
MATHEMATICAL APPROACHES TO QFT

1. INTRODUCTION

Quantum field theory is an infinite dimensional generalization of quantum mechan-
ics, which originally has been developed to combine the special theory of relativity with
quantum mechanics. Quantum mechanics typically deal with with finite dimensional
systems. Therefore we first discuss the mathematical content of finite dimensional
systems, both classical and quantum mechanical. We will focus on the two main ap-
proaches to classical mechanics: the Lagrangian and the Hamiltonian approach. Their
quantum mechanical counterparts are given by the operator approach and the path
integral approach.

In the course of this chapter we will also help us to introduce some terminology for
later use.

2. THE LAGRANGIAN APPROACH TO CLASSICAL MECHANICS

Let us first recall the classical Newton equations for a particle moving in R3 un-
der the influence of a potential V ∈ C1(R3, R). We use Euclidean coordinates ~x(t) =

(x1(t), x2(t), x3(t)) to describe the position of the the particle. Then the Newton equa-
tion describing the motion of this particle is given by

(1)
d2~x
dt2 = −~∇(V),

where the right hand side is simply minus the gradient of V. These equations are a
system of second order ODE’s, and in general we have local existence and uniqueness
of solutions with prescribed initial position~x(0) = ~x0 ∈ R3 and velocity ~̇x(0) = v0 ∈ R3

by the Picard–Lindelöf theorem. In the following we will consider the generalization of
this classical mechanical system to an arbitrary Riemannian manifold (M, g).

The key point is that these equations of motion can be described by means of a vari-
ational principle as follows: consider the tangent bundle TM to M, called the state
space, and fix a C1-function L : TM → R, called a Lagrangian function.1 For a C2 map
γ : [t0, t1]→ M, this defines an action

(2) S(γ) :=
∫ t1

t0

γ̇∗Ldt =
∫ t1

t0

L(γ(t), γ̇(t))dt.

Date: July 7, 2014.
1We are ignoring the possibility for a time-dependent Lagangian here.
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The aim of the associated variational problem is to look for extrema of this functional,
keeping the endpoint fixed. This means that we fix x0, x1 ∈ M and consider the curves
γ(t) in M that start in x0 and end in x1.

Principle of Least action

The classical trajectories are given by the extremal paths for the action S

For a differentiable function on a finite dimensional manifold, the extrema are easily
found by equating the derivative to zero. In this case, since the Lagrangian is a function
in infinite dimensions, we have to work a bit more in this case.

2.1. The Geometry of mapping spaces. The action S is a function from the mapping
space Map(I, M) to R and so we are lead to consider the extrema of a function on
an infinite dimensional space. To put this on solid grounds, we have to discuss the
geometry of infinite dimensional manifolds. The right context for us is that of so-called
Banach manifolds. In fact, the theory of Banach manifolds can be set up in almost the
same manner as the usual theory of finite dimensional manifolds, and some books (e.g.
[L] “at no extra costs”) do this from the very beginning.

First when M = Rn, we shall consider the Banach space B = Ck(I, Rn) equipped
with the Ck-norm

(3) || f ||Ck :=
k

∑
i=0

sup
t∈I

∣∣∣∣∣∣ f (i)(t)∣∣∣∣∣∣ .

Remark 2.1. In the end we shall specify k = 2, a choice dictated by the fact that the
classical equations of motion are second order.

Recall that a continuous map F : U → B2 from an open subset U ⊂ B1 of a Banach
space between to another Banach space B2 is said to Fréchèt differentiable at b ∈ U if there
exists a bounded linear operator Ab : B1 → B2 such that

lim
h→0

||F(b + h)− F(b)− Ab(h)||B2

||h||B1

= 0.

In this case Ab is called the Fréchèt derivative of F at b ∈ U.
Next we consider the space Ck(I, M) of maps from I to M that are k-times contin-

uously differentiable. Since M, as a smooth manifold, is locally modeled on Rn, we
expect/hope Ck(I, M) to be locally modeled on B = Ck(I, Rn). Let us first recall the
definition of a Banach manifold:

Definition 2.2. Let B be a Banach space. A Banach manifold modeled on B is given by a
Hausdorff topological space X equipped with a collection {Ui, ϕi, i ∈ I} of local charts

ϕi : Ui → ϕi(Ui) ⊂ B,
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satsifying

i) The charts cover X: ∪i∈IUi = X,
ii) The transition maps

ϕj ◦ ϕ−1
i : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj)

are smooth.

Remark 2.3. A few remarks about the definition:

i) For a finite dimensional manifold the model space is uniquely fixed by the di-
mension: Rn for an n-dimensional manifold. In infinite dimensions this is no
longer the case, e.g. we could take B = Ck(I, M) for different k’s.

ii) Purists might object to the confusion between an atlas and a smooth structure,
but this shouldn’t lead to any problems.

For our purposes, we need the following space

Fk(M; x0, x1) := { f : I → M of class Ck, f (t0) = x0, f (t1) = x1.}

Proposition 2.4. Let M be a complete n-dimensional Riemannian manifold. Then the mapping
space Fk(M; x0, x1) is a smooth Banach manifold modeled on the Banach space Fk(R

n, 0, 0).

Proof. Let us first equip Ck(I, M) with the compact-open topology in which fn → f if
it converges uniformly. This topology is known to be Hausdorff. Since M is a metric
space, this topology coincides with the one induced by the metric onFk(M; x0, x1) given
by

d( f , g) := sup
t∈I

dM( f (t), g(t)).

Next, given f ∈ Ck(I, M), we consider the Banach space

B f := {X ∈ Γk(I, f ∗TM), X(t0) = 0 = X(t1)},

equipped with the norm

||X||Ck :=
k

∑
i=0

sup
t∈I

∣∣∣∣∣∣∇iX
∣∣∣∣∣∣ ,

where ∇ denotes the Levi–Civita connection. Alternatively, choose a trivialization
f ∗TM ∼= I ×Rn and use the standard Ck-norm (3). This defines an equivalent norm
on B f . (These definitions assume f to be at least C1, which may not be the case for
k = 0. In that case, we make the definition only for C1 maps in F0(M; x0, x1) and use a
denseness argument to prove that we obtain an atlas as described below.)

Since f (I) ⊂ M is compact, there exists an ε f > 0 such that for each x ∈ M in an
ε f -tubular neighborhood of f (I), there is a unique geodesic from x to f (I) of length less
than ε f . In other words, the map defined by

ϕ f ,ε f (X)(t) := exp f (t)(X(t)),
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is a bijection from B f ,ε f := {X ∈ B f ,
∣∣∣∣B f

∣∣∣∣
Ck < ε f } to

U f ,ε f := {g ∈ Fk(M; x0, x1), d( f , g) < ε f }.

Choosing a fixed ε f > 0 satisfying the property above, we obtain in this way an atlas
{U f ,ε f } f∈Ωk(M;x0,x1) which clearly covers Fk(M; x0, x1). It remains to show that the tran-
sition maps between these charts are smooth. We omit the details of this verification, it
uses the fact that the exponential map on a Riemannian manifold is smooth. �

Remark 2.5. We see from the proof that the tangent space to γ ∈ Ω(M, x0, x1) is given
by

TγFk(M, x0, x1) = {X ∈ Γk(I, γ∗TM), X(t0) = 0 = X(t1)}.

This corresponds of course exactly to our intuition where a deformation of a Ck-curve
γ(t) is given by Ck-map γε(s, t) : (−ε, ε) × [t0, t1] → M, ε > 0 with fixed endpoints:
γε(t0) = γ(t0) = x0 and γε(t1) = γ(t1) = x1. Corresponding to such a deformation is
the vector field along γ given by

∂γε

∂s
(0, t) ∈ TγFk(I; M, x0, x1).

Conversely, given X ∈ TγFk(I; M, x0, x1), we have the deformation

γs(t) := expγ(t)(sX(t)),

where −ε < s < ε for ε > 0 small enough. Remark also that we can even think of
Ω(M; x0, x1) as a Riemannian manifold with metric

(4) 〈X, Y〉γ :=
∫ t1

t0

gγ(t)(X(t), Y(t))dt.

However, this is just formal: of course the tangent space, consisting of Ck-functions, is
not complete for this inner product. Completion would lead to the theory of Hilbert
manifolds.

2.2. The variational problem in Rn. Let us consider for a moment the case M = Rn,
with euclidean coordinates denoted by xi, i = 1, . . . , n. We consider the action func-
tional S : C2(I, Rn) → R given by (2). For a curve γ ∈ C2(I, Rn), we write γ(t) =

(x1(t), . . . , xn(t)). Then we have:

Proposition 2.6. The functional (2) is Fréchèt differentiable with derivative

DγS(X) =
∫ t1

t0

(
∂L
∂xi −

d
dt

∂L
∂ẋi

)
Xidt +

[
∂L
∂ẋi Xi

]t1

t0

.
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Proof. C2(I, Rn) is simply a Banach space so we apply the definition of the Fréchèt de-
rivative. First we compute

|S(γ + X)− S(γ)| =
∣∣∣∣∫ t1

t0

(
L(γ + X, γ̇ + Ẋ, t)− L(γ, γ̇, t)

)
dt
∣∣∣∣

≤
∣∣∣∣∫ t1

t0

(
∂L
∂xi Xi +

∂L
∂ẋi Ẋi

)
dt
∣∣∣∣+ o(||X||2C2)

=

∣∣∣∣∣
∫ t1

t0

(
∂L
∂xi −

d
dt

∂L
∂ẋi

)
Xidt +

[
∂L
∂ẋi Xi

]t1

t0

∣∣∣∣∣+ o(||X||2C2).

Here, to go to the third line, we have used integration by parts. In the second line, we
have used Taylor’s formula for the Lagrangian:

L(xi
0 + xi, ẋi

0 + ẋi, t) = L(xi
0, ẋi

0, t) +
∂L
∂xi xi +

∂L
∂ẋi ẋi + R1

ijx
ixj + R2

ijx
i ẋj + R3

ij ẋ
i ẋj,

where the remainders Rl
ij(xi

0 + xi, ẋi
0 + ẋi, t) go to zero as xi → 0, ẋi → 0, for l =

1, 2, 3. When we put these remainders into the integral over t, we see that the overall
remainder can be estimated in norm as ≤ C(X)||X||2C2 with C(X) → 0 as X → 0. In
other words, the remainder is o(||X||2C2) as claimed in the second line. Comparing with
the definition of the Fréchèt derivative, this proves the proposition. �

Definition 2.7. An extremum of the action S is a curve q : I → M such that

d
dε

S(q + εh) = 0.

Remark 2.8. By the chain rule,

d
dε

S(q + εh)
∣∣∣∣
ε=0

= DqS(h)

The variational derivative of S at q(t) is the vector field

δS
δq(t)

∈ TqF (M; x0, x1)

defined by the equation

DqS(X) =

〈
δS

δq(t)
, X(t)

〉
q

,

using the pairing (4).

Theorem 2.9. The extrema of the action (2) on curves with fixed initial point γ(t0) = x0 and
endpoint γ(t1) = x1 in Rn satisfy the Euler–Lagrange equations:

(5)
δS

δγ(t)
=

∂L
∂xi −

d
dt

∂L
∂ẋi = 0.

Proof. This now clear from the previous proposition once we notice the following
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Lemma 2.10 (The fundamental Lemma of the calculus of variations). If for all X ∈
Γ(I, γ∗TM) with X(t0) = 0 = X(t1),〈

δS
δγ(t)

, X
〉

= 0, then
δS

δγ(t)
= 0.

we leave the proof of this Lemma to the reader. (cf. [Ar, §3.12]). �

From now on, we should be more precise about the type of Lagrangian we are con-
sidering. We are interested in Lagrangians of the form

(6) L(q) =
1
2
||q̇||2 −V(q).

A straightforward application of the previous Theorem gives exactly Newton’s law (1).
This justifies the principle of least action.

2.3. The variational problem on a general manifold. On a general manifold, we choose
a Lagrangian L : TM→ R, and consider the variational problem given by the action

S : F (I; M, x0, x1)→ R,

defined as in (2). Again, the equations of motion are given by the extrema of the action.
To detect the extrema, we can choose a Riemannian metric on M to construct the Ba-
nach manifold structure on F (I; M, x0, x1) and look for zeros of the derivative of S. We
will choose a slightly different path: The following Lemma allows us to work in local
coordinates:

Lemma 2.11. Suppose that γ : I → M is a curve minimizing the action (2) on F (I; M, x0, x1)

and let t0 ≤ t′0 < t′1 ≤ t1. Then γ|[t′0,t′1]
also minimizes the action onF ([t′0, t′1, ]; M, γ(t′0), γ(t′1)).

Proof. Suppose the statement is not true, so there is a curve η ∈ F ([t′0, t1, ]; M, γ(t′0), γ(t′1))
with S(η) < S(γ). Construct the “broken curve” by replacing the piece [t′0, t′1] in the
curve γ with η. This yields a C0-curve γ̃ for which, by additivity of the integral in (2)
we have S(γ̃) < S(γ). Here we have used the observation that the action S extends to
the larger space of piecewise C2-curves in M. Next, consider a “smoothing” of γ̃, i.e.,
a family γ̃ε ∈ F (I; M) for ε > 0 such that limε→0 γ̃ε = γ̃ in the C0-topology. Then
L(γ̃ε)→ L(γ̃) point wise, where the latter is a bounded, piecewise smooth function on
I. From this it follows that the extension of S is continuous in the sense that

lim
ε→0

S(γ̃ε) = S(γ̃).

Choosing ε small enough, we now have a contradiction with the assumption that γ

minimizes S. �

To detect the minima, we now use the smooth Banach manifold structure onFk(I; M, x0, x1)

and look for the critical points γ ∈ Fk(I; M, x0, x1) for which

d
dε

S(γε) = 0,
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where γε is any smooth deformation of γ as in remark 2.5. Restricting a minimizing
curve to a subinterval of I so that its image lies in a coordinate chart (x1, . . . , xn) : U →
Rn, we can now conclude:

Proposition 2.12. A curve γ : I → M minimizing the action (2) satisfies the Euler–Lagrange
equations (5) in a local chart on M.

Let us now discuss some special cases:

i) (Zeroth order Lagrangian) Suppose that L : TM → R is the pullback of a func-
tion on M ,i.e., does not depend on the variables ẋi. The Euler–Lagrange equa-
tions (5) then give

∂L
∂xi (γ(t)) = 0.

In other words, γ(t) should lie in the critical set of L on M. For a generic L,
the critical sets, i.e., zeros of the derivative, are isolated in M, so γ(t) must be a
constant path.

ii) (First order Lagrangian) Suppose that L is affine in the fiber direction:

L(x, ξ) = L0(x) + αx(ξ),

with L0 ∈ C∞(M) and α ∈ Ω1(M) a fixed one-form. This time the Euler–
Lagrange equations write out in local coordinates as

∂L0

∂xi (γ(t)) =
n

∑
j=1

(
∂αi

∂xj −
∂αj

∂xi

)
(γ(t))

dγj

dt
.

If we assume the matrix whose entries are written out in the brackets is invert-
ible, this is a system of first order ODE’s which locally has a unique solution
with initial point x0. If x1 is not on this curve, there is no γ minimizing the
action.

So, to get something interesting, we should assume a nonlinear dependence in the fiber
direction. Assume that

(7) det
(

∂2L
∂ξ i∂ξ j

)
6= 0,

and write (Gij) for the inverse of this matrix. With this the Euler–Lagrange equations
are given in local coordinates by

d2γi

dt2 =
n

∑
j=1

Gij
∂L
∂xj (γ(t),

dγ

dt
)−

n

∑
j,k=1

Gij
∂2L

∂ξ j∂xk (γ,
dγ

dt
)

dγk

dt
.

This is a system of second order ODE’s that has a unique solution for initial conditions

γ(t0) = x0,
dγ

dt
(t0) = ξ0,

with ξ0 ∈ Tx0 M.
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2.4. The second order variation. Recall that the Euler–Lagrange equations only give
necessary conditions for a minimum.2 To obtain sufficient conditions, we have to com-
pute the second order derivative of the action. Again, we may assume that our curve
γ ∈ F lies in the domain of a local chart (x1, . . . , xn). Let

γε(t) = expγ(t)(εX)

be a one-parameter deformation defined by X ∈ TγF . By a straightforward calculation,
the second order derivative of the action (2) writes out as

d2S(γε)

dε2 =
n

∑
i,j=1

∫ t1

t0

(
∂2L

∂xi∂xj XiX j + 2
∂2L

∂xi∂ξ j XiẊ j +
∂2L

∂ξ i∂ξ j ẊiẊ j
)

dt.

This is called the second variation of the action. The quadratic nature of this second
variation has some interesting consequences. First of all, we write the right hand side
of the equation above as Iγ(X, X) where the index form Iγ(X, Y) is defined as

(8) Iγ(X, Y) :=
n

∑
i,j=1

∫ t1

t0

(
∂2L

∂xi∂xj XiY j + 2
∂2L

∂xi∂ξ j XiẎ j +
∂2L

∂ξ i∂ξ j ẊiẎ j
)

dt.

Clearly, when γ ∈ Fk(I; M, x0, x1) is a minimum, we must have that Iγ(X, X) ≥ 0.
Next, choose η ∈ Rn and t2 ∈ (t0, t1) and consider the one parameter family Xδ ∈
F0(I; Rn, 0, 0) ∼= TγF0(I; M, x0, x1) given by

Xδ(t) :=

0 |t− t2| > δ

δη − |t− t2|η |t− t2| ≤ δ.

By considering an appropriate “smoothening” of this family, keeping the support inside
the interval [t2 − δ, t2 + δ], we obtain a family of Xδ ∈ TγFk(I; M, x0, x1) with

||Xδ||C0 = O(δ), ||Xδ||C1 = O(1), δ→ 0.

For such a family we therefor have

0 ≤ Iγ(Xδ, Xδ) =
n

∑
i,j=1

∫ t2+δ

t2−δ

(
∂2L

∂ξ i∂ξ j η̇iη̇ j
)

dt + O(δ2).

Taking the limit δ→ 0, we obtain Legendre’s necessary condition for a minimum:

∂2L
∂ξ i∂ξ j ≥ 0 along γ(t).

