3 (Chern–Weil homomorphism). Given a vector bundle E → M, there is a
canonical homomorphism of graded algebras

Iinv → H2•
dR(M).

2. CHERN CLASSES

Before we define the Chern classes, let us make the following remark: in the def-
inition (1) of the characteristic class associated to an invariant polynomial P, we are
restricting P to the diagonal: P̃(A) := P(A, . . . , A). The function P̃(A) clearly is a
conjugacy invariant polynomial in the entries of A. Conversely, given a conjugacy in-
variant polynomial P̃k of degree k defines a symmetric multilinear Pk : Matr(C)× . . .×
Matr(C)→ C called its polarization:

P(A1, . . . , Ak) :=
(−1)k

k!

k

∑
j=1

∑
i1<...<ij

P̃(Ai1 + . . . + Aij).

For example, for k = 2 we have

Pk(A1, A2) :=
1
2
(P(A1 + A2)− P(A1)− P(A2)).

In the following we will therefore refer to both P as well as P̃ interchangeably as an
invariant polynomial.
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Consider now the invariant polynomials Pk ∈ Ik
inv defined by

det(I + tA) =: P0(A) + tP1(A) + t2Pk(A) + . . . , A ∈ Matr(C).

(Of course, det(1 + tgAg−1) = det(1 + tA), so the polynomials are indeed invariant.)
The polynomial Pk defines the k-th Chern class1

ck(E) :=

(√
−1

2π

)k

Pk(F(∇)) ∈ H2k
dR(X).

For example, using the well-known expansion

det(I + tA) = r + tTr(A) +
t2

2
(
Tr(A2)− Tr(A)2)+ . . . + tr det(A),

we find in low degrees

c0(E) = rank(E) ∈ H0
dR(M),

c1(E) =
√
−1

2π
Tr(F(∇)) ∈ H2

dR(M),

c2(E) = − 1
4π2 (Tr(F(∇) ∧ F(∇))− Tr(F(∇)) ∧ Tr(F(∇))) ∈ H4

dR(M).

The total Chern class is defined as

c(E) := ∑
k≥0

ck(E).

Proposition 2.1. The total chern class c(E) ∈ H•dR(M) satisfies the following properties:

i) (Naturality) for f : N → M a smooth map, we have

c( f ∗E) = f ∗c(E) ∈ H•dR(N),

ii) (Product formula) For a direct sum E⊕ F, we have

c(E⊕ F) = c(E)c(F)

The first property follows from the fact that the pull-back connection f ∗∇ on f ∗E has
curvature equal to F( f ∗∇) = f ∗F(∇). The second property follows from the fact that
the direct sum connection∇E⊕∇F on E⊕ F has curvature that can be written in matrix
form as (

F(∇E) 0
0 F(∇F)

)
.

In general, Chern classes measure how “nontrivial” a vector bundle is. To witness this
point, we have:

Lemma 2.2. For a trivializable vector bundle E→ M, all Chern classes ck(E), k ≥ 1 are zero.

1The reason for the normalization factor
√
−1

2π is the fact that with precisely this factor the Chern classes
are integtral, c.f. Theorem 3.2
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Proof. Let us first remark that on the trivial vector bundle M × Cr we can choose the
trivial connection given by the exterior derivative d applied to vector-valued functions.
This connection has curvature zero since d ◦ d = 0 and therefore the trivial bundle has
vanishing Chern classes. For a trivializable vector bundles, assume that ϕ : E

∼=−→
M×Cr is a trivialization. Then E carries a connection given by

∇ = ϕ−1 ◦ d ◦ ϕ = d + ϕ−1dϕ.

We have already seen that under such “gauge transformations” ϕ, the curvature trans-
forms neatly:

F(ϕ−1 ◦ d ◦ ϕ) = ϕF(d)ϕ−1 = 0,

so again the Chern classes are zero. Notice that the theory implies that any other con-
nection ∇ on E, its Chern forms ck(E,∇) ∈ Ω2k(M) are exact. �

Finally, we come a crucial property of Chern classes, namely that they are integral
cohomology classes. The definition of an integral cohomology class defined by a differ-
ential form relies on de Rham’s theorem, but for now we record the following conse-
quence:

Theorem 2.3. Let E→ M be a complex vector bundle. For any closed compact 2k-dimensional
oriented submanifold S ⊂ M the integral ∫

S
ck(E)

is an integer.

These numbers are called Chern numbers. Notice that the fact that the differential
form ck(E) ∈ Ω2k(M) is closed explains that the value of the integral does not depend
on the precise embedding of S into M, in fact by de Rham’s theorem only the underling
homology class in Hsing

2k (M, R) (obtained by taking the fundamental class) matters. How-
ever, the fact that the value of these integrals are always integers is truly remarkable,
and a proof of this is sketched in the next section.

3. INTEGRALITY OF CHERN NUMBERS2

To prove Theorem 2.3 we first need to give a proper definition of an integral cohomol-
ogy class defined by a closed differential form. Observe that there is a natural inclusion
Sk

∞(M, Z) ⊂ Sk
∞(M, R) which leads to a map Hk

sing(M, Z)→ Hk
sing(M, R).

Definition 3.1. A closed differential form ω ∈ Ωk
cl(M) is called integral if its cohomol-

ogy class [ω] ∈ Hk
dR(M) corresponds, under the de Rham isomorphism to a class in

Hk
sing(M, R) that lies in the image of the natural map Hk

sing(M, Z)→ Hk
sing(M, R).

2We did not really cover this section in the lecture. You can read it to get a general idea of how the proof
of Theorem 2.3 works, as this involves some very nice ideas from topology such as classifying spaces and
splitting principles.
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Unraveling the definitions, this means that for any smooth singular chain σ := ∑i niσi ∈
S∞

k (M, Z) with ni ∈ Z and σi : ∆k → M such that ∂σ = 0, we have

∑
i

∫
∆k

σ∗i ω ∈ Z.

We can now properly state:

Theorem 3.2. Let E → M be a complex vector bundle over a smooth manifold M. Then the
Chern classes of E are integral: ck(E) ∈ H2k(M, Z).

Remark that this implies Theorem 2.3: this can be seen by taking the fundamental
class of S, c.f. Remark ??.

The integrality of the Chern classes is a very surprising fact, and at first sight it is
not clear how to prove this fact. Certainly, we do not want to evaluate all the integrals
by hand! We therefore consider a bit more sophisticated argument, which proceeds in
several steps:

Step I: classifying line bundles. The idea is to first proof the Theorem for line bundles.
For a line bundle L → M, we have End(L) ∼= M × C, so that for a connection ∇ its
curvature F(∇) ∈ Ω2(M) is a closed 2-form. For r = 1, we have only one invariant
polynomial, and therefore c(L) = 1 + c1(L), and we only have to evaluate the integrals

(2)
1

2π
√
−1

∫
∆2

σ∗F(∇),

for all closed smooth singular 2-chains σ : ∆2 → M. Once again, we do not want to
evaluate all these integrals, but rather do one, universal computation. Let us therefore
first try to classify al line bundles over a manifold.

Lemma 3.3. For any line bundle L over M there exists a smooth map Φ : M → PN for some
N > 0 such that L ∼= Φ∗T.

Proof. Consider the dual line bundle L∗ to L. Choose N sections ξ1, . . . , ξN of L∗ such
that for each x ∈ M at least one ξi, i = 1, . . . , N is nonzero. Define V∗ to be the complex
vector space with basis ξ1, . . . , ξN . For each x ∈ M, we have evaluation maps

evx : V∗ → L∗,

and these are surjective because at least one of the ξi is nonzero. Dually, this leads to
an inclusion Φx : L ↪→ V, and therefore to a map Φ : M → P(V). Quite obviously, this
leads to an isomorphism Φ∗T ∼= L. �

Remark 3.4. There is a chain of inclusions of projective spaces

P0 ⊂ P1 ⊂ . . . ⊂ PN ⊂ . . . ⊂ P∞,
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with Pi\Pi−1 ∼= Ci. Here P∞ can be taken to be the projective space of L2(S1): con-
sidering the standard Fourier basis en(θ) = e2πinθ , θ ∈ S1, we can construct a chain of
inclusions

{0} ⊂ C ⊂ C2 ⊂ . . . ⊂ CN ⊂ . . . ⊂ L2(S1).