Next, let us further analyse the case when Iγ(X, X) = 0 for a nonzero X. Since Iγ(X, X) ≥
0, we can view such an X as a minimum of the “action” Iγ(X, X). By now, we know

2For physics, this seems to be enough as the Euler–Lagrange equations (i.e., Newton’s equations) are
all that matters. From that point of view, this section is only of mathematical interest
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how to detect these: we write down the corresponding Euler–Lagrange equations! By
the quadratic nature of the action, these are simply given by

(9)
n

∑
i,j=1

(
∂2L

∂xi∂xj X j +
∂2L

∂xi∂ξ j Ẋ j − d
dt

(
∂2L

∂xi∂ξ j X j +
∂2L

∂ξ i∂ξ j Ẋ j
))

= 0,

a second order lineair homogeneous system of ODE’s known as the Jacobi equations.
Solutions are called Jacobi fields.

Proposition 2.13. Let γs(t) be a C1-family of solutions to the Euler–Lagrange equations (5).
Then

X(t) :=
d
ds

γs(t)
∣∣∣∣
s=0

is a Jacobi field.

Proof. Differentiate the Euler–Lagrange equations w.r.t s. �

Definition 2.14. Let γ(t) be a solution to the Euler–Lagrange equations on I = [t0, t1]

for a Lagrangian L. we say that γ(t2) ∈ M and γ(t3) ∈ M, for t0 ≤ t2 < t3 ≤ t2 are
conjugate to each other if there exists a not identically vanishing Jacobi field X along
γ|[t2,t3] with X(t2) = 0 = X(t3).

Theorem 2.15. The index form Iγ(X, Y) is positive definite if

i) (Legendre condition)
∂2L

∂ξ iξ j > 0,

b) The interval (t0, t1] does not contain a point conjugate to t0.

So in this case, we really have a minimum. For the proof of this theorem, see [GF]. In
fact, Legendre’s condition is already enough to ensure a local minimum:

Proposition 2.16. Let γ(t), t0 ≤ t ≤ t1 be a solution of the Euler–Lagrange equations
for a Lagrangian satisfying Legendre’s condition. Then for each sufficiently small subinterval
[t′0, t′1] ⊂ [t0, t1], γ|[t′0,t′1]

is a local minimum of the action on F (I′, M, γ(t′0), γ(t′1)).

Proof. The key is again the second variation Iγ(X, X) given in (8), which consists of
three terms: I, I I and I I I. For the first two we have the estimates

|I| ≤ C ||X||2L2 , |I I| ≤ D ||X||L2

∣∣∣∣Ẋ∣∣∣∣L2 .

For the last one we have, because of Legendre’s condition:

I I I ≤ E
∣∣∣∣Ẋ∣∣∣∣2L2 .

In these inequalities, C, D, E > 0. Next, recall Wirtinger’s inequality∫ b

a

∣∣∣∣d f
dt

∣∣∣∣2 dt ≥ π2

(b− a)2

∫ b

a
| f |2dt,
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for any f ∈ C1(a, b) with f (a) = 0 = f (b). Therefore, if b− a is small enough, we find
Iγ(X, X) > 0 for all X. �

2.5. The case of a Riemannian manifold. On a general Riemannian manifold, things
are slightly more complicated, but with our global set-up, we now have all the tools to
derive the equations of motion. We consider the Lagrangian L : TM → R given in (6),
where || || denotes the riemannian norm on Tx M defined by the metric g, and V is, as
before, a potential function defined on M. Integrating over t ∈ [t0, t1] we obtain the
action as in (2): this is now a function

S : F (I; M, x0, x1)→ R,

and we are lead to look for the extrema minimizing the action. We have seen in Theorem
2.4 that F (I; M, x0, x1) is a smooth Banach manifold, and it can be proved, analogous to
Proposition 2.6 for Rn that S is differentiable. Therefore, we can detect the extrema by
looking for the critical points of the action.

Proposition 2.17. The Euler–Lagrange equations for the action given in equation (6) are given
by

∇γ̇γ̇ = −grad(V).

In particular, when V = 0, particles move along geodesics along M.

Proof. Let us first assume our curve lands in a local coordinate chart (x1, . . . , xn) : U →
Rn. The action is written in local coordinates as

L(x, ξ) =
1
2 ∑

ij
gij(x)ξ iξ j −V(x).

Then we can use our local formula for the Euler–Lagrange equations (5):

∂L
∂xi −

d
dt

∂L
∂ẋi = −∂iV + ∂igkl ẋk ẋl − ∂kgij ẋk ẋj − ∂jgki ẋk ẋj − gij ẍj − gki ẍk

= −∂iV − 2gij ẍj − (∂kgji + ∂jgki − ∂kgji)ẋk ẋj

= 0.

Applying the inverse of the metric gil to this equation to raise one of the indices, we
find:

ẍi + Γi
jk ẋj ẋk = −gil∂iV.

The left hand side is exactly the expression in local coordinates of ∇γ̇(t)γ̇(t), whereas
the right hand side is exactly −grad(V).

Alternatively, we can do a more global computation: let γs(t) be a C1-family with
fixed endpoints such that γ0(t) is a solution to the Euler–Lagrange equations. Then we
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compute:

dS
ds

(γs) =
d
ds

∫ t1

t0

(
1
2

g(
∂γ

∂t
,

∂γ

∂t
)−V(γ)

)
dt

=
∫ t1

t0

(
g(∇∂γ/∂s

∂γ

∂t
,

∂γ

∂t
)− dV(

∂γ

∂s
)

)
dt (∇ is metric)

=
∫ t1

t0

(
g(∇∂γ/∂t

∂γ

∂s
,

∂γ

∂t
)− dV(

∂γ

∂s
)

)
dt (∇ is torsionfree)

=
∫ t1

t0

(
d
dt

(
g(

∂γ

∂s
,

∂γ

∂t
)

)
− g(

∂γ

∂s
,∇∂γ/∂t

∂γ

∂t
)− dV(

∂γ

∂s
)

)
dt

= −
∫ t1

t0

(
g(

∂γ

∂s
,∇∂γ/∂t

∂γ

∂t
) + dV(

∂γ

∂s
)

)
dt

Applying g−1, we get the desired Euler–Lagrange equations. �

Since for this Lagrangian, ∂2L/∂ξ i∂ξ j = gij which is clearly positive definite by defini-
tion of a Riemannian metric, L satisfies Legendre’s condition. Therefore, by Proposition
8, we find:

Corollary 2.18. On a Riemannian manifold, geodesics are locally distance minimizing.

The second variation also has a very interesting geometric interpretation. We put
V = 0.

Proposition 2.19. Let γ(t) be a solution of the Euler–Lagrange equations in Proposition 2.17.
The corresponding index form is given by

Iγ(X, Y) =
∫ t1

t0

(g(∇γ̇X,∇γ̇Y)− g(R(γ̇, X)(Y), γ̇(t))) dt

Proof. We work globally: again, let γs(t) be a C1-family with fixed endpoints such that
γ0(t) is a solution to the Euler–Lagrange equations. Then we compute

d2S
ds2 (γs) =

d
ds

∫ t1

t0

(
g(∇∂γ/∂t

∂γ

∂s
,

∂γ

∂t
)

)
dt

=
∫ t1

t0

(
g(∇∂γ/∂s∇∂γ/∂t

∂γ

∂s
,

∂γ

∂t
) + g(∇∂γ/∂t

∂γ

∂s
,∇∂γ/∂t

∂γ

∂s
)

)
dt

(Again, we have used the fact that ∇ preserves the metric and is torsion free.) Using
the definition of the curvature, the first term can now be written as∫ t1

t0

(
g(∇∂γ/∂s∇∂γ/∂t

∂γ

∂s
,

∂γ

∂t

)
dt

=
∫ t1

t0

(
g(∇∂γ/∂t∇∂γ/∂s

∂γ

∂s
,

∂γ

∂t
) + g

(
R(

∂γ

∂s
,

∂γ

∂t
)(

∂γ

∂s
),

∂γ

∂t

))
dt

Using the metric property again, the first term is proportional to ∇∂γ/∂t
∂γ
∂t , which can-

cels the last term in the previous equation by virtue of the Euler–Lagrange equations of
Proposition 2.17. We now have the desired expression for the index form. �
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The fact that the curvature appears is the most interesting aspect of this Proposition.
For example, we immediately have:

Corollary 2.20. On a manifold with nonpositive sectional curvature, geodesics γ with fixed
endpoints are always locally minimizing in the sense that there exists some δ > 0 such that for
any other γ′ with the same endpoint and dM(γ(t), γ′(t)) < δ for all t, we have E(γ′) ≥ E(γ).

3. THE HAMILTONIAN APPROACH TO CLASSICAL MECHANICS

3.1. The Legendre transform. Let V = Rn with Euclidean coordinates νi and F : V →
R a C2 function. Its Hessian at p ∈ V is the quadratic function

D2F(p)(u) :=
d2

dt2 F(p + tu) =
∂2F

∂νi∂νj (p)uiuj

with u = (u1, . . . , un) ∈ V. F is called strictly convex if D2F(p) > 0 for all p ∈ V.

Lemma 3.1. Let F be strictly convex. Then the following are equivalent:

a) F has a critical point,
b) F has a global minimum at some point,
c) F(p)→ ∞ for ||p|| → ∞.

Now, given a strictly convex F and an element α ∈ V∗, consider the function

Fα(v) := F(v)− α(v).

Clearly Fα is strictly convex iff F is. We now define the open convex (check!) subset
SF ⊂ V∗ by

α ∈ SF ⇐⇒ Fα satisfies the conditions of Lemma 3.1.

The Legendre transform TF : V → V∗ defined by F is now defined as

TF(p) = dF(p) ∈ T∗p V ∼= V∗.

Lemma 3.2. The Legendre transform yields an isomorphism TF : V
∼=−→ SF.

Proof. Define T−1
F : SF → V as follows: for α ∈ SF,

T−1
F (α) := min Fα.

One easily checks that this is indeed an inverse, i.e., TF ◦ T−1
F = idSF and T−1

F ◦ TF =

idV . �

We now define the dual function F∗ : SF → R by

F∗(α) := −min
p∈V

Fα(p).

Exercise 3.3. Show that T−1
F = TF∗ .
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On a general manifold M, with Lagrangian L : TM → R satisfying Legendre’s con-
dition in Theorem 2.15 i), we can apply the Legendre transform for each x ∈ M to
get

(10) TLx : Tx M
∼=−→ T∗x M,

assuming that SLx = T∗x M. The dual function to L is denoted by H : T∗M → R,
called the Hamiltonian. It is easily checked that for the Lagrangian (6) for a particle in a
potential V, the Legendre transform TL : TM → T∗M is the isomorphism induced by
the Riemannian metric g. The Hamilonian in this case writes out as

(11) H(α) =
1
2
||α||2 + (π∗V)(α), α ∈ T∗M.

3.2. Symplectic manifolds. We recall the definition of a symplectic manifold:

Definition 3.4. A symplectic manifold is a pair (X, ω) of a smooth manifold X equipped
with a non degenerate closed 2-form ω.

Closed means that dω = 0, where d is the exterior differential and non degenerate
that for each x ∈ X, the map

TxX → T∗x X, ξ 7→ ωx(ξ,−),

is an isomorphism.

Exercise 3.5. Show that a symplectic manifold is always even-dimensional. Show that
the non-degeneracy of ω is equivalent to the condition that ωdim X/2 is non-vanishing.

Example 3.6. We give the two main examples of symplectic manifolds:

i) Let X = R2n with Euclidean coordinates given by (x1, . . . , xn, y1, . . . yn). Then
the constant 2-form

ω =
2n

∑
i=1

dxi ∧ dyi

is easily seen to be non degenerate. It is clearly closed, so defines a symplectic
structure. In fact, this is an example of a symplectic vector space: this is a vec-
tor space equipped with an antisymmetric, non degenerate bilinear form. On
the other hand, suing some linear algebra it is not difficult to prove that any
symplectic vector space is of this form. In Theorem 3.7 below, we shall see that
locally, any symplectic manifold looks like such a symplectic vector space.

ii) Let X = T∗M, the total space of the cotangent bundle of a smooth manifold M.
This manifold carries a canonical 1-form, called the Liouville form defined by

θα(v) := α(Tπ(v)), α ∈ T∗M, v ∈ Tα(T∗M),

where π : T∗M → M denotes the canonical projection. We now define ω := dθ,
and claim that this is a symplectic form. Being exact, it is clearly closed, so we
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only have to check that it is non degenerate. Since this is a local property, we can
do this in local coordinates (x1, . . . , Xn) on M. These induce local coordinates
(x1, . . . , xn, ν1, . . . , νn) on T∗M by putting νi := dxi. In these coordinates the
projection π is given by the projection onto the first n coordinates, so that the
Liouville form is given by

θ(x, ν) =
n

∑
i=1

νidxi.

With this, we see that ω = ∑n
i=1 dνi ∧ dxi, which is clearly non degenerate.

Theorem 3.7 (Darboux). Let (X, ω) be a symplectic manifold. Around each point x ∈ M
there exists a local coordinate chart (x1, . . . , xn, y1, . . . , yn) such that

ω =
n

∑
i=1

dxi ∧ dyi

Proof. The following proof utilizes a well-known strategy, known as the Moser-trick:
pick a symplectic basis of Tx M and use the exponential map with respect to some ar-
bitrary metric to introduce coordinates (x1, . . . , xn, y1, . . . , yn) in a neighborhood of x.
In this neighborhood U, we consider two symplectic forms: ω0 := ω|U , and ω1 :=
∑n

i=1 dxi ∧ dyi. By construction, we have that ω0(x) = ω1(x). Since U is contractible
and ω1 − ω0 closed, there exists a one-form ν ∈ Ω1(U) such that ω1 − ω0 = dν, and
νx = 0. Then we consider the convex combination

ωt := (1− t)ω0 + tω1 = ω0 + tdν.

Since being non degenerate is clearly an open condition, and ωt is symplectic at x ∈ U,
we can shrink U so that ωt is symplectic for all 0 ≤ t ≤ 1. Then we consider the Moser
equation:

ιXt ωt + ν = 0.

Since ωt is non degenerate, this defines a t-dependent family of vector fields in a neigh-
borhood around x. Let ϕ : U× [0, 1]→ M be the flow generated by this time-dependent
vector field:

d
dt

ϕt(x) = Xt(ϕt(x)).

Since this is a first order (nonautonomous) ODE, we know that solutions locally exist
and shrinking U again we can assume ϕt is defined on all of U. Then we compute

d
dt

ϕ∗t ωt = ϕ∗t (LXt ωt +
dωt

dt
)

= ϕ∗t (dιXt ωt + dν)

= 0.



MATHEMATICAL APPROACHES TO QFT 15

Since ϕ0 = idU , we therefore have that ϕ∗t ωt = ω0 for all 0 ≤ t ≤ 1. Therefore ϕ1 is
a local diffeomorphism having x as a fixed point that satisfies ϕ∗1ω1 = ω0. Composing
the coordinates (x1, . . . , xn, y1, . . . , yn) with ϕ1, we get the desired coordinates. �

Remark 3.8. This result is very surprising if you compare symplectic geometry with
Riemannian geometry. We have seen, see Appendix A, that the local model for Rie-
mannian geometry is given by (an open subset of) Rn together with a smoothly varying
metric gij(x). In symplectic geometry however, the local model is given by (an open
subset of) R2n together with a constant antisymmetric non degenerate bilinear form!

Given a function f ∈ C1(M), we can associate to it a vector field X f , called the Hamil-
tonian vector field, defined by the equation

(12) ιX f ω = d f ,

and associated to this vector field is its (local) flow ϕ f : [0, ε)×M → M determined by
the first order ODE

d
dt

ϕ f (t, x) = X f (x), x ∈ M.

We see that on a symplectic manifold any function gives rise to dynamics, and it is up
to physics to determine which function (called the Hamiltonian and usually written as
H) governs the equations of motions that describe reality. If we choose local Darboux
coordinates (x1, . . . , xn, y1, . . . yn) as in Theorem 3.7, these Hamilton equations (as they
are called) take the form

dxi

dt
=

∂H
∂yi

dyi

dt
= −∂H

∂xi

Another way to describe the dynamics is by introducing the Poisson brackets of two
C1-functions by

{ f , g} := ω(X f , Xg).

Proposition 3.9. For f , g ∈ C2(M, R), we have

[X f , Xg] = −X{ f ,g}.

Proof. This is a direct computation, using the fact that the Lie derivative is a derivation
with respect to the contraction between vector fields and differental forms:

ι[X f ,Xg]ω = ιLX f Xg ω

= LX f (ιXg ω)− ιXg LX f ω

= −d(ω(X f , Xg)).

In this computation we have used Cartan’s magic formula LX = dιX + ιXd together
with the definition of a Hamiltonian vector field in (12). �
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Corollary 3.10. The Poisson bracket {−,−} defines a Lie bracket on smooth functions.

Definition 3.11. A Poisson manifold is a smooth manifold M whose ring of smooth func-
tions C∞(M) is equipped with a Lie bracket ( f , g) 7→ { f , g} satisfying the Leibniz rule:

(13) { f , gh} = { f , g}h + g{ f , h}.

We see that a symplectic manifold is also a Poisson manifold, but there are Poisson
manifolds that are not symplectic, e.g., they can be odd-dimensional. Given a function
f ∈ C1(M, R) on a Poisson manifold, it follows from the Leibniz rule that { f ,−} defines
a derivation of the ring of functions on M, i.e., a vector field: this is (again) called the
Hamiltonian vector field X f of f , so these are defined on any Poisson manifold, not just
symplectic ones.

3.3. The Hamilton equations. This section is crucial in classical mechanics, since it
links the Euler–Lagrange equations on M to the Hamilton equations on the symplectic
manifold T∗M. The connection between the two is given by the Legendre transform,
with Hamiltonian defined by the dual of the Lagrangian:

Theorem 3.12. For a Lagrangian L : TM → R satisfying Legendre’s condition, the Euler–
Lagrange equations are equivalent to the Hamilton equations on T∗M for the Legendre trans-
form H := L∗ of the Lagrangian: For a C2-curve γ(t) in M we have

γ(t) satisfies Euler–Lagrange ⇐⇒ (γ(t), TL(γ̇(t))) satisfies the Hamilton equations

Proof. It suffices to check this in local coordinates (x1, . . . , xn) on M. As usual, we write
the associated local coordinates on TM by ξi := ∂/∂xi, and on TM by νi = dxi. In these
coordinates, the Legendre transform (10) is given by

TL(x, ξ) =
n

∑
i=1

∂L
∂ξ i νi.

The Hamiltonian, i.e., the dual of the Lagrangian, is given by

H(x, ν) := L∗(x, ν) =
n

∑
i=1

νiξi − L(x, ξ), with ξ = T−1
L (ν).

The local coordinates (xi, νi) on T∗M are in fact Darboux coordinates, so that the Hamil-
ton equations for H(x, ν) are given by

dxi

dt
=

∂H
∂νi

dνi

dt
= −∂H

∂xi .

For the dual of the Lagrangian, the first equation amounts to

dxi

dt
=

∂H
∂νi =

∂L∗

∂νi = TL∗(νi) = T−1
L (νi),
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so this is automatically satisfies if we define νi = TL(dxi/dt). For the second equation,
we notice that

∂L
∂xi (x, ξ) = −∂H

∂xi (x, ν), with ξ = T−1
L (ν).

With this, the second equation gives

d
dt

∂L
∂ξi

=
dνi

dt
= −∂H

∂xi =
∂L
∂xi ,

exactly the Euler–Lagrange equations. �

3.4. The appearance of symplectic geometry form the Lagrangian approach. Let us
assume that the Lagrangian L : TM→ R is such that the dynamics is complete, i.e., so-
lutions of the Euler–Lagrange equations exist for all times. We now drop the boundary
conditions and consider the spaceF (I; M) of “free” curves in M. InsideF , the subset of
solutions to the Euler–Lagrange equations is denoted byM. Using the Picard–Lindelöf
theorem for the existence and uniqueness of solutions of second order ODE’s, and the
fact that these depends smoothly on the initial conditions, we see that M carries a
smooth structure and is isomorphic to TM.

From Proposition 2.13, we see that the Tangent space TγM to γ ∈ M is given by
vector fields X(t) along γ that satisfy the Jacobi equation (9). We now consider the
boundary term in the derivation in Proposition 2.6 of the Euler–Lagrange equations to
define the one-parameter family of forms αt

L ∈ Ω1(M), t ∈ R by

αt
L(X) :=

n

∑
i=1

∂L
∂ξ i (γ(t), γ̇(t))Xi(t).

Restricting the action S toM, we find by Proposition 2.6

dS = αt1
L − αt0

L ,

so dαt
L is independent of t.

Proposition 3.13. Combining the isomorphismM∼= TM with the Legendre transform TM ∼=
T∗M, the form dαt

L is mapped to the canonical symplectic form on T∗M.

4. QUANTUM MECHANICS

Classical mechanics gives a macroscopic description of physical systems, whereas
quantum mechanics gives a microscopic description. The fact that we work on small
scales in quantum mechanics is indicated by the appearance of h̄, Planck’s constant. Of
course, in physics this is a real number with fixed numerical value, but here we shall
treat it mathematically as a deformation parameter: the limit h̄→ 0, called the “classical
limit” means that we go over to the macroscopic limit where we should recover classcal
mechanics. The Hamiltonian approach to quantum mechanics insists that we work on
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the Hilbert space H = L2(X, Vol(g)), where Vol(g) means the natural volume element
on M given in local coordinates by

Vol(g) :=
√

det(g)(x)dx1 ∧ . . . ∧ dxn.

Elements of the Hilbert spaceH are called “states” of the system Additionally, we need
to “quantize” classical observables, that is, functions f ∈ C∞(T∗M), to operators Qh̄( f )
onH. In general, this quantization procedure is still very mysterious but (from general
principles) we insist that the correspondence f 7→ Qh̄( f ) is linear and satisfies

Qh̄( f )Qh̄(g) = Qh̄( f g) + O(h̄),(I)

[Qh̄( f ), Qh̄(g)] = ih̄Qh̄({ f , g}) + O(h̄2),(II)

where f , g ∈ C∞(T∗M).

4.1. Differential operators and quantization. Any manifold M carries a natural non-
commutative algebra, namely the algebra of differential operators D(M). Let us first
recall its definition:

Definition 4.1. The algebra of differential operators D(M) is the algebra generated inside
End(C∞(M)) by f ∈ C∞(M), acting by multiplication, and X ∈ X(M) acting by the Lie
derivative.

Recall that an increasing filtration on an algebra A is given by a chain of sub vector
spaces

F0(A) ⊂ F1(A) ⊂ F2(A) ⊂ . . . , A =
⋃
k≥0

Fk(A),

with the property that Fi(A) · Fj(A) ⊂ Fi+j(A). For a filtered algebra, the associated
graded algebra Gr(A) is defined as

Gr(A) :=
⊕
k≥0

Fk(A)/Fk−1(A),

with the product induced by that of A.
The algebra of differential operators D(M) is filtered by means of the inductive defi-

nition

D ∈ Dk(M) ⇐⇒ [D, f ] ∈ Dk−1(M), D0(M) := C∞(M).

It is easy to see that this means that D ∈ Dk(M) in local coordinates (x1, . . . xn) looks
like

(14) D = ∑
i1,...,ip

p≤k

ai1,...,ip(x)
∂p

∂xi1 · · · ∂xip
,

where ai1,...,ik(x) 6≡ 0.
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Proposition 4.2. The associated graded algebra of D(M) is commutative, and canonically iso-
morphic to

Gr(D(M)) ∼= Γ∞(M; Sym(TM)),

with isomorphism induced by the principal symbol map

σk(D) : Dk(M)→ Γ∞(M; Symk(TM))

given in local coordinates (14) by

σk(D)(ν) := ∑
i1,...,ik

ai1,...,ik(x)νi1 · · · νik ,

where ν = ∑i νidxi ∈ T∗x M

Proof. First, check that the local expression for the principal symbol above is indeed
coordinate invariant: for this it is essential that we only consider the top degree part of
the differential operator D. (Why?) In local coordinates it is then easy to check that the
principal symbol map fits into a short exact sequence

0 −→ Dk−1(M) −→ Dk(M)
σk−→ Γ∞(M; Symk(TM)) −→ 0.

This observation shows that σ induces an isomorphism Gr(D(M)) ∼= Γ∞(M; Sym(TM))

of vector spaces. To see that it is in fact an algebra isomorphism, one uses the property

(15) σk1+k2(D1D2) = σk1(D1)σk2(D2),

for Di ∈ Dki(M), i = 1, 2. Again, this is immediate from the expression of the symbol
in local coordinates, and shows that on the graded quotient, σ is an algebra homomor-
phism. �

Remark 4.3 (PBW for Lie algebras).

The idea is now to construct a right inverse map to the symbol map to construct
a quantization. By a right inverse we mean a map Q : Γ∞(M; Sym(TM)) → D(M)

satisfying

σ ◦Q = 1.

Definition 4.4. Let A be a filtered algebra. The Rees algebra associated to the filtration is
defined as

Rees(A) :=
⊕
k≥0

Fk(A)h̄k ⊂ A⊗C[h̄].

When A = D(M), we write Dh̄(M) for the Rees algebra associated to the filtration by
order of differentiation.
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For the construction of the right inverse Q, we need the notion of an iterated covariant
derivative: for a connection ∇ on TM, we get a natural connection on T∗M, the dual
also denoted by ∇ and therefore also on Symk(T∗M), for all k. With this, define ∇(k) :
Γ(M; Symk(T∗M))→ Γ(M; Symk+1(T∗M)) by

(∇(k)γ)(X1, . . . , Xk+1) :=
1
k! ∑

σ∈Sk+1

(∇Xσ(1)
γ)(Xσ(2), . . . , Xσ(k+1)).

For α ∈ Γ(M; Symk(TM)), we can now define

Qh̄(α)( f ) := h̄kια(∇k( f )), for all f ∈ C∞(M).

In this formula, ∇k := ∇(k) ◦ ∇(k−1) ◦ . . . ◦ ∇(0), remark that ∇(0) = d, the exterior
derivative.

Proposition 4.5. The map

Qh̄ : Γ∞(M; Sym(TM))→ Dh̄(M)

defines a quantization of the sub Poisson algebra of functions on T∗M that are polynomial along
the fibers of π : TM→ M.

Proof. Extend the principal symbol map C[h̄]-linearly to Dh̄(M). First we shall show
that

σk(Qh̄(α)) = h̄kα, for all α ∈ Γ∞(M; Symk(TM)).

We know from the proof of Proposition 4.2 that it suffices to compute this locally, and
that only the highest order (i.e., k) derivative contributes to the principal symbol. In
local coordinates (x1, . . . , xn) on M the connection ∇ on T∗M can be written as

∇∂/∂xi β = ∂iβ + Gi(β),

with Gi(x) ∈ End(T∗M). Therefore we find

σk(Qh̄(α)) = ∑
i1,...,ik

αi1,...,ik νi1 · · · νik , α = ∑
i1,...,ik

αi1,...,ik dxi1 · · · dxik .

This shows that Qh̄ is, up to a power of h̄ a right inverse to σ. This, together with
property (15) shows that

σ(Qh̄(α1α2)−Qh̄(α1)Qh̄(α2)) = 0,

and therefore

Qh̄(α1α2)−Qh̄(α1)Qh̄(α2) ∈ Dh̄
k1+k2−1(M),

where the degrees of α1, α2 are k1 resp. k2. This shows property (I) above.
By a similar argument, we see that Qh̄ and σ induce an antisymmetric bracket on

Γ∞(M; Sym(TM)):

{α1, α2} := σk1+k2−1([Qh̄(α1), Qh̄(α2)].
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Using property I of Qh̄ again, we easily verify that the bracket satisfies the Leibniz rule
as in (13). It is therefore determined by the following two Poisson brackets, that are
easily computed:

{ f , g} = 0, {X, Y} := [X, Y], {X, f } = X( f ),

where X, Y ∈ X(M) and f , g ∈ C∞(M). These brackets are determined by the fact that
Qh̄( f ) = f and Qh̄(X) = LX. We now see that the bracket is nothing but the canonical
Poisson bracket on T∗M, restricted to functions that are polynomial along the fibers of
π : T∗M→ M. Altogether, this proves (II) �

4.2. The Laplacian on a manifold. Let us again consider our favorite example: the free
particle on a Riemannian manifold (M, g). Of course, in this case we use the Levi–Civita
connection to define the quantization. As we have seen, the Hamiltonian is given by
H(ν) := ||ν||2 /2 so that its quantization gives, in local coordinates (x1, . . . , xn):

Qh̄(H) = − h̄2

2
∆g :=

h̄2

2 ∑
i,j

gij∇i∂j

The second order differential operator ∆g is called the Laplace–Beltrami operator. Because
the Levi–Civita connection is completely determined by the metric, we can rewrite ∆g

as

(16) ∆g = − 1√
det(g)

n

∑
i,j=1

∂

∂xi

(√
det(g)gij ∂

∂xj

)
.

We will now analyze the structure of the Laplace–Beltrami operator. For this we need
the construction of Hodge ∗-operator on Riemannian manifolds.

Let us first consider the following construction in Linear Algebra: If (V, 〈 , 〉) is an
oriented real vector space of dimension n with an inner product 〈 , 〉 : V ×V → R, the
exterior powers ΛkV of V also inherit an inner product by setting

〈w1 ∧ . . . ∧ wk, v1 ∧ . . . ∧ vk〉 := det
〈
wi, vj

〉
.

In other words, if e1, . . . , en is an orthonormal basis of V, an orthonormal basis for ΛkV
is given by ei1 ∧ . . .∧ eik ∈ ΛkV with i1 < . . . < ik. Recall that the choice of orientation of
V is simply a choice of component of ΛnV\{0}, and the metric fixes a unique volume
element in this component

Vol := e1 ∧ . . . ∧ en,

of norm 1. The Hodge ∗-operator ∗ : ΛkV → Λn−kV is defined by the equation

α ∧ ∗β = 〈α, β〉Vol, α, β ∈ ΛkV.

In terms of the orthonormal basis:

∗(ei1 ∧ . . . ∧ eik) = (−1)σej1 ∧ . . . ∧ ejn−k ,
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where {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n} and σ = (i1, . . . , ik, j1, . . . , jn−k). From this we
easily derive that

∗2 = (−1)k(n−k).

Also remark that ∗1 = Vol.
Let us now consider the de Rham complex on M:

0 −→ Ω0(M)
d−→ Ω1(M)

d−→ . . . d−→ Ωn(M) −→ 0.

With the metric, we have the Hodge ∗-operator and we can introduce L2-type inner
products on Ωk(M):

(17) 〈α, β〉 :=
∫

M
α ∧ ∗β.

Lemma 4.6. The formal adjoint of d : Ωk−1(M)→ Ωk(M) is given by

d∗ = (−1)n(k+1)+1 ∗ d∗

Proof. This follows easily from Stokes’ formula. Let α ∈ Ωk−1(M) and β ∈ Ωk(M) and
compute:

0 =
∫

M
d(α ∧ ∗β)

=
∫

M
dα ∧ ∗β + (−1)k−1

∫
M

α ∧ d ∗ β

=
∫

M
dα ∧ ∗β− (−1)n(k+1)+1

∫
M

α ∧ ∗(∗d ∗ β).

Interpreted in terms of the inner product (17), the statement now follows. �

Definition 4.7. The Laplacian acting on k-forms is the second order differential operator
defined as

∆k
g := dd∗ + d∗d : Ωk(M)→ Ωk(M).

Proposition 4.8. Restricted to 0-forms, ∆0
g agrees with (16)

Corollary 4.9. The Laplacian, acting on the dense domain given by C∞
c (M), is a positive sym-

metric operator on L2(M).

Proof. We now have ∆g = d∗d it is clearly symmetric. Also for f ∈ C2
c (M), we see that〈

f , ∆g f
〉
= 〈d f , d f 〉 = ||d f ||2L2 ≥ 0,

so the operator is nonnegative. �

We therefore know that the Laplacian has a selfadjoint extension, namely Friedrichs’
extension given in §B.2. However, on a complete Riemannian manifold, this is the
unique selfadjoint extension, as the following theorem shows:

Theorem 4.10. On a complete Riemannian manifold, the Laplace–Beltrami operator is essen-
tially selfadjoint.
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See [St] for a proof, it amounts to showing that Hmin = Hmax.

4.3. Adding a potential. Recall that in general, the Hamiltonian (11) has a potential
term V ∈ C∞(X), which should be taken into account in the quantization. But this is
easily done: since V is the lift of a function on the base manifold, its quantization is
simply the multiplication operator on H = L2(M). Recall that for f ∈ C∞(M) and
g ∈ L2(M) we have

|| f g||L2 ≤ || f ||∞ ||g||L2 ,

and therefore the multiplication operator defined by f is bounded when f is a bounded
function. When it is not, it defines an unbounded operator on the domain D( f ) of all
g ∈ L2(M) for which f g ∈ L2(M).

In total, we now have the Hamiltonian

(18) Qh̄(H) = − h̄2

2
∆g + V.

We have seen that for V = 0, this is an essentially selfadjoint operator. Treating V as
a perturbation of this operator, there is a very general theorem, the Kato–Rellich theo-
rem on perturbations, c.f. [RSII, §X.2], which guarantees us that (18) is still essentially
selfadjoint.

4.4. Dynamics. Let us now assume that (M, g) is complete, and denote by H̄ the self-
adjoint extension of the Hamiltonian H acting on D(H̄) ⊂ H. In Quantum Mechanics,
the dynamics of the system is described by the Schrödinger equation

du
dt

= −
√
−1
h̄

H̄u, u ∈ H.(19)

The solution to this equation, subject to u(0) = u0, describes the evolution of the system
described by a time dependent vector u(t) inH.

Proposition 4.11. For u0 ∈ D(H̄), the Schrödinger equation (4.11) has a unique solution
given by

u(t) = e−
√
−1tH̄/h̄u0.

Proof. Write U(t) = e−
√
−1tH̄/h̄ for the one-parameter group generated by H̄ as in Propo-

sition B.5. Let u0 ∈ D(H̄), and check that indeed u(t) := U(t)u0 is a solution:

du
dt

= lim
h→0

(U(t + h)−U(t))u0

h

= lim
h→0

(U(h)− 1)U(t)u0

h

= −
√
−1
h̄

H̄U(t)u0

= −
√
−1
h̄

H̄u.
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We skip the proof of uniqueness. �

This is the so-called Schrödinger picture of Quantum Mechanics. In Quantum Me-
chanics, observables are given by selfadjoint operators on the Hilbert spaceH. A vector
u ∈ H defines a state

(20) Eu(A) :=
〈u, Au〉
〈u, u〉 ,

where A is a selfadjoint operator on H. It gives the expected (or average) value of the
observable A in the state u. In the Schrödinger picture of Quantum Mechanics therefore
the state evolves over time, whereas the observables are fixed.

Since the quantities (20) yield all the physical information one can deduce from a
Quantum Mechanical system, there is a dual Heisenberg picture: observable evolves,
states don’t. Indeed with the solution of Proposition 4.11 to the Schrödinger equation,
one easily see that we may as well define the time evolution of an observable as

(21) A(t) := e
√
−1tH/h̄ Ae−

√
−1tH/h̄,

and keep u fixed: the evaluation (20) then gives the same result:

Eu(t)(A) = Eu(A(t)).

The Euclidean formalism. Let us (formally) substitute τ = −it. The Schrödinger equation
then transforms to the (abstract) Heat equation:

du
dτ

+
H̄
h̄

u = 0

u(0) = u0.

Proposition 4.12. When H̄ is a positive selfadjoint operator,

u(τ) := e−τH̄u0

is the unique solution to the heat equation with u0 ∈ D(H̄).

Proof. By Proposition B.9, the heat semigroup e−τH̄ is well-defined as a semigroup of
contraction operators. The verification that u(τ) solves the heat equation is done in the
same way as in the proof of Proposition 4.11. To verify uniqueness, suppose that u1(τ)

and u2(τ) are two solutions with the same initial value u0. Then v(τ) = u1(τ)− u2(τ)

is a solution with v(0) = 0. Then we compute

d
dτ
||v(τ)||2 = −2 〈v(τ), Av(τ)〉 ≤ 0.

But since clearly ||v(τ)||2 ≥ 0, we find that ||v(τ)||2 = 0, i.e., v(τ) = 0. This proves
uniqueness. �
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4.5. Heat kernels and Propagators. Let (M, g) be a complete Riemannian manifold.
We take another look at the semigroup generated by the (selfadjoint extension of ) the
Laplacian ∆g. The following theorem gives another description as a semigroup of ker-
nels:

Theorem 4.13. Let (M, g) be a complete Riemannian manifold. There exists a unique real-
valued C∞ function Kτ(x, y) on R+ ×M×M, symmetric in x and y such that

(e−τ∆̄g u)(x) =
∫

M
Kτ(x, y)u(y)Vol(g)(x), for all u ∈ L2(M, g).