Taking the projective space, this leads to the chain above. Then the lemma can be
rephrased as follows: For any line bundle there is a map Φ : M → P∞ such that L ∼= Φ∗T.
Furthermore, one can show that this map is unique up to homotopy. Mathematically this
says that P∞ is a model for the classifying space for line bundles: any line bundles arises
by pull-back of the universal line bundle. Mathematicians (notably topologists) write
BU(1) for this space.

Step II: Computation for PN . To finish the proof of the integrality of the first Chern class
of a line bundle it suffices by Lemma 3.3 and naturality of Chern classes Proposition
2.1 i) to prove that the first Chern class c1(T) of the tautological line bundle over PN is
integral. In this case, in degree 2 there is in fact only one nontrivial singular cycle over
which to perform the integral:

Fact 3.5. The image of the fundamental class of P1 ↪→ PN generates Hsing
2 (PN , Z).

This follows from a computation similar to the cohomology computation of Example
??. Using the homotopy invariance of the period map, we see that it suffices to compute
the intergal of the Fubini–Study form over P1:∫

P1
ωFS =

i
2π

∫
C

1
(1 + |z|2)2 dz ∧ dz̄

= 2
∫ ∞

0

rdr
(1 + r2)2

= 1.

Here we have covered P1 with one chart U0 around zero by deleting the point at infinity.
Applying the chart map ϕ0 to ωFS|U0 , one finds the 2-form appearing in the integral. In
the second line we have used polar coordinates z = reiϕ.

Step III: The splitting principle. Now that we know that Theorem 3.2 holds true for line
bundles, we want to reduce the statement for vector bundles to that of line bundles.
This is achieved by the so-called splitting principle. This principle can be stated as fol-
lows:

Proposition 3.6 (“The splitting principle”). 3 Let E → M be a vector bundle of rank r over
a manifold. Then there exists a manifold N together with a smooth map f : N → M such that:

3Informally, the splitting principle reads: to show an equality between certain characteristic classes,
you may assume that the vector bundle is a direct sum of line bundles.
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i) The induced map on cohomology f ∗ : H•sing(M, K) → H•sing(N, K) is injective, for
K = R, Z.

ii) There exist line bundles L1, . . . , Lr over N together with an isomorphism of vector bun-
dles

f ∗E ∼= L1 ⊕ . . .⊕ Lr.

Let us first explain how to find this space N. Consider the space P(E) = äx∈M P(Ex)

of lines in the fibers of E. Using the local triviality of the vector bundle E→ M, together
with the manifold structure on projective space in Example ??, one can show that P(E)
is a smooth manifold, and that the projection p : P(E)→ M makes it into a smooth fiber
bundle with fiber Pr, where r is the rank of E. Over Pr(E) we have the tautological line
bundle

T := {(v, L) ∈ E×P(E), v ∈ L} ⊂ p∗E

We now use the fact that for an inclusion of vector bundles, there is always a comple-
ment: we can find a vector bundle E1 → P(E) such that p∗E ∼= T⊕ E1. We then proceed
by induction, applying the previous construction to E1, until we have exhausted the
rank of E. This shows the second property. To explain i), let us consider the cohomol-
ogy of P(E). Denote by u := c1(T), the first Chern class of the tautological line bundle.
Since the restriction of T to each fiber P(Ex) is the tautological line bundle over pro-
jective space, we see that the restriction of the differential forms 1, u, u2, . . . , ur generate
the cohomology of the fiber P(Ex) by Example ??, the so-called Leray–Hirsch Theorem
states that there is an isomomorphism:4

H•(P(E)) ∼= H•(M)⊗C{1, u, . . . , ur}.

This proves that the pull-back p∗ : H•(M)→ H•(P(E)) is injective.
To find the space N we now proceed by induction, splitting of a line bundle of the

vector bundle E1 over P(E), and continuing until the rank of the vector bundle is ex-
hausted.

4This statment is only additive. If one takes into account the multiplicative structure induced by the
wedge product, the statement is:

H•(P(E)) ∼= H•(M)[u]/(ur + ur−1c1(E) + . . . + cr(E)).
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