This function Kτ(x, y) is called the heat kernel of (M, g).

Remark 4.14. Because of Proposition 4.12 we see that the heat kernel satisfies

∂

∂τ
Kτ(x, y) + ∆xkτ(x, y) = 0(22)

lim
τ↓0

∫
M

Kτ(x, y)s(y)Vol(g)(y) = s(x), for all s ∈ C∞
c (M).

The semigroup property amounts to

Kt1+t2(x, y) =
∫

M
Kt1(x, z)Kt2(z, y)Volg(z)

There are two approaches to prove the existence of the heat kernel: first there is a
direct approach trying to solve (22) and then using uniqueness to show the equality
with e−τ∆̄g . Second, one can use the spectral theory of ∆g in good cases to construct the
heat kernel. Below we give an outline of this argument in the case that M is compact.

For Schrödinger equation (4.11), there also exists a kernel Kt(x, y), called the propaga-
tor but its properties are not as nice as that of the heat kernel, showing that the formal
substitution t 7→ −it isn’t that innocent. Most importantly, it may not be a smooth func-
tion anymore, but rather a distribution. (This happens in for example in the compact
case mentioned above.) The analysis of this propagator is really very subtle, and we
shall no more about it in general.

4.6. Examples.

Free particle on Rn. On Rn, equipped with the euclidean metric, the Laplacian takes the
usual form

∆ = −
n

∑
i=1

∂2

∂x2
i

,

where (x1, . . . , xn) are the standard euclidean coordinates. In this case, one easily veri-
fies that

Kτ(x, y) = (4πt)−n/2 exp
(
−||x− y||2

4t

)
solves the heat equation, i.e., the first equation in (22). By using Fourier transformation,
one shows that the second equation holds true, i.e., Kτ(x, y) is indeed the heat kernel.
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Compact Riemannian manifolds. The case of a compact Riemannian manifold differs from
the general (noncompact) case since the spectrum of the Laplace–Beltrami operator is
discrete. Recall that un ∈ L2(M) is said to be an eigenfunction of ∆g with eigenvalue
λn ∈ R when it satisfies

∆gun = λnun.

The following theorem summarizes the whole spectral theory of the Laplace–Beltrami
operator on a compact Riemannian manifold:

Theorem 4.15. Let (M, g) be a compact Riemannian manifold. Then the following holds true:

i) The spectrum of the Laplace–Beltrami operator consists of

0 ≤ λ0 < λ1 < . . . , λn → ∞, n→ ∞.

ii) Each eigenspace Hk ⊂ L2(M) is finite dimensional and consists of eigenfunctions that
are smooth: un ∈ C∞(M).

iii) The set of eigenvectors is complete: there is a Hilbert space decomposition

L2(M, Vol(g)) ∼=
⊕
n≥0

Hn.

We will not prove this theorem, it heavily relies on the fact that ∆g is elliptic: this is
a property of differential operators that is very easy to check, namely it means that the
symbol σ(∆g) ∈ C∞(T∗M) defined in Proposition 4.2 is nonzero off the zero section
M ⊂ T∗M. However, this innocently looking property has profound consequences,
some of which are stated in the theorem: the spectrum is discrete and consists of smooth
functions (elliptic regularity). The fact that eigenvalues are real and positive of course
follows immediately from the fact that ∆g is symmetric and positive.

The basic question of spectral geometry is: how much of the geometry can we extract
from the spectrum of ∆g? (“Can one hear the shape of a drum?”) The following classical
result shows that at least the volume of M can be recovered:

Theorem 4.16 (Weyl). Let (M, g) be a compact Riemannian manifold. For λk → ∞,

λk ∼ 4π

(
Γ(n/2 + 1)

Vol(M)

)n/2

k2/n.

Let us now outline how the heat kernel of ∆g can be constructed from the two theo-
rems above, c.f. [LM]. Consider the following expression:

(23) Kτ(x, y) :=
∞

∑
k=0

e−τλk uk(x)⊗ uk(y).

Using a fundamental result for elliptic differential operators, the so-called elliptic esti-
mates, one shows that

||uk||Cr ≤ c(1 + λs
k),
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for some c > 0 and s > (n/4) + (r/2). Using this estimate, we can show that Kτ(x, y),
as defined above, converges in the Cr norm for any r > 0, using the integral test for the
integral ∫ ∞

0
e−txxsdx < ∞.

We therefore conclude that Kτ(x, y) is smooth in both variables. Second, it is easily seen
that it satisfies the heat equation:

∂

∂τ
Kτ(x, y) = −

∞

∑
k=0

λke−τλk uk(x)⊗ uk(y)

= −
∞

∑
k=0

e−τλk(∆g
xuk(x))⊗ uk(y)

= −∆g
xKτ(x, y).

Finally, using the completeness of the set of eigenfunctions, we immediately get that

lim
τ↓0

∫
M

Kτ(x, y)s(y)Volg(y) = s(x),

where the convergence is in the L2-sense.

5. THE PATH INTEGRAL APPROACH TO QUANTUM MECHANICS

The previous section dealt with Quantum Mechanics from the Hamiltonian point of
view. The analogue of the Lagrangian approach to classical mechanics is given by the
path integral. Physically, this is a beautiful incorporation of the principle of least action
in Quantum Mechanics. Mathematically however, there are many problems to give a
rigorous construction of this integral.

5.1. Derivation from the Hamiltonian approach.

Theorem 5.1 (The Trotter product formula). Let A and B be selfadjoint operators on a
Hilbert spaceH and suppose that A + B is selfadjoint on D(A) ∩ D(B). Then

lim sup
n→∞

(
eitA/ne−itB/n

)n
= eit(A+B).

When A and B in addition are bounded from below, we have

lim sup
n→∞

(
e−tA/netB/n

)n
= e−t(A+B)

Proof. (c.f. [S]) We write S(t) := e
√
−1t(A+B), V(t) = e

√
−1tA, W(t) = e

√
−1tB and U(t) =

V(t)W(t), and u(t) = S(t)u0 for some u0 ∈ H. Then we have

||(S(t)−U(t/n)n)u0|| =
∣∣∣∣∣
∣∣∣∣∣n−1

∑
j=0

U(t/n)j(S(t/n)−U(t/n))S(t/n)n−j−1u0

∣∣∣∣∣
∣∣∣∣∣

≤ n sup
0≤s≤t

||(S(t/n)−U(t/n))u(s)||(∗)
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If u0 ∈ D(A) ∩ D(B), we have

lim
s→0

(S(s)− 1)u0

s
=
√
−1(A + B)u0,

and
(U(s)− 1)u0

s
= V(s)(

√
−1Bu0) + V(s)

(
(W(s)− 1)

s
−
√
−1B

)
u0 +

(V(s)− 1)u0

s
s→0−→
√
−1(A + B)u0.

Therefore we have

(∗∗) lim
n→∞

(n ||S(t/n)−U(t/n)u0||) = 0, for all u0 ∈ D(A) ∩ D(B).

We can equip D = D(A) ∩ D(B) with the norm ||u0||D := ||u0|| + ||(A + B)u0||. By
assumption, A + B is selfadjoint on D, and therefore closed: it follows that D equipped
with the norm above is a Banach space. We view n(S(t/n) − U(t/n)) as a family of
bounded operators from D toH, and we see from the calculation above that

sup
n
{||n(S(t/n)−U(t/n))u0||} < ∞.

By the uniform boundedness principle, we have

||n(S(t/n)−U(t/n))u0|| ≤ C ||u0||D , for all u0 ∈ D(A) ∩ D(B),

for some C > 0, independent of n. This inequality implies that the limit in (∗∗) is
uniform over compact subsets of D. For u0 ∈ D, the map s 7→ u(s) is continuous from
[0, t] to D, so the image is compact in D. We now see that in the limit as n→ ∞, (∗) goes
to zero for u0 ∈ D. Since the operator S(t)−U(t/n)n has operator norm bounded by
1, and D is dense, this shows that the limit is zero for all u0 ∈ H. This proves the first
statement. �

We now return to the vector space situation: V = Rn, with Hamiltonian

Ĥ := −1
2 ∑

i,j

∂2

(∂xi)2 + V(x),

which we write as H = H0 + V. Then eitĤ0 is the operator with kernel

K0(x, y, t) = (2πit)−n/2 exp
(

i
||x− y||2

2t

)
.

It follows that the operator (e−itH0/ne−itV/n)n has kernel

K(n)(x0, xn, t) =
(

2πit
n

)3n/2 ∫
exp (iS(x0, x1, . . . , xn; t)) dx1 · · · dxn−1,

where

S(x0, x1, . . . , xn; t) =
n

∑
i=1

( n
2t

)
||xi−1 − xi||2 −

n

∑
i=1

V(xi)

(
t
n

)
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This expression is an approximation to the action

S(γ) :=
1
2

∫ t

0

∣∣∣∣∣∣∣∣dγ

ds

∣∣∣∣∣∣∣∣2 ds−
∫ t

0
V(γ(s))ds,

with γ the “polygonal path” that passes through xj at time jt/n. Therefore as n → ∞
we formally obtain

(24) Kt(x, y) =
∫

γ(0)=x
γ(t)=y

exp (iS(γ)) dγ,

where dγ is some kind of “Lebesque-type” measure on the space of paths with fixed
beginning and end-point. Unfortunately, such a translation-invariant measure simply
doesn’t exist, due to the infinite-dimensionality of the space of paths. In the euclidean
case however, one can make sense of the combination exp (−S(γ)) dγ as a probability
measure on the space of continuous paths in M: this is the Wiener measure.

5.2. The Wiener measure. Let (M, g) be a Riemannian manifold. As we have seen,
when M is complete, the Laplace–Beltrami operator ∆g is positive and selfadjoint, and
therefore generates a unique semigroup e−t∆̄g , called the Heat-Kernel, also written as
the kernel function Kτ(x, y). This heat kernel is essential in the construction of the
Wiener measure on the path space on M. Below we outline this construction following
[T, §11]. Let us write F (I, x0) for the space of continuous maps γ : [0, t] → M with
γ(0) = x0, with x0 ∈ M fixed.

We shall assume that the heat kernel satisfies

(25)
∫

M
Kτ(x, y)Volg(y) = 1,

for all x ∈ M, τ > 0. This for example the case for M = Rn, and also compact M. With
this property, the heat kernel Kτ(x, y) defines, for each x a probability distribution that
we interpret as the probability for a random particle to be at place y after time τ.

The idea of the Wiener measure is that we can use the heat kernel to try to define
a measure on F (I, x, y) in the following way: for 0 < t1 < . . . < tn < T and Borel
sets E1, . . . , En ⊂ M, the measure evaluated on the cylinder subset of paths γ with the
property that γ(ti) ∈ Ei, i = 1, . . . , n is given by

W(γ ∈ F (I; x0, x1), γ(ti) ∈ Ei, i = 1, . . . , n})

=
∫

M×n
χE1×...×En KT−tn(y, xn) · · ·Kt2−t1(x2, x1)Kt1(x1, x)Volg(x1) · · ·Volg(xn).

(26)

Theorem 5.2. Let (M, g) be a Riemannian manifold satisfying (25). Then the heat kernel
induces unique probability measures Wx0 onF (I; M, x0), called the Wiener measure, and Wy0

x0

on F (I; M, x0, x1) called the conditional Wiener measure. They are related by the equality∫
F (I;M,x0)

f (γ)dWx0(γ) =
∫

M

(∫
F (I;M,x0,y0)

f (γ)dWy0
x0 (γ)

)
dVolg(y0),

for all integrable functions f on F (I; M, x0)
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Proof. We give a sketch of the construction, c.f. [T, §11]. The idea is to approximate
paths in M by their locations at rational τ. For this we define

F := ∏
τ∈[0,T]∩Q

Ṁ

(Ṁ is the one-point compactification of M.) Equipped with the product topology, this
is a compact, metrizable space. By Riesz’ theorem, a probability measure on F corre-
sponds to a positive linear functional E : C(F)→ R satisfying E(1) = 1. We first define
E on the subspace Cfin

τ1,...τk
(F) of functions depending on finitely many τ ∈ [0, T] ∩Q, i.e.,

functions that can we written as

ϕ(γ) = F(γ(τ1), . . . , γ(τk)), τ1 < τ2 < . . . < τk,

with F continuous on ∏k
i=1 Ṁ. On these functions we define

(27) E(ϕ) :=
∫

M×k
Kτ1(x0, x1) · · ·Kτk−τk−1(xk−1, xk)F(x1, . . . , xk)dVolg(x1) · · · dVolg(xk).

There is an obvious map Cfin
I (F) → Cfin

J (F) for I ⊂ J ⊂ [0, T] ∩Q, and the semigroup
property of Kτ(x, y) ensures that E is compatible with this inclusion. Clearly, E is posi-
tive linear on Cfin(F) and satisfies E(1) = 1.

By the Stone Weierstrass theorem, Cfin(F) ⊂ C(F) is dense and E has a unique con-
tinuous extension to C(F) having the same properties. By Riesz’theorem, there exists a
measure Wx0 such that

E(ϕ) :=
∫
F

ϕ(γ)dWx0(γ).

Inside F, we restrict to the subset F0 of paths from I ⊂ Q to M that are uniformly contin-
uous. These are exactly the paths that extend uniquely to continuous paths from [0, τ]

to M. The crucial point is then:

Claim3: F0 is a Borel subset of measure 1.

This concludes the construction of the Wiener measure on the space of continuous
paths in M, starting at x0. The conditional Wiener measure is constructed in a similar
way, we skip the details. �

Remark 5.3. Choose 0 < τ1 < . . . < τk < T and functions f1, . . . , fk ∈ L∞(M). With
these we can define the cylindrical function ϕτ1,...,τk

f1,..., fk
∈ Cfin(F) by

ϕτ1,...,τk
f1,..., fk

(γ) := f1(γ(τ1)) · · · fk(γ(τk)).

This function is integrable with respect to the Wiener measure and defines the correlation
functions

(28) 〈 f1(τ1) · · · fk(τk)〉 :=
∫
F (I;M)

ϕτ1,...,τk
f1,..., fk

(γ)dW(γ).

3The proof of this claim is highly nontrivial, c.f. [T]
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5.3. The Feynman–Kac formula. The Wiener measure gives an integral formula for the
kernel of the free Hamiltonian H0 = ∆g in euclidean quantum mechanics. The general
case of a Hamiltonian H = ∆g −V is given by the so-called Feynman–Kac formula:

Theorem 5.4 (Feynman–Kac formula). Let H = ∆g − V with V ∈ L∞(M, R) a potential.
Then the semigroup generated by H is given by

(e−tHs)(x) =
∫
F (I,M,x0)

s(γ(τ)) exp
(∫ τ

0
V(γ(s))ds

)
dWx(γ).

Proof. We sketch the proof in the case that V is continuous and bounded. Applying the
Trotter product formula we get(

e−t∆/n etV/n
)n

s(x0)

=
∫

M×n
exp

(
t
n

n

∑
j=1

V(xj)

)
s(xn)Kt/n(xn, xn−1) · · ·Kt/n(x1, x0)dxn · · · dx1

=
∫
F (I;M,x0)

exp

(
t
n

n

∑
j=1

V(γ(jt/n))

)
s(γ(t))dWx0(γ).

Since V ◦ γ : [0, t]→ R is continuous, the Riemann sum will converge to an integral:

t
n

n

∑
j=1

V(γ(jt/n)) n→∞−→
∫ t

0
V(γ(s))ds.

To complete the proof, one needs to argue that one can bring the limit n→ ∞ inside the
integral over F (I; M, x0), for the details see [RSII, Thm X.68]. �

With the Feynman–Kac formula, we can now give the rigorous statement for the
Kernel, in accordance with the heuristic formula (24):

Corollary 5.5. The integral kernel for the operator e−t(∆g−V) is given by

KH
t (x, y) =

∫
F (I;M,x,y)

exp
(∫ t

0
V(γ(s))ds

)
dWy

x (γ).

Let H be a separable Hilbert space with basis {ei}i∈N. For a positive bounded oper-
ator S onH, define its trace to be

(29) Trace(S) =
∞

∑
i=0
〈Sei, ei〉H ∈ [0, ∞].

One can prove (check!) that this trace is independent of the chosen basis. For 1 ≤ p <

∞, define the p-th Schatten class Bp(H) to be the set of bounded operators for which

||T||p := p
√

Trace(|T|p) < ∞,

where |T| =
√

T∗T defined by means of the functional calculus. For p = 2, these
operators are called Hilbert–Schmidt. One can prove that each Bp(H) is an ideal inside
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the compact operators K(H). For T ∈ B1(H), the sum ∑i 〈Tei, ei〉 converges absolutely
to a linear functional

Trace : B1(H)→ C,

satisfying

(30) Trace(ST) = Trace(TS), for all S ∈ B(H), T ∈ B1(H).

Remark 5.6 (The partition function). When M is compact, the heat kernel Kτ(x, y) is
trace class. One can show this fact using equation (23) together with asymptotics of the
eigenvalues given by Weyl’s Theorem 4.16. Since the heat kernel is a positive operator,
It follows easily from the same equation (23) and the definition of the trace in equation
(29) that

Tr
(

e−τ∆g
)
=
∫

M
Kτ(x, x)Volg(x).

This function of τ is called the partition function of the model, and it has a beautiful
interpretation in statistical physics. More generally, from Corollary we see that

Tr
(

e−τH
)
=
∫

M

∫
F (I;M,x,x)

exp
(∫ t

0
V(γ(s))ds

)
dWy

x (γ)Volg(x).

5.4. The mathematical structure of Euclidean Quantum Mechanics. Let us now as-
sume that (M, g) is compact. Then the constant function 1 defines a vector Ω ∈ H =

L2(M, Volg) called the vacuum vector. Indeed it is the unique eigenvector of the Lapla-
cian ∆g with “energy” zero, which is therefore fixed by the heat semigroup:

e−t∆g Ω = Ω, for all t > 0.

With this vector, we now see that the Hamiltonian formulation of euclidean quantum
mechanics uses the following list of items:

1 the Hilbert spaceH together with the vacuum vector Ω ∈ H,
2 the strongly continuous one-parameter semigroup of operators S(t) = e−tH,
3 the ring of operators Q( f ), f ∈ L∞(M).

We have not really stressed the last item so far. Recall that for a function f on the base
manifold M the quantization procedure described in §4.1 simply imposes that Q( f ) is
the operator on L2(M) given by multiplication with f . (Notice that this operator is
bounded by compactness of M.)

For the following, we recall the definition of the correlation functions in Remark 5.3
using the Wiener measure. The following Theorem explains how they are related to the
ingredients of the Hamiltonian approach:

Theorem 5.7. Let 0 < τ1 < . . . < τk < T and f1, . . . , fk ∈ L∞(M). For the free Hamiltonian
H = ∆g, we have the equality

〈 f1(τ1) · · · fk(τk)〉 = 〈Ω, S(T − τk)Q( fk)S(τk − τk−1)Q( fk−1) · · · S(τ2 − τ1)Q( f1)S(τ1)Ω〉H
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Proof. This follows by the definition (28) of the correlation function, using equation (27)
for the value of the Wiener measure on cylindrical functions. �

6. SUPERSYMMETRIC QUANTUM MECHANICS

There is a supersymmetric extension of the model we have discussed so far –that
of a free particle on a Riemannian manifold– that can be introduced without much
further analytical complications, and has very interesting geometrical and topological
consequences. For this, we go back to the Hamiltonian of the theory, namely the Laplace
operator on a Riemannian manifold (M, g); the Laplace–Beltrami operator. As we have
seen in Definition 4.7, there is a natural extension of this operator acting on differential
forms. This suggests to look at the quantum mechanical model where the Hilbert space
is given by

H :=
⊕
p≥0

Ωp
L2(M),

where Ωp
L2(M) denotes the L2-completion of Ωp(M) in the inner product (17).(Remark

that the sum above is finite.) As Hamiltonian we now take the Laplace–Beltrami oper-
ator defined in Definition 4.7 acting on each degree.

With this, we see we have enlarged our Hilbert space, L2(MVolg) is the piece inH in
degree zero, and extended our original Hamiltonian. It turns out that this model has a
richer structure than the original one, referred to as “supersymmetry” by physicists.

First of all, we can decompose Ω•(M) = Ωev(M)⊕Ωodd(M), which induces a Z/2-
grading of the Hilbert space

H = H+ ⊕H−.

(+ corresponds to even-, and − to odd-degree differential forms.) With respect to this
grading we can view the de Rham operator as an unbounded operator

d : H± → H∓,

acting on the dense domain of smooth differential forms with compact support. We
have already seen in Lemma 4.6 that its (formal) adjoint is given by (−1)n(k+1)+1 ∗ d∗,
and also acts on the same domain of definition as an unbounded operator d∗ : H± →
H∓. With these operators, we now define

Q :=

(
0 d + d∗

d + d∗ 0

)
.

Then we find, by virtue of d2 = 0 = (d∗)2, that

Q2 =

(
dd∗ + d∗d 0

0 dd∗ + d∗d

)
= ∆g.

Physicist say that the model now has supersymmetry and call Q the supersymmetry gen-
erator. Supersymmetric quantum mechanical models were introduced in mathematics
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in the paper [W]. Mathematically, the existence of this supersymmetry has a remarkable
consequence if we look at the euclidean partition function

ZM(τ) := TrH
(

γe−τ∆g
)
= TrH+

(
e−τ∆g

)
− TrH−

(
e−τ∆g

)
,

where

γ =

(
1 0
0 −1

)
.

Theorem 6.1 (Mckean–Singer). Let (M, g) be a compact Riemannian manifold. ZM(τ) does
not depend on τ and equals the Euler number χ(M).

Proof. The proof uses the formula (23) for the heat kernel, which continues to hold for
the Laplacian acting on forms if we consider all eigenforms ψλ ∈ Ω•(M), λ ∈ R+.
Again we have a complete eigenspace decomposition

H =
⊕

λ∈σ(∆g)

Hλ,

and we write n±λ := dim(H±λ ) < ∞. With this notation, we have

Tr(γe−τ∆g) = ∑
λ≥0

(n+
λ − n−λ )e

−tλ.

One easily checks that [Q, ∆g] = 04, so we see that Q± : H±λ → H
∓
λ . The composite

H+
λ

Q+−→ H−λ
λ−1Q−−→ H+

λ

is the identity for λ 6= 0, so we see thatH+
λ
∼= H−λ . It follows that n+

λ = n−λ and we find

Tr(γe−τ∆g) = n+
0 − n−0 = dim ker

(
∆g
∣∣
Ωev(M)

)
− dim ker

(
∆g
∣∣
Ωodd(M)

)
.

By the Hodge Theorem, we have that

ker
(

∆g
∣∣
Ωk(M)

)
∼= Hk(M),

and therefore

Tr(γe−τ∆g) =
k

∑
i=0

(−1)i dim Hi(M) = χ(M).

This proves the theorem. �

Remark 6.2. Observe that again we have been able to extract a geometric/topological
invariant of the manifold from the spectrum of the Laplacian, namely the Euler number!

4Working with commutation relations between unbounded operators can be very tricky, c.f. [RSI], but
we only need this relation for the operators restricted to the eigenspaces which consists of smooth com-
pactly supported forms, so no surprises appear
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7. TOPOLOGICAL QUANTUM FIELD THEORY

We now move on to discuss the basic mathematical structures underlying Quantum
field theory. As mentioned, Quantum field theory is an infinite dimensional generaliza-
tion of Quantum mechanics, and the structure we want to discuss (partially) generalizes
that discussed in §5.4.

7.1. The cobordism category. The notion of cobordism between manifolds is classical in
differential topology. Recall the notion of a manifold with boundary:

Definition 7.1. A manifold with boundary is a paracompact Hausdorff space M covered
by charts taking values in Rn or the half space

Rn
+ := {(x1, . . . , xn), xn ≥ 0}.

Transition functions should be smooth, where ϕ : Rn
+ → Rn

+ is said to be smooth if it
admits a smooth extension to an open subset of Rn. The boundary of M, written ∂M is
given by the inverse image of the plane xn = 0 under the chart maps.

Remark 7.2. Since we assume that all the transition functions of the charts that take
value in the half space Rn

+ can be extended to a small open neighborhood in Rn, the
usual definition of the tangent space Tx M, x ∈ ∂M makes perfect sense. As a result, we
have that Tx∂M ⊂ Tx M as a codimension one subspace.

Theorem 7.3 (c.f. [H, §8.2]). Suppose that M and N are manifolds with boundary, and f :
∂M

∼=−→ ∂N a diffeomorphism of its boundaries. Then there exists a manifold structure on

M ∪ f N :=
(

M ä N
)/
∼ f , x ∼ f y⇐⇒ f (x) = y,

inducing the given manifold structure on M and N. Furthermore, if α and β are two mani-
fold structures on M ∪ f N with the property above, there exists a diffeomorphism φ : (M ∪ f

N, α)→ (M ∪ f N, β) with φ|∂M = id.

Proof. Using the canonical projection M ä N → M ∪ f N, we give M ∪ f N the quotient
topology: a set is open if its inverse image is open in M and in N. With this, we see that
the gluing is well defined as topological spaces. The subtleties arise when one considers
the smooth structure. To construct a smooth structure, we use the following

Lemma 7.4 (Existence of collars, c.f. [H, §6.2]). Let M be a compact manifold with boundary
∂M. Then there exists a neighborhood of ∂M that is diffeomorphic to ∂M× [0, ε).

Proof. Choose a smooth function f : M → R+ with f−1(0) = ∂M and d f 6= 0 in a
neighborhood U of ∂M. We also choose a metric g on M and consider the gradient flow
of f : this is the solution ϕ : [0, ε)→ M of the initial value problem

d
dt

ϕ(t) = grad( f )(ϕ(t)), ϕ(0) = x0 ∈ ∂M.
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As usual, the Picard–Lindelöf gives us the local existence and uniqueness of the flow.
Next, observe that

d
dt
( f ◦ ϕ)(t) = d f (ϕ(t))(

d
dt

ϕ(t)) = d f (ϕ(t))(grad( f )(ϕ(t))) = ||grad( f )(ϕ(t)||2g ≥ 0.

We see that f must be monotonically increasing along the flow line ϕ(t). With this, we
see that the map [0, ε)× ∂M→ M, given by (t, x0) 7→ ϕ(t, x0) is a diffeomorphism onto
a neighborhood of ∂M. �

With the help of this Lemma, we fix a collaring of M and N and construct a smooth
map ψ : (−ε, ε) × ∂M → M ∪ f N with ψ(0, x) = x for all x ∈ ∂M which is a local
diffeomorphism onto an open neighborhood of ∂M inside M ∪ f N. If we write M◦ and
N◦ for the interior of M, resp. N, we see that we can cover M ∪ f N by three open sets,
namely M◦, N◦ and the image of (−ε, ε)× ∂M under ψ. We can now introduce charts
on these three open sets, using the manifold structures on M◦, N◦ and ∂M, and these
are, by construction, compatible with each other. �

Next, we add orientations. Suppose that M is an n-dimensional manifold with bound-
ary, and Σ ⊂ ∂M a connected component of the boundary of M. Assume M and Σ to
be oriented. We say that a vector v ∈ Tx M, x ∈ Σ is positive normal if {v1, . . . , vn−1, v}
is a positive basis for a choice of positive basis {vi}n−1

i=1 of TxΣ. If such a vector points
inwards, we call Σ an incoming boundary, if it points outwards we call it outgoing. (One
should check that this is independent of the various choices made.) We can now define
the notion of an oriented cobordism:

Definition 7.5. Let Σ0 and Σ1 be two closed oriented (n − 1)-dimensional manifolds.
An oriented cobordism from Σ0 to Σ1 is a triple ( f0, M, f1) consisting of an oriented n-
dimensional manifold with boundary, together with maps fi : Σi → ∂M, i = 0, 1 such
that ∂M = f0(Σ0)ä f1(Σ1), and which embed Σ0 as an incoming boundary and Σ1 as
an outgoing boundary.

We shall write such a cobordism as

Σ0
M
 Σ1,

to emphasize the fact that this is not a function from Σ0 to Σ1. Next, if we have cobor-
disms

Σ0
M
 Σ1, Σ1

N
 Σ2

we would like to define their composition as

Σ0
M∪Σ1 N
 Σ2,
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where we glue M and N along that part of the boundaries diffeomorphic to Σ1 using
the composition of the two maps present in the two triples representing the two cobor-
disms. As we have seen above, such a gluing is only well defined up to diffeomorphism.
Therefore, we make the following

Definition 7.6. The cobordism category Bordn has closed5 (n − 1)-dimensional oriented
manifolds as its objects. Morphisms are given by diffeomorphism classes of cobordisms
with composition given by gluing along boundaries as indicated above.

To check that this is indeed a category, one needs to check that composition of mor-
phisms is associative (do this yourself). Also, one needs to show the existence of unit
morphisms 1 : Σ  Σ in Bordn for any object Σ. Indeed, for any (n− 1)-dimensional
oriented manifold we always cobordisms of the form Σ × I, from Σ to Σ (check that
this is consistent with orientations) where I any closed interval in R. One easily shows
that these cobordisms are all diffeomorphic for different choices of interval I, so that we
really have defined a unique morphism Σ  Σ. Furthermore, it is indeed not difficult
to show that element is a unit in the sense that composition from the left or the right
acts as a unit.

We can “twist” the unit cobordism by any diffeomorphism of Σ as follows: for any
f ∈ Diff+(Σ), instead of considering the unit cobordism (i0, Σ× [0, 1], i1), we precom-
pose i0 by f to obtain the cobordism (i0 ◦ f , Σ× I, i1). One easily shows that this defines
a homomorphism

Diff+(Σ)→ HomBordn(Σ, Σ).

Proposition 7.7. Two diffeomorphisms induce the same cobordism class if and only if they are
smoothly homotopic.

Proof. Exercise. �

Remark 7.8 (Monoidal structure). The category Bordor
n has more structure: it is a sym-

metric monoidal category. Let us first recall what this exactly is:

Definition 7.9. A tensor category is a category C equipped with

i) a bifunctor ~ : C × C → C,
ii) associativity isomorphisms

αUVW : (U~V)~W
∼=−→ U~(V~W), U, V, W ∈ Ob(C)

natural in U, V and W,
iii) a unit object 1 ∈ Ob(C) with natural isomorphisms

λV : 1~V
∼=−→ V, ρV : V~1

∼=−→ V,

5meaning compact and without boundary
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such that the so called pentagon diagram

((V1~V2)~V3)~V4
α123~id4 - (V1~(V2~V3))~V4

(V1~V2)~(V3~V4)

α1~2,3,4
?

V1~((V2~V3)~V4)

α1,2~3,4
?

V1~ (V2~(V3~V4))
� id1~

α234α1,2,3~4 -

commutes for all V1, V2, V3, V4 ∈ Ob(C), as well as the triangle axiom:

(V1~1)~V2
α1,0,2- V1~(1~V2)

V1~V2
� id 1~

λ 2ρ
1~id

2
-

The easiest example of a tensor category is the category of finite dimensional vec-
tor space VectC, where the monoidal structure is given by the tensor product of vector
spaces. Another example is given by Rep(G), the category of finite dimensional repre-
sentations of a compact Lie group G, where the monoidal structure is given by taking
the tensor product of representations. Notice that in these examples, there is an iso-
morphism V1 ⊗ V2 ∼= V2 ⊗ V1, for any pair of objects V1 and V2. This motivates the
following

Definition 7.10. A tensor category is said to be braided if it comes equipped with a
natural isomorphisms

βVW : V~W
∼=−→W~V,

such that the hexagon diagram

V1~(V2~V3)
β1,2~3- (V2~V3)~V1

(V1~V2)~V3

�

α
−1

1,2,3

V2~(V3~V1)

α
2,3,1
-

(V2~V1)~V3
α2,1,3-

β
1,2~id3

-

V2~(V1~V3)
id 2~

β 1,3

-

commutes for all V1, V2, V3 ∈ Ob(C), and so does the same diagram with β replaced by
its inverse.

Notice that a braiding is simply a natural isomorphism of functors β : ~ → ~τ,
where τ : C × C → C × C is the flip, i.e., τ(V, W) = (W, V). A tensor category with a
braiding is called a braided tensor category, or a monoidal category. It is called sym-
metric if βVW ◦ βWV = 1W~V , ∀V, W ∈ Ob(C). The name braided category comes from
the “universal” example, the category of braids, see e.g. [Ka].
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The reader may now check that the operation of disjoint union of manifolds (Σ1, Σ2) 7→
Σ1 ä Σ2 defines a monoidal structure on the cobordism category Bordor

n . The unit is
given by the empty set ∅. With this structure, it becomes a symmetric monoidal cate-
gory.

7.2. Axioms for TQFT. We now have all the mathematical notions to give the defini-
tion of a Topological Quantum Field Theory, following Atiyah, who in turn was inspired
by Segal’s approach to conformal field theory.

Definition 7.11 (Atiyah–Segal). An n-dimensional Topological Quantum Field Theory (TQFT)
is given by a monodical functor

Z : Bordor
n −→ VectC.

Let us spell out what this means. Given an n-dimensional TQFT, we get:

• a vector space Z(Σ) for each oriented (n− 1)-dimensional manifold,
• a linear map Z(M) : Z(Σ0) → Z(Σ1), for each oriented cobordism from Σ0 to

Σ1.

These assignments should satisfy:

i) equivalent cobordisms M ∼= M′ give the same map: Z(M) = Z(M′).
ii) composition of cobordisms is sent into the composition of maps:

Z(M1 ∪Σ M2) = Z(M1) ◦ Z(M2),

iii) the unit cobordism is sent to the identity map:

Z(Σ× I) = idZ(Σ),

iv) disjoint union corresponds to taking tensor products of vector spaces and maps:

Z(Σ1 ä Σ2) = Z(Σ1)⊗ Z(Σ2), Z(M1 ä M2) = Z(M1)⊗ Z(M2),

v) the empty manifold is sent to the ground field: Z(∅) = K.

Let us now analyse some simple consequences of these axioms.

Proposition 7.12. For any oriented (n− 1)-dimensional manifold, there is a canonical isomor-
phism Z(Σ) ∼= Z(Σ)∨, where Σ is the manifold Σ with the orientation reversed.

Proof. We have already considered the identity cobordism Σ× [0, 1] from Σ to Σ. If we
now change the orientation on outgoing copy Σ × {1}, we obtain a cobordism from
Σ ä Σ to ∅. Similarly, if change the orientation on the ingoing copy we get a cobordism
from ∅ to Σ ä Σ. Under the functor of a given TQFT, Σ is mapped to a vector space
V := Z(Σ) and Σ to W := Z(Σ). Furthermore, these cobordisms are mapped to a
pairing and a copairing on V and W:

β := Z
( )

: V ⊗W → K, γ := Z
( )

: K→W ⊗V.
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The axioms of a TQFT now imply that the maps

V
idV⊗γ−→ V ⊗W ⊗V

β⊗idV−→ V,

W
idW⊗γ−→ W ⊗V ⊗W

β⊗idW−→ W,

are both the identity, since they are the image of the unit cylinder cobordism. This
implies that β is in fact a nondegenrate pairing, and identifies Z(Σ) ∼= Z(Σ)∨. �

The proof of this proposition actually shows something more:

Corollary 7.13. The image of closed oriented (n− 1)-dimensional manifold under an n-dimensional
TQFT is a finite dimensional vector space.

Proof. The copairing γ sends 1 to an element ∑i vi⊗wi. Now use the previous argument
to show that the vi ∈ V span V (and wi ∈W span W). �

Proposition 7.14. The vector space Z(Σ) of a TQFT carries a representation of the mapping
class group ΓΣ := π0(Diff+(Σ)).

Remark 7.15 (TQFT versus classical algebraic topology). Given any closed oriented
n-dimensional manifold M, we can view it as a cobordism from ∅ to ∅. Therefore,
evaluation on any n-dimensional TQFT Z yields a linear map from K to K, in other
words a number

Z(M) ∈ K,

which only depends on the diffeomorphism class of M. In other words, it is a differ-
ential topological invariant. Even more: a TQFT gives ways to compute this invariant.
Suppose we cut M open along an (n− 1)-dimensional closed sub manifold Σ, so that
M ∼= M1 ∪Σ M2. Then the TQFT produces two vectors

Z(M1) ∈ Z(Σ), Z(M2) ∈ Z(Σ)∨,

and the topological invariant of M is given by

(31) Z(M) = 〈Z(M1), Z(M2)〉Z(Σ) ,

using the canonical pairing 〈 , 〉 : Z(Σ)×Z(Σ)∨ → K. Equation (31) expresses the local-
ity of a quantum field theory, and one should think of this equation as the analogue of
the Mayer–Vietoris property for cohomology theories: both are giving a means to com-
pute the invariants of a space from those of smaller pieces. The fundamental difference
is that the Mayer–Vietoris sequence is additive, whereas (31) is multiplicative.

7.3. Examples. Let us first look at some low dimensional examples:
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n = 1. In this case, there is only one connected 0-dimensional manifold, namely the
point. A TQFT therefore only gives us one vector space Z(pt.) := V. Furthermore, any
connected one dimensional manifold with boundary is differeomorphic to an interval
in R, and all the maps given by the TQFT are just the natural one given by contracting
tensors in V and V∨. In fancy language: the category of 1-dimensional TQFT’s is equivalent
to the category of vector spaces.

n = 2. The 2-dimensional case is a favorite example of a TQFT, and there are many
sources for this, e.g., [Ko]. A first remark in this case is that up to diffeomorphism,
there is only one connected closed 1-manifold, namely the circle S1. Next we turn to the
classification of 2-dimenionsional cobordisms. This is the subject of a classical theorem
in differential topology, known as the classification of surfaces:

Theorem 7.16 (c.f. [H, §9.3]).

i) Two connected closed oriented surfaces are diffeomorphic if and only if they have the
same genus, or, equivalently, Euler characteristic.

ii) Two oriented 2-dimensional cobordisms are diffeomorphic if and only if they have the
same genus and the same number of incoming and outgoing boundaries.

Recall that the Euler characterstic of a surface of genus g and n boundary components
is given by

χ(Mg,n) = 2− 2g− n.

The Euler characteristic is most elementary defined using triangulations, and it does
not distinguish between incoming and outgoing boundaries. It enjoys the nice property
(check using the formula above!) that it is additive under composition of cobordisms:

χ(M1 ∪Σ M2) = χ(M1) + χ(M2).

As for the n = 1 case, 2-dimensional TQFT’s are classified by algebraic objects. In this
case the main object is the following:

Definition 7.17. A Frobenius algebra is a finite dimensional commutative unital K-algebra
A equipped with a trace τ : A→ for which the pairing

〈a1, a2〉 := τ(a1a2), a1, a2 ∈ A,

is nondegenerate.

Theorem 7.18. There is a bijective correspondence between 2d-TQFT’s and finite dimensional
Frobenius algebras.

Proof. Let us first prove the implication from left to right. Given a 2-dimensional TQFT
Z, define A := Z(S1). A pair of pants surface induces a linear map

(?) Z
( )

: A⊗ A→ A.
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By Theorem 7.16 there exists a diffeomorphism

∼=

so we can view (?) as an associate product on A. Furthermore, by symmetry on the
functor Z, this product is commutative, and the unit is given by

Z
( )

= 1 : K→ A

as one can check with pictures. Dually, the trace is given by

Z
( )

= τ : A→ K.

To check that the pairing of Definition 7.17 is non degenerate, one observes that, again
by the axioms of a TQFT, is given by

Z
( )

: A⊗ A→ K,

which, as we have seen in the proof of Proposition 7.12, is non degenerate. this proves
that A := Z(S1) is indeed a Frobenius algebra.

Conversely, given a Frobenius algebra A, let us construct a 2-dimensional TQFT. First
notice that the non degenerate pairing in Definition 7.17 yields an isomorphism A ∼= A∨

of left A-modules by a 7→ 〈a,−〉. Now the multiplication on A induces a comultiplica-
tion on A∨, which we can pullback to A using this isomorphism. With this we get a
comultiplication

∆ : A→ A⊗ A,

for which the trace τ : A → K is a counit. We see that a Frobenius algebra has a
canonical coalgebra structure. Let us now construct the Euler element in A by

θ := m(∆(1)) ∈ A,

where m : A⊗ A is the multiplication. With this element, the TQFT assigns to a cobor-
dism Mg,p,q of genus g with p incoming boundaries and q outgoing boundaries, the
linear map Z : A⊗p → A⊗q given by

Z(Mg,p,q) = ∆(q) ◦ θg ◦m(p),

with m(p) : A⊗p → A the map given by multiplying all p elements, ∆(q) : A → A⊗q by
applying q-times the comultiplication, and θg stand for multiplication with θg. We skip
the proof that this indeed defines a TQFT. �

n=3. In dimension 3, things get really interesting.
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Finite group TQFT. This is an example that lives in arbitrary dimension, and it can also
be viewed as a Toy model for dealing with gauge symmetries. Before we start, recall
the definition of a principal bundle. Let X be a smooth manifold.

Definition 7.19. Let F be a manifold. A fiber bundle over X with fiber F is a surjective
submersion π : E → X which is locally trivial in the following sense: each x ∈ X has
an open neighbourhood U for which there is a diffeomorphism φ : π−1(U) → U × F,
which makes the following diagram commute

π−1(U)
φ- U × F

U

π

?� proj 1

where proj1 is the projection onto the first factor.

Notice that it follows that π−1(x) ∼= F for each x ∈ X. Let G be a Lie group.

Definition 7.20. A principal G-bundle is a fiber bundle p : P→ X with a free fiberwise
right action of G on P such that P/G ∼= X.

It follows that G can be taken to be the fiber of the bundle. A morphism of principal
bundles is a smooth map f : P1 → P2 which commutes with the right G-action. A
section s of a principal G-bunde is a smooth map s : X → P satisfying p ◦ s =identity.

There is a “cocycle view” on principal bundles over X as follows: by definition,
we can find an open covering {Uα}α∈I of X such that P has local trivialisations φα :
p−1(Uα) → Uα × G. Two local trivializations (Uα, φα), and (Uβ, φβ) define a smooth
map

gαβ : Uα ∩Uβ → G,

by
(φα ◦ φ−1

β )(x, g) = (x, ggαβ(x)).

These functions are called transistion functions. One easily verifies the following condi-
tions satisfied by the transition functions of a principal bundle:

i) for three local trivializations (Uα, hα), (Uβ, hβ) and (Uγ, hγ),

gαβgβγgγα = 1,

on Uα ∩Uβ ∩Uγ,
ii) for each local trivialization (Uα, hα),

gαα = 1.

We now fix a finite group Γ, and we associate to each manifold M the following category
BunΓ(M): its objects are principal Γ-bundles P over M, and morphisms are given by
morphisms f : P1 → P2 of principal Γ-bundles that cover the identity map on M. One
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easily checks that this is a category with the special property that every morphism is
invertible: such a category is called a groupoid. We shall now construct another groupoid,
written Hom(π1(M), Γ) o Γ. Its objects are homomorphisms φ from π1(M) to Γ. A
morphism in Hom(π1(M), Γ)o Γ from φ1 to φ2 is given by an element γ ∈ Γ such that

φ1(u) = γφ2(u)γ−1, u ∈ π1(M).

Again, one easily checks that this defines a groupoid. The crucial point is now:

Proposition 7.21. There is a canonical equivalence of categories

BunΓ(M) ∼= Hom(π1(M), Γ)o Γ.

Proof. We shall construct two functors in opposite directions and prove that they are
inverses of each other up to natural isomorphisms. In one direction, the functor

F : BunΓ(M)→ Hom(π1(M), Γ)o Γ,

is obtained by taking the holonomy of a connection. In the other direction, the functor

G : Hom(π1(M), Γ)o Γ→ BunΓ(M),

associates to a homomorphism φ : π1(M)→ Γ the principal Γ-bundle given by

G(φ) := M̃× Γ/ ∼, where (x, γ) ∼ (φ(γ′)x, γγ′), γ′ ∈ Γ.

Here M̃ is the universal covering of M, which is a principal π1(M)-bundle. �

Associated to any groupoid G is its coarse moduli space M(G), the space of objects
modulo isomorphisms. The Proposition above then tells us that for the groupoid of
principal Γ-bundles, we have

M(M, Γ) ∼= Hom(π1(M), Γ)/Γ.

We can now describe the TQFT associated to a finite group. The functor Z assigns to
each (n− 1)- dimensional closed oriented manifold Σ the vector space Z(Σ) of functions
onM(Σ, Γ). SinceM(Σ, Γ) is just a finite set, we can write this vector space as

Z(Σ) := C[M(Σ, Γ)].

It has a linear basis given by δ[P], the delta function associated to an isomorphism class
of principal Γ-bundles [P]:

δ[P]([P
′]) =

1 [P] = [P′]

0 [P] 6= [P′]
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Let us now describe the functor Z on morphisms. For any cobordism M : Σ0  Σ1, we
have a correspondence of groupoids

BunΓ(M)

BunΓ(Σ0)
�

r 0

BunΓ(Σ1)

r1
-

In this diagram, r0 and r1 are just the maps given by restricting principal bundles to the
boundary components Σ0 and Σ1. When we have two cobordisms M1 : Σ0  Σ1 and
M2 : Σ1  Σ2, we have a diagram

BunΓ(M1 ∪Σ1 M2)

BunΓ(M1)
�

BunΓ(M2)

-

BunΓ(Σ0)
�

r 0

BunΓ(Σ1)
�

r 1r1
-

BunΓ(Σ1)

r2
-

All maps in this diagrams are functors, and the essential claim is that the rhombus in
the middle is a pull-back:

(32) BunΓ(M1 ∪Σ1 M2) ∼= BunΓ(M1)×BunΓ(Σ1) BunΓ(M2).

(Check this for yourself!) The map Z(M) assigned to a cobordism M : Σ0  Σ1 is
best described by giving its matrix coefficients: the entry mapping δ[P0] ∈ Z(Σ0) to
δ[P1] ∈ Z(Σ1) is given by

Z(M)δ[P0 ]
δ[P1 ]

:= ∑
[P]∈M(M,Γ)

r0([P])=P0, r1([P])=[P1 ]

1
#Aut([P])

.

To check that this defines a TQFT, one uses (32). Notice that this TQFT is naturally de-
fined over Q, and doesn’t use the orientation. There is a twisted version of of this TQFT,
pointed out in the original paper [?], that uses as additional data a group cohomology
class α ∈ Hn(Γ, Q). This twisted version is a true oriented TQFT.

8. AREA-DEPENDENT THEORIES

The first and easiest geometric structure we can add to our cobordisms is a volume
form. Let M be a compact oriented manifold. As we have seen, a volume form is given
in a local chart (x1, . . . , xn) by

Ω = ρ(x)dx1 ∧ . . . ∧ dxn,

with ρ(x) > 0. Therefore clearly two volume forms Ω1, Ω2 must be related by Ω1 =

f Ω2 with f a positive real function. If φ : M → M is an orientation preserving diffeo-
morphism, we can pull back the volume form Ω to obtain a new one φ∗Ω. Evidently
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we have that
Vol(M, Ω) :=

∫
M

Ω =
∫

M
φ∗Ω =: Vol(M, φ∗Ω).

The following well-known theorem states the converse:

Theorem 8.1 (Moser, c.f. [Mo]). Let Ω1 and Ω2 be two volume forms on a compact oriented
manifold. There exists an oriented diffeomorphism φ : M → M such that φ∗Ω1 = λΩ2 with
positive constant λ equal to

λ =
∫

M
Ω1

/ ∫
M

Ω2.

Let us now consider the category Bordvol
n with the same objects as Bordor

n , namely
oriented closed manifolds of dimension (n− 1), but arrows given by diffeomorphism
(relative to the boundary) classes of cobordisms equipped with a volume form. One easily
checks that the proof of Theorem 7.3 is compatible with volume forms so that composi-
tion of arrows is well-defined. In fact we have that

(33) Vol(M ∪ f N, ΩM + ΩN) = Vol(M, ωM) + Vol(N, ΩN).

The only points is that this category is not a real category since it does not have unit ar-
rows: we have to equip the cylinder Σ× I over any manifold Σ with a volume form and
because of the additivity of volume in equation (33) we can’t have a unit. Nevertheless,
we can just as well do without units.

Before we give the definition, we have to think a bit about the target category. By
contrast to TQFT’s, it will be no longer the case that the quantum field theory we are
aiming to define lives on a finite dimensional vector space. Therefore, it is natural to
assume some topology on the vector space. Recall that a semi norm on a vector space
V is a nonnegative function p : V → R+ satisfying

• p(λv) = |λ|p(v), for all λ ∈ R, v ∈ V,
• p(v1 + v2) ≤ p(v1) + p(v2) for all v1, v2 ∈ V.

We see that if such a p has the property that p(v) = 0 ⇒ v = 0, it defines a norm.
Suppose now that we have a family of semi norms {pα}α∈J on V. These define a topol-
ogy on V for which the basic vector space operations are continuous. A basis for this
topology is given by the open subset UJ,ε(v), ε > 0, v ∈ V defined as

UJ,ε(v) := {w ∈ V, pα(v− w) < ε, for all α ∈ J}.

A locally convex topological vector space is a vector space equipped with family of semi
norms. Its dual V∨ consists of all continuous linear maps V → C.

Definition 8.2. A continuous linear map T : V → W between two locally convex topo-
logical vector spaces is called trace class (or nuclear) if it can be written as

T(v) = ∑
k

λk 〈αk, v〉wk,
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where λk ∈ C form an absolutely summable sequence ∑k |λk| < ∞, {αk} is an equicon-
tinuous sequence in V∨ and {wk} a sequence in W contained in a bounded subset.

Together with the linear maps that are continuous for the topology described above,
they form a category TVSC. A typical example of a locally convex topological vector
spaces is given by C∞(Rn). In this case the family of semi norms is given by

pK,r( f ) := sup
x∈K

{
∂ f
∂xα

, |α| < r
}

,

for K ⊂ Rn compact and r ∈N.

Definition 8.3. An Area-dependent quantum field theory is a monoidal functor

Z : Bordvol
n → TVSC.

We shall see that such theories, although not topological, resemble TQFT’s in a num-
ber of ways. Let us first spell out the definition. An Area-dependent QFT will associate

• a locally convex topological vector space Z(Σ) to each oriented closed (n− 1)-
dimensional manifold,
• A linear operator

Z(M, t) : Z(∂Min)→ Z(∂Mout),

associated to an oriented cobordism and a real positive number t > 0.

Again these should satisfy compatibility rules encoding the properties of a monoidal
functor, the most important of which is given by the composition

(34) Z(M1 ∪Σ1 M2, t1 + t2) = Z(M1, t1) ◦ Z(M2, t2).

Let us now explore some consequences of the axioms, analogous to our exploration of
TQFT’s.

Proposition 8.4. The vector space Z(Σ) associated to any closed oriented (n− 1)-dimensional
manifold comes equipped with the action of a one-parameter semigroup of trace-class operators.

Proof. For any closed oriented (n− 1)-dimensional manifold Σ define

S(t) := Z(I × Σ, t).

Then the property (34) implies that this defines a one-parameter semigroup of opera-
tors. The axioms also imply that

Z(S1 × Σ, t) = Tr (Z(I × Σ, t)) ∈ C,

so that each S(t), t > 0 is trace class. This proves the proposition. �
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Although Bordvol
n does not have unit morphisms, we would like our functor to respect

them if we add them formally. Therefore we require that:

S(t)→ 1, as t→ 0, uniformly on compact subsets of Z(Σ).

With the semigroup {S(t), t > 0}, let us now define the subspace Ž(Σ) ⊂ Z(Σ) by

Ž(Σ) :=
⋃
t>0

S(t)(Z(Σ)).

On the other hand, let us embed Z(Σ) into a larger space Ẑ(Σ) defined as

Ẑ(Σ) =

{
{ut} ∈∏

t>0
Z(Σ)t, ut1+t2 = S(t1)ut2

}

The embedding Z(Σ) ↪→ Ẑ(Σ) is given by mapping u0 ∈ Z(Σ) to the family {S(t)u0}t>0.
We can give both Ž(Σ) and Ẑ(Σ) natural topologies turning them into complete locally
convex topological vector spaces, and we see that we have a chain of inclusions

Ž(Σ) ⊂ Z(Σ) ⊂ Ẑ(Σ),

called a “rigging” of Z(Σ). The following is analogous to Proposition 7.12 for TQFT’s:

Proposition 8.5. For an Area-dependent QFT, Ž(Σ) and Ẑ(Σ̄) are in natural duality by a
bilinear form

β : Ž(Σ)⊗ Ẑ(Σ̄)→ C.

Proof. As in the proof of Proposition 7.12, we consider the identity cobordism Σ× I, but
now viewed as a bordism from Σ ä Σ̄ to ∅. Let u := S(t)u0 ∈ Ž(Σ̄) and v := {vt}t>0 ∈
Ẑ(Σ). Then we define

β(u, v) := Z(I × Σ, t− s)(u0, vs), s > t.

It is easy to check that, using the axioms of an area-dependent QFT, this pairing is
independent of the choices of s and t subject to the condition s > t. �

Definition 8.6. An Area-dependent QFT is said to be unitary if Z(Σ̄) = Z(Σ).

The name is justified by the following:

Corollary 8.7. For a unitary Area-dependent QFT the vector space Ž(Σ) carries a canonical
pre-Hilbert space structure.

Proof. �
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Examples. Let us first consider the n = 1 case, and we restrict to unitary theories. In
this case, the QFT is determined by specifying a Hilbert space H for the oriented point
(pt.,+). By Proposition 8.4, it comes equipped with an action of a one-parameter semi-
group of trace class operators. Other than that, we easily see, as in §7.3 for TQFT’s,
that all other structure maps are defined using the semigroup and the Hilbert space
structure. In other words: a 1-dimensional Area-dependent unitary QFT is nothing
but a one-parameter semigroup acting on a Hilbert space by trace class operators. We
have already seen that examples come from Quantum Mechanics, c.f. §5.4 ignoring the
observables.

Next, we consider the n = 2 case. Recall that for a TQFT, a 2-dimensional theory is
the same as giving a frobenius algebra. The following is the analogue of that statement:

Theorem 8.8 (c.f. [Se]). A 2-dimensional Area-dependent QFT is the same as a commutative
topological algebra A equipped with a non-degenerate trace θ : A → C and an approximate
trace class unit, i.e., a family {εt}t>0 of elements in A with

• limt→0 εt · a = a = limt→0 a · εt, for all a ∈ A,
• εt1 · εt2 = εt1+t2 for all t1, t2 > 0,
• multiplication by εt is a trace class operator on A.

Proof. Given a 2-dimensional Area-dependent QFT, we put A := Ž(S1). Multiplication
on A is defined by

(St1 u) · (St2 v) = Z
(

, t1 + t2

)
(u⊗ v).

Again, one easily see that this is independent of the choice of t1, t2 > 0. �

8.1. 2D-Yang–Mills Theory. The main example of a 2D Area-dependent quantum field
theory is given by 2D-Yang–Mills theory, as explained in a paper by Witten [?]. By
Theorem 8.8, it suffices to define a commutative algebra with a non degenerate trace
and an approximate unit. The data defining the theory are a compact Lie group G and
a G-invariant metric on its Lie algebra g. This last ingredient is simply a real inner
product 〈 , 〉 on g that is invariant under the adjoint action of G:〈

Adg(X), AdgY
〉
= 〈X, Y〉 , X, Y ∈ g, g ∈ G.

Such a metric always exists and in fact is unique up to a scaling. For example, for
G = SU(N) one can take the trace in the standard representation:

〈X, Y〉 := TrCN (XY), X, Y ∈ su(N).

The convolution algebra of G is given by C∞(G) equipped with the convolution product

(35) ( f1 ∗ f2)(g) :=
∫

G
f1(h) f2(gh−1)dµ(h),
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where µ denotes the Haar measure, normalized to have total integral 1. One checks that
this defines an associative algebra structure on C∞(G), which is noncommutative if and
only if G is nonabelian. Its center consists of the class functions on G, i.e., f ∈ C∞(G)

which satisfy
f (hgh−1) = f (g), for all g, h ∈ G.

We will write A for this algebra, i.e., that of class functions equipped with the convolu-
tion product. Typical examples of class functions come from characters of representa-
tions: if (V, π) is a finite dimensional representation of G, its character

χV(g) := TrV(π(g)), g ∈ G,

is invariant under conjugation because of the trace property.

Theorem 8.9 (Peter–Weyl). The characters of irreducible representations of a compact Lie
group G span a dense subset of its space of class functions.

To have an area-dependent QFT, we need two more ingredients: a trace and an ap-
proximate unit. For the trace we shall take the functional

τ( f ) := f (1), f ∈ A.

Indeed one easily checks that this is indeed a trace with respect to the convolution
product (35). The convolution algebra is nonunital because the unit would be a delta
function at the unit element e ∈ G, which is not in C∞(G). So, for an approximate unit,
we need a family of elements approximating the delta function. A natural choice for
this is to use the heat kernel. First remark that by left (or right) translation of the metric
on g, we get a natural metric on G which is invariant under the right and left action of G
on itself. In this way we can view G as a Riemannian manifold, and therefore the heat
kernel KG

t (g, h) is well-defined. the fact that the metric is G-invariant translates into the
property that

(36) KG
t (gl, hl) = KG

t (g, h), KG
t (lg, lh) = KG

t (g, h), g, h, l ∈ G.

We then define εt(g) := KG
t (g, e). This is the fundamental solution to the heat equation

∂εt

∂t
= ∆εt.

Let us now show that this is indeed an approximate unit in the algebra A:

lim
t→0

(εt ∗ f )(g) = lim
t→0

∫
G

KG
t (h, e) f (gh−1)dµ(h)

= lim
t→0

∫
G

Kt
G(h

−1g, e) f (h)dµ(h) (invariance of the Haar measure)

= lim
t→0

∫
G

Kt
G(g, h) f (h)dµ(h) (invariance of the heat kernel, eq. (36))

= f (g) (c.f., equation (22)).
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It is now not difficult to show that all the conditions of Theorem 8.8 are satisfied, i.e.,
that the data (A, εt, τ) define an area-dependent QFT.

Proposition 8.10. The partition function Zt(Mg) of a closed surface of genus g is given by

Zt(Mg) = ∑
[V]∈Ĝ

e−tλV

(dim V)2g−2 ,

where λV is the eigenvalue of the Casimir operator on V.

Proof. Let us first recall the definition of the Casimir operator: choosing an orthonormal
basis Xi ∈ g, the Casimir is defined as

C := ∑
i

Xi ⊗ Xi ∈ Ug,

where Ug denotes the universal enveloping algebra. The Casimir acts on any finite
dimensional representation of V, and it commutes with the action of G. By Schur’s
Lemma it must therefore act by a scalar in any irreducible representation.

By left translation, the Casimir C defines a second order differential operator on G:
this is exactly the Laplacian ∆! But then it follows that

(∆χV)(g) = TrV(Cg) = λVχV(g),

and therefore, by equation (23), the heat kernel is given by

KG
t (g, h) = ∑

[V]∈Ĝ

e−tλV χV(g)⊗ χ̄V(h).

The key to the proof of the proposition is to find the Euler element θt associated to a
torus with one hole and area t > 0. It is best to work in the basis given by characters
χV , [V] ∈ Ĝ. The Schur orthogonality relations state that the product in this basis is
given by

χV ∗ χW =

0 [V] 6= [W]

(dim V)−1χV [V] = [W].

Furthermore, obviously τ(χV) = dim V, so the characters χV form an orthonormal
basis for the inner product given in Definition 7.17. With the previous formula for the
heat kernel we therefore find

θt(g) = ∑
[v]∈Ĝ

e−tλV

dim(V)2 χV(g).

With this element we find that

Zt(Mg) = τ(θt1 ∗ . . . ∗ θtg), t1 + . . . + tg = t.

Combining the previous two formulas, we get the desired result. �
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9. 2D-CONFORMAL FIELD THEORY

We now stick to the two-dimensional case. Then there is another interesting geomet-
ric structure that we can give to our bordisms: a complex structure. The quantum field
theory resulting from this is called conformal field theory (CFT). Historically, this was the
first quantum field theory axiomatized as a “representation” of a bordism category, and
the idea is due to Graeme Segal [?]. It should be remarked however that this way of for-
mulating CFT is quite different from the physicists way of doing it: they usually start
by considering the vertex algebra of quantum fields.

9.1. Segal’s definition. So we are lead to consider the category Bordconf
2 which has ob-

jects equal to compact oriented 1 manifolds C (i.e., disjoint unions of circles) and mor-
phisms from given by triples (ϕ1, Σ, ϕ2), where Σ is a Riemann surface with boundary
∂Σ = ϕ1(C1)ä ϕ2(C2). We consider two such triples (ϕ1, Σ, ϕ2) and (ϕ′1, Σ′, ϕ′2) as the
same if there exists a boholomorphic map between the two commuting with the bound-
ary parametrizations. We have to show that composition of morphisms is well-defined
in this category. By the usual argument we can restrict to the (full) “subcategory” of
Bordconf

2 whose objects are disjoint unions ä S1 of the standard circle embedded as
{z ∈ C, |z| = 1} in the complex plane. A morphisms between two such objects is
then a Riemann surface Σ with parameterized boundaries, where the parameterization
is given by maps fi : S1 → Σ. The crucial statement is then:

Proposition 9.1. Let Σ1 and Σ2 be two Riemann surfaces with boundary parameterized by fi :
S1 → Σi, i = 1, 2. There exists a unique conformal structure on the 2D-manifold Σ1 ∪ f1◦ f−1

2
Σ2

obtained by gluing Σ1 to Σ2.

Proof. Suppose first that the boundary parameterizations of Σ1 and Σ2 are analytic,
meaning that they extend to holomorphic maps

f1 : Aq1 → Σ1, f2 : A1/q2 → Σ2,

for some q1, q2 ∈ (0, 1), where, for q ∈ (0, 1) we have introduced the notation

Aq := {z ∈ C, q < |z| < 1}, A1/q := {z ∈ C, 1 < |z| < 1/q}

The fact that one extends to an annular region inside the unit disk and the other out-
side, has to do with the fact that one boundary is incoming and one outgoing, i.e., the
orientation. Aq is biholomorphic to A1/q by means of the mapping z 7→ 1/z, but this
pas reverses the orientation. Looking at the proof of Theorem 7.3, we can indeed prove,
using these holomorphic extensions as collars as in Lemma 7.4, that there exists a con-
formal atlas inducing the desired conformal structure.

The general case follows from the following classical theorem:
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Theorem 9.2 (“Conformal welding”). Given f ∈ Diff(S1), there exist holomorphic func-
tions g+ and g−, defined on D+ := {z ∈ C, |z| ≤ 1 and D− := {z ∈ C, |z| ≥ 1} ∪ {∞}
mapping onto complementary Jordan domains in C such that g−|S1 = f ◦ g+|S1 .

�

Remark 9.3 (Riemann surfaces and metrics). It is good to remark that conformal struc-
tures and Riemannian metrics are closely related. More precisely, a conformal structure
is determined by a conformal equivalence class of metrics:

Theorem 9.4. Let (Σ, g) be a two-dimensional compact orientable riemannian manifold. Then
there exists a unique conformal structure turning Σ into a Riemann surface, such that in a local
holomorphic coordinate z, the metric takes the form

(37) g = λ(z, z̄))dz⊗ dz̄, λ(z, z̄) > 0.

Two metrics g and g′ induce the same conformal structure if and only if they differ by a conformal
factor, i.e., g = e f g′ for some f ∈ C∞(Σ, R). Conversely, any compact Riemann surface admits
a metric which takes the form as above in a local holomorphic coordinate.

In such a metric, the Laplacian takes the form

∆g =
4

λ2
∂

∂z
∂

∂z̄
.

The definition of CFT. We are now ready to state Segal’s definition of a conformal field
theory:

Definition 9.5. A conformal field theory is given by a projective monoidal functor

T : Bordconf
2 → TVSC.

This definition suffers from the defect, by now familiar that both categories, domain
and target of the functor, do not have unit morphisms, i.e., are not really categories.
Therefore we spell out the definition: a CFT associates

• a Topological vector spaceHS to a closed oriented smooth 1D-manifold S,
• a ray of trace class operators

UΣ : H∂Σin → H∂Σout ,

subject to the usual axioms that we will not spell out. The fact that the functor is merely
projective means that UΣ is only defined up to a scalar multiple. This ambiguity is what
physicists call the conformal anomaly. Recall that a trace class operator T : H → H can
be written as

T = ∑
i

αiλiei,
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for {ei} a sequence of vectors in H, {αi} in H∨ and {λi} a sequence in C that is abso-
lutely summable: ∑i |λi| < ∞. Composition is given in the obvious way in this repre-
sentation, and we see that if T1 and T2 are only defined up to scalar, the composition
determines a unique ray of trace class operators.

Let H be the vector space associated to a circle S1. As for an area dependent QFT,
this space carries a (projective) representation of the semigroup S formed by all sur-
faces with parameterized boundaries that are topologically annuli. Let us analyze this
semigroup a bit further. We have already seen the annuli Aq for q ∈ (0, 1). We can em-
bed these in S by using the “standard parametrizations” of the boundaries. Even more,
denote by Aq, q ∈ C<1 the annulus |q| equipped with the identity parameterization of
the boundary |z| = 1 and the parameterization θ 7→ qeiθ on the inner boundary. Gluing
such surfaces leads to

Aq1 Aq2 = Aq1,q2 ,

so C<1 embeds as a subsemigroup. Acting with this subsemigroup, we can define a
rigging

Ȟ ⊂ H ⊂ Ĥ,

as in section 8.8. Again, we call a CFT unitary ifHS = HS.

Proposition 9.6. The partition function of a CFT, defined as

Z(τ) := TrH(Te2πiz),

is modular, i.e., projectively invariant under the action of PSL(2, Z).

Proof. Taking the trace of Tq corresponds to gluing the two boundaries of the annulus
Aq together. This results in a complex torus with modular parameter q = e2πiτ. The
projective linear action

τ 7→ aτ + b
cτ + d

,

(
a b
c d

)
∈ PSL(2, Z),

produces an isomorphic complex torus. �

Example: Free bosonic CFT. Physiscists would introduce this example of a CFT by writ-
ing down the Lagrangian

S(ϕ) :=
1
2

∫
Σ

dϕ ∧ ∗dϕ,

for a scalar valued field ϕ on a Riemann surface Σ.
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9.2. The Heisenberg group. Let V be a real vector space. we do not want to assume
that V is finite dimensional, but when it is infinite dimensional it should have the struc-
ture of a locally convex topological vector space. We denote by V∨ its topological dual
consisting of all continuous linear maps V → R.

Definition 9.7. An antisymmetric bilinear form ω : V × V → R is called weakly sym-
plectic if the induced map

ω# : V → V∨, v 7→ ιvω,

is injective. It is strongly symplectic when it is an isomorphism.

Remark 9.8. When V is finite dimensional, weakly and strongly symplectic forms co-
incide, and are just ordinary symplectic forms. For an infinite dimensional example,
consider the vector space V ′ = C∞(S1), equipped with the antisymmetric pairing

(38) ω( f , g) :=
∫

S1
f dg, f , g ∈ C∞(S1).

The associated linear map ω# : V → V∨ has kernel given by

ω#( f ) = 0⇐⇒
∫

S1
gd f = 0, ∀g ∈ C∞(S1),

and therefore d f = 0, i.e., f must be a constant. It follows that the quotient V ′/R is
weakly symplectic. Notice that it is definitely not strongly symplectic: the topological
dual of C∞(S1) is the space of distributions on S1.

From now on we shall always assume our symplectic form to be weak, and we drop
the adjective “weak”, referring to the pair (V, ω) as a symplectic vector space.

Definition 9.9. Let (V, ω) be a symplectic vector space. The Heisenberg group associated
to (V, ω) is given as a set by Ṽ := V ×T with multiplication given by

(v1, z1) · (v2, z2) := (v1 + v2, z1z2e−iω(v1,v2)).

Recall that a complex structure on V is an endomorphism J : V → V satisfying
J2 = −1.

Definition 9.10. A complex structure J on V is

1 compatible with ω is ω(Jv1, Jv2) = ω(v1, v2) for all v1, v2 ∈ V,
2 positive if ω(Jv, v) > 0, for all v ∈ V.

On the other hand, consider a subspace W ⊂ VC, where VC := V ⊗ C is the com-
plexification of V. We extend the symplectic form ω to a complex bilinear form on VC,
denoted by ωC.

Definition 9.11. A subspace W ⊂ VC is called

• isotropic if W ⊂WωC ,
• maximal isotropic (or Lagrangian) if W = WωC ,
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• positive if the hermitian form 〈 , 〉 on W defined by

(39) 〈w1, w2〉 := 2iω(w̄1, w2)

is positive definite.

Lemma 9.12. There is a bijective correspondence between compatible positive complex struc-
tures on V and positive maximal isotropic subspaces W ⊂ VC.

Proof. Given J, we get a decomposition VC = W = W ⊕W, where W and W are the +i
and −i eigenspaces of the complex linear extension of J. It is easy to check that W is
maximal isotropic if and only if J is positive and compatible with ω. Conversely, given
a positive, maximal isotropic subspace W ⊂ VC, remark that

W ∩W = {0},

because any element in this intersection must have norm zero by (39). Therefore W ⊕
W ⊂ VC is a symplectic subspace. But because W is maximal, we see that we must in
fact have that VC = W ⊕W. �

We now fix a choice of such a complex structure J (or equivalently, W), and use this
to construct an representation of the Heisenberg group Ṽ. Since J is compatible with
ω and positive, we consider the associated subspace W as a pre-Hilbert space with
inner product (39). We consider the symmetric algebra Sym(W) of W, and extend the
hermitian form by〈

w1 · wn, w′1 · w′n
〉
= ∑

σ∈Sn

〈
w1, w′σ(1)

〉
· · ·
〈

wn, w′σ(n)
〉

.

This defines an inner-product on Sym(W) for which the degree k and l parts are orthog-
onal if k 6= l. We denote by HW the Hilbert space completion of Sym(W) in this inner
product.

On HW we have the “raising” and “lowering” operators that are used so often in
physics: for w ∈ W, we define a(w) : Symk(W) → Symk+1(W) as multiplication by w.
For w̄ ∈ W, a(w̄) : Symk(W) → Symk−1(W) is the derivation of Sym(W) fixed by its
action on W as

a(w̄1)w2 := 〈w1, w2〉

For a general element v ∈ V, we can uniquely write v = v+ + v−, with v+ ∈ W and
v− ∈W, and with this we define

a(v) := a(v+) + a(v−),

as an unbounded operator onHW with domain given by Sym(W). On this domain, we
clearly have the commutation relations

(40) [a(v1), a(v2)] = 2iω(v1, v2).
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Lemma 9.13. For w ∈W and ξ ∈ Symk(W), we have the inequalities

||a(w)ξ|| ≤
√

k + 1 ||w|| ||ξ|| ,

||a(w̄)ξ|| ≤
√

k ||w|| ||ξ|| .

Therefore, for v ∈ V we have

||a(v)ξ|| ≤ 2
√

k + 1 ||v|| ||ξ|| .

Proof. Write out the left hand side and use the Cauchy–Schwarz inequality. �

It follows from this Lemma that the series
∞

∑
n=0

(ia(v))nξ

n!

converges in norm for all ξ ∈ Sym(W), and defines an operator eia(v) : Sym(W)→ HW .
We also have that 〈

eia(v)ξ1, eia(v)ξ2

〉
=

∞

∑
k,l=0

〈
ξ1,

(ia(v))k

k!
(ia(v))l

l!
ξ2

〉

=
∞

∑
n=0

∑
k+l=n

〈
ξ1,

(ia(v))n

k!l!
ξ2

〉
= 〈ξ1, ξ2〉 ,

which shows that the operator eia(v) extends to a unitary operator onHW . By the Baker–
Campbell–Hausdorff formula we have that

ePeQ = e[P,Q]/2eP+Q,

whenever [P, Q] commutes with P and Q. Therefore, by (40) we find

eia( f )eia(g) = e−iω( f ,g)eia( f+g),

so we have constructed a representation of the Heisenberg group of Definition 9.9!

Proposition 9.14. The representation of the Heisenberg group Ṽ onHW is irreducible.

Proof. Let Ω ∈ HW be the unique vector 1 ∈ Sym0(W) of lowest degree, called the
“vacuum”. We see from the description of HW as the completion of the symmetric
algebra of W that W ·Ω spans a dense subset ofHW . LetH0 be a closed subspace ofHW

stable under the action of Ṽ. Then it is clear thatHmust contain the vacuum Ω, because
we can act with W̃ to lower degree till it becomes zero. But then, by acting with W, it is
also clear thatH0 must in fact coincide withHW . This proves the Proposition. �

Remark 9.15. In this construction of the representation of the Heisenberg group it was
essential that the operator eia(v) was norm-preserving for v ∈ V. If we take v ∈ VC, this
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is no longer the case, but we see by construction that in this case eia(v) : Sym(W)→ HW

defines an unbounded operator satisfying

(41)
〈

ξ1, eia(v)ξ2

〉
=
〈

e−ia(v̄)ξ1, ξ2

〉
, for all ξ1, ξ2 ∈ Sym(W).

This extension of the representation of Ṽ to its complexification will be used below.

Example 9.16. Let us return to our main example of an infinite dimensional symplectic
manifold: V := C∞(S1, R)/R equipped with the symplectic form (38). Clearly V⊗C =

C∞(S1, C)/C, and there is a canonical decomposition V ⊗C = W+ ⊕W−, where W+ is
spanned by the positive Fourier modes einθ , n > 0 and W− by the negative ones. Let us
check that W+ is isotropic:

ωC( f , g) =
∫

S1
f dg

=
∫

D
d f ∧ dg = 0

because W+ consists of functions f that extend holomorphically to the bounding unit
disk D := {z ∈ C, |z| ≤ 1}, and therefore d f = ∂ f /∂zdz.

Since W+ = W−, we have V ⊗ C = W+ ⊕W+ and therefore W+ must be maximal
isotropic. Positivity amounts to the inequality

2iω( f̄ , f ) = 2i
∫

D

∂ f̄
∂z̄

∂ f
∂z

dz̄ ∧ dz = 4
∫

D
f̄ ′ f ′dx ∧ dy ≥ 0,

with equality if and only if f ′ = 0. Therefore W+ satisfies all the criteria to define an
irreducible representation of the Heisenberg group Ṽ on the Hilbert space completion
of Sym(W+).

The main question now is how many different irreducible representations we get by
this construction. The following is a classical theorem giving a complete answer:

Theorem 9.17 (Shale). The representations of Ṽ onHW0 andHW1 corresponding to two com-
plex structures J0 and J1 are isomorphic if and only if J0 − J1 is a Hilbert–Schmidt operator.

Let us explain one of the key idea in the proof of this theorem: suppose we have two
complex structures J0 and J1 with corresponding decompositions

VC = W0 ⊕W0 = W1 ⊕W1.

Write W1 as the graph of a linear map α : W0 → W0. Then the fact that W1 must be
maximal isotropic and positive, c.f. Definition 9.11, translates to:

• α is symmetric: ω(w̄1, αw̄2) = ω(w̄2, αw̄1),
• 1− ᾱα is positive definite on W0.
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Remark that for such an α, the element

g =

(
1 α

ᾱ 1

)
is an invertible operator mapping W0 to W1. The corresponding complex structure is
therefore given by

J1 = g

(
i 0
−i 0

)
g−1 =

(
i
( 1+ᾱα

1−ᾱα

) −2iα
1−ᾱα

−2iᾱ
1−αᾱ −i

( 1+αᾱ
1−αᾱ

)) .

With this expression one can proof that if J1 − J0 is Hilbert–Schmidt, α : W0 → W0 is
Hilbert–Schmidt. Using the isomorphism

B2(W, W) ∼= W ⊗W,

we obtain a symmetric vector α ∈W ⊗W, i.e., in Sym2(W).
From the proof of Proposition 9.14 we see thatHW0 andHW1 will be isomorphic if we

can find a vector Ω1 ∈ HW0 that is fixed under the action of W1. We now claim that this
vector is given by eα/2 ∈ HW0 .

Definition 9.18. A complex structure J on (V, ω) is called a polarization. Two polariza-
tions belong to the same class if they satisfy the criterion of Theorem 9.17.

Lagrangian correspondences. For any symplectic vector space V = (V, ω), we denote
by Vop, the symplectic conjugate given by the pair (V,−ω). Let us now consider two
symplectic vector spaces V1 and V2.

Definition 9.19. A Lagrangian correspondence from V1 to V2 is a Lagrangian subspace
L ⊂ V1 ⊕Vop

2 .

Important examples come from invertible symplectic maps: if f : V1 → V2 is a sym-
plectic linear isomorphism, one easily checks that

L f := graph( f ) ⊂ V1 ⊕Vop
2

is a Lagrangian subspace, hence a correspondence.
The most important point of the definition is the fact that it is possible to compose

Lagrangian correspondences:

Proposition 9.20. Let L1 ⊂ V1⊕Vop
2 and L2 ⊂ V2⊕Vop

1 be two Lagrangian correspondences.
Then

L1 ? L2 := {(v1, v3) ∈ V1 ⊕Vop
2 , ∃v2 ∈ V2 with (v1, v2) ∈ L1, (v2, v3) ∈ L2},

is a Lagrangian correspondence from V1 to V2.

Proof. �
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We now turn to the quantization of this category of Lagrangian correspondences.
For this we consider complex Lagrangian correspondences in the complexification of
symplectic vector spaces, i.e.,

(42) L ⊂ (V2 ⊗C)⊕ (V1 ⊗C)op.

Remark 9.21. Let W ⊂ V ⊗C be a positive Lagrangian subspace. Then W is a negative
Lagrangian subspace, which is exactly positive for the symplectic conjugate (V ⊗C)op.
With this we easily see that there is a canonical isomorphism

HW
∼= HW ,

as representations of the Heisenberg group of Vop.

Let V1 and V2 be two polarized symplectic vector spaces, and we write HV1 and HV2

for the corresponding irreducible representations of the associated Heisenberg groups.
The direct sum V1⊕V2 carries a canonical polarization. Combining the previous remark
with Theorem 9.17, we see that a Lagrangian correspondence as in (42) determines a ray

TL ⊂ HV2 ⊗HV1 .

This is nothing but a Hilbert–Schmidt operator TL : H1 → H2, defined uniquely up to
a scalar. The crucial point of this construction is the following:

Theorem 9.22. Let L1 ⊂ (V2 ⊗ C) ⊕ (V1 ⊗ C)op and L2 ⊂ (V3 ⊗ C) ⊕ (V2 ⊗ C)op be
Lagrangian correspondences. Then the equality

TL1 ◦ TL2 = TL1?L2

holds up to a scalar.

What is meant is that both TL1 and TL2 are defined up to a scalar, and for any choice
for both of them, their composition lies in the ray determined by L1 ? L2.

Proof. Let {ei}, { fi} and {gi} be orthonormal bases of HV1 , HV2 and HV3 . With these
bases we write

TL1 = ∑
i

λiei ⊗ fi, TL2 = ∑
i

µi fi ⊗ gi,

where {λi} and {µi} are square summable sequences in C. By the (sketch of the) proof
of Shale’s theorem we know that TL1 and TL2 are uniquely characterized, up to a scalar,
by the property that they are fixed by the action of L1, resp. L2. It therefore suffices to
show that TL1 ◦ TL2 is fixed by L1 ? L2. Let (v1, v3) ∈ L1 ? L2. Using property (41) we
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then have

v1TL1 ◦ TL2 v3 = ∑
i

λiµi 〈 fi, fi〉 v1ei ⊗ v3gi

= ∑
i

λiµi 〈v̄2 fi, v2 fi〉 v1ei ⊗ v3gi, for v2 ∈ V2 as in Prop. 9.20.

= cTL1 ◦ TL2 , c ∈ C.

This proves the theorem. �

9.3. The CFT of free bosons. We shall now use the previous theory of the Heisenberg
group to construct a CFT. First, we shall associate a Hilbert space to a circle as follows:
consider the vector space Ω0(S1)⊕Ω1(S1) equipped with the symplectic form

ω(( f1, α1), ( f2, α2)) =
∫

S1
( f1α2 − f2α1).

On a one-dimensional manifold we have an exact sequence of the form

0 −→ R −→ Ω0(S1)
d−→ Ω1(S1)

∫
S1−→ R −→ 0.

With this, we define the symplectic vector space

V(S1) :=
(

Ω0(S1)/R
)
)⊕ ker

(∫
S1

: Ω1(S1)→ R

)
.

Lemma 9.23. There exists a canonical linear symplectic isomorphism

V(S1) ∼= V ⊕Vop,

where V is the symplectic vector space of Remark 9.8.

Proof. Consider the map V(S1)→ V ⊕Vop defined by

( f , α) 7→ 1√
2
( f + d−1α, f − d−1α).

(Remark that d−1 is unambiguously defined by the exacts sequence above.) This is
obviously a linear isomorphism. Let us check the symplectic form:

1
2

ωV⊕Vop

(
( f1 + d−1α1, f1 − d−1α1), ( f2 + d−1α2, f2 − d−1α2)

)
=

1
2

∫
S1

(
( f1 + d−1α1)d( f2 + d−1α2)− ( f1 − d−1α1)d( f2 − d−1α2)

)
=
∫

S1
( f1α2 − f2α1) .

This proves that the map is compatible with the symplectic form. �

Let Σ be a Riemann surface with boundary ∂Σ. Consider the following subspace
WΣ ⊂ V(∂Σ)⊗C:

WΣ := {(ϕ, ∗dϕ) ϕ is harmonic on Σ}.
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Recall, c.f. [Fo, §22], that for f ∈ Ω0(∂Σ), the associated Dirichlet problem

∆ϕ = 0, ϕ|∂Σ = f ,

has a unique solution. In other words, a harmonic function is uniquely determined by
its boundary values. Therefore we can really consider WΣ to be a subspace of V(∂Σ).

Proposition 9.24. WΣ is a positive maximal isotropic subspace of V∂Σ ⊗C.

Proof. Let us first check that WΣ is isotropic: let ϕ1, ϕ2 be harmonic on Σ. Then we have
that

ω((ϕ1, i ∗ dϕ1), (ϕ2, i ∗ dϕ2)) = i
∫

∂Σ
(ϕ1 ∗ dϕ2 − ϕ2 ∗ dϕ1),

= i
∫

Σ
(dϕ1 ∧ ∗dϕ2 − dϕ2 ∧ ∗dϕ1)

= 0,

So WΣ is indeed isotropic. Next, let ( f , α) ∈Wω
Σ . For ϕ harmonic on Σ, we then compute

0 =
∫

∂Σ
(ϕα− i f ∗ dϕ)

=
∫

Σ
d(ϕα− i f ∗ dϕ)

=
∫

Σ
(dϕ ∧ α + ϕdα− d f ∧ i ∗ dϕ)

=
∫

Σ
dϕ ∧ (α− i ∗ d f ) +

∫
Σ

ϕdα.

From this it should follow that dα = 0 and α = i ∗ d f , which combines to d ∗ d f = 0.
This implies that f is harmonic and proves that WΣ is maximal isotropic.

Finally, we need to check positivity:

−2iω((ϕ̄, i ∗ dϕ), ϕ, i ∗ dϕ)) = 2
∫

∂Σ
(ϕ̄ ∗ dϕ + ϕ ∗ dϕ̄)

= 2
∫

Σ
dϕ ∧ dϕ̄ ≥ 0.

�

Example 9.25. Let us consider the unit disk D := {z ∈ C, |z| ≤ 1} bounding the unit
circle. Harmonic functions on D are given by zn, z̄m, m, n ≥ 0. Then we have

i ∗ dzn = dzn, i ∗ dz̄m = −dz̄m,

since ∗(udz+ vdz̄) = −iudz+ ivdz̄. Using the isomorphism of Lemma 9.23 we therefore
see that the Lagrangian subspace WD ⊂ V ⊕Vop is given by

WD = spanC{(e
inθ , 0), (0, e−imθ), m, n > 0}.
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Comparing with Example 9.16, we see that this is nothing but WD = W+ ⊕W−. The as-

sociated irreducible representation of the Heisenberg group Ṽ(S1) ∼= Ṽ× Ṽop is defined
on the Hilbert spaceHW+ ⊗HW+ .

Proposition 9.26. The polarization class of V(S) induced by two Riemann surfaces Σ1 and Σ2

with the same boundary ∂Σ1
∼= S ∼= ∂Σ2 is the same.

Proof. We skip this one. �

Theorem 9.27. Let Σ1 and Σ2 be two Riemann surfaces with ∂Σout ∼= S ∼= ∂Σin. Then the
associated Lagrangian subspaces are related by:

LΣ1∪SΣ2
∼= LΣ1 ? LΣ2 .

Proof. Let us sketch the argument: there is an obvious sequence

0→ Harm(Σ1 ∪S Σ2)→ Harm(Σ1)⊕Harm(Σ2)→ Ω0(S).

Here the third map is given by (ϕ1, ϕ2) 7→ ϕ1|∂Σ1 − ϕ2|∂Σ2 . By the unique solubility
of the Dirichlet problem, one shows that the sequence is exact. This implies that the
second map ϕ 7→ (ϕ|Σ1 , ϕ|Σ2) induces the desired isomorphism. �

To construct the CFT we consider the following associations:

• to a closed one-manifold S we associate the Hilbert space HS which carries the

unique irreducible representation of the Heisenberg group Ṽ(S1). The polar-
ization class that underlies the definition of this representation is obtained by
mapping S diffeomorphically onto a disjoint union of S1’s and using Example
9.25. Strictly speaking this association is not quite canonical, as it depends on a
chosen diffeomorphism. This is called a rigging of a 1-manifold, and is related
to the conformal anomaly. We shall ignore this aspect and simply consider the
case S = S1.
• To a Riemann surface Σ with boundary ∂Σ = ∂Σin ä ∂Σout we associate a ray

Z(Σ) ⊂ H∂Σin ⊗H∂Σout ,

determined by the Lagrangian correspondence of Proposition 9.24.

Combining Theorem 9.27 with Theorem 9.22, one now shows that the fundamental
composition property when gluing surfaces holds true: we have constructed a CFT.

Proposition 9.28. The partition function of the CFT constructed above is given by

Z(q) = ∏
m,n≥0

1
(1− qn)

1
(1− q̄m)

.

Notice that this is, up to a factor |q|1/12, just η(τ)η(τ), where q = e2πiτ and η(τ) is
the well-known Dedekind eta-function, a modular form of weight 1/2.
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APPENDIX A. SOME RIEMANNIAN GEOMETRY

Let M be a smooth n-dimensional manifold. A Riemannian metric on M is given by
an inner product gx : Tx M × Tx M → R which depends smoothly on x ∈ M. More
precisely, it is given by a smooth symmetric tensor field in T∗M⊗ T∗M which defines
a positive definite inner product on each tangent space Tx M. By a standard partition
of unity argument, one proves that each manifold can be equiped with a Riemannian
metric. In local coordinates (x1, . . . xn) : U → Rn we can write

g(x) = gij(x)dxi ⊗ dxj.

Recall the notion of a connection ∇ on a vector bundle E→ M: this is a linear map

∇ : Γ(M; E)→ Γ(M; E⊗ T∗M)

satisfying the Leibniz rule:

∇( f s) = f∇s + d f ⊗ s, f ∈ C∞(M), s ∈ Γ(M; E).

We write ∇X for the contraction of ∇ with a vector field X.

Theorem A.1. Given a Riemannian metric g, there exists a unique connection on TM, called
the Levi–Civita connection ∇ : Γ(M; TM)→ Γ(M; TM⊗ T∗M) satisfying

i) (compatibility with the metric)

Zg(X, Y) = g(∇ZX, Y) + g(X,∇ZY), for all vector fields X, Y, Z ∈ X(M),

ii) (Torsion-free)

∇XY−∇YX = [X, Y].

This connection is uniquely determined by the equation

g(∇XY, Z) =
1
2
(Xg(Y, Z)− Zg(X, Y) + Yg(Z, X)(43)

− g(X, [Y, Z]) + g(Z, [X, Y]) + g(Y, [Z, X])) .

Proof (sketch): First check that properties i) and ii) imply (43). Then prove that the right
hand side, for fixed X, Y is tensorial in Z in the sense that it is C∞(M)-linear. Conclude
that we can write ω(Z) for the right hand side, for a unique one-form ω. Using the
nondegeneracy of g, define g(∇XY, Z) = ω(Z). Then check that the ∇ thus defined is
indeed a connection. Finally, the metric and torsion free property follow from (43). This
same equation also shows that ∇ is unique. �

In local coordinates the connection writes out as

∇∂/∂xi ∑
j

X j ∂

∂xj = ∑
j

∂X j

∂xi
∂

∂xj + ∑
jk

Γj
ikXk ∂

∂xj ,
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where Γj
ik are called the Christoffel symbols. They are obtained from the metric by the

formula

Γk
ij =

1
2 ∑

l
gkl
(

∂gil

∂xj +
∂gjl

∂xi −
∂gij

∂xl

)
,

where gij denotes the components of the inverse of the matrix (gij).
The curvature of g is given by the tensor R ∈ Γ(M,∧2T∗M⊗ End(TM)) defined by

R(X, Y)(Z) := [∇X,∇Y]Z−∇[X,Y]Z.

Given a piecewise C1-path γ : [t0, t1]→ M in M, we can define its length as

L(γ) :=
∫ t1

t0

∣∣∣∣∣∣∣∣dγ

dt
(t)
∣∣∣∣∣∣∣∣ dt.

With this notion of length we can define a metric given by

dM(x0, x1) := inf
γ

L(γ),

where γ varies over all piecewice C1-paths from x0 to x1.

Theorem A.2 (Hopf–Rinow). A Riemannian manifold is complete as a metric space if and
only if it is geodesically complete, i.e., geodesics are defined for all t ∈ R.

APPENDIX B. THE SPECTRAL THEOREM AND ONE-PARAMETER GROUPS

B.1. Self-adjoint operators. For this appendix, [RSI, Ch. VIII] is an excellent reference.
Recall that an unbounded operator A on a Hilbert spaceH is a linear operator A : D(A)→
H defined on a domain D(A) ⊂ H. In the sequel we will assume that this domain
D(A) is dense in H, as is often the case. We call B an extension of A if D(A) ⊂ D(B)
and B|D(A) = A. The fundamental idea is to study unbounded operators A by means
of their graph

G(A) = {(x, Ax), x ∈ D(A)}.
A is said to be closed if G(A) is a closed subset ofH⊕H, and closable if the closure G(A)

of G(A) is graph of an operator Ā (extending A).
If we let D(A∗) be the set of v ∈ H for which there exists an w ∈ Hwith the property

that
〈Au, v〉 = 〈u, w〉 , for all u ∈ D(A),

then the above equation defines a linear map A∗ : D(A∗) → H, called the adjoint, if we
set A∗w = v. (For this it is essential that D(A) is dense!) The domain of the adjoint
D(A∗) need not be dense and in fact one can prove that it is if and only if A is closable,
in which case Ā = (A∗)∗.

Definition B.1. A densely defined operator A : D(A)→ H is called

i) symmetric if

〈Au, v〉 = 〈u, Av〉 , for all u, v ∈ D(A),
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ii) selfadjoint if A = A∗, i.e., symmetric and D(A) = D(A∗),
iii) essentially selfadjoint if it is closable and its closure is selfadjoint.

Remark B.2. With the fact mentioned just above the definition, one easily shows that a
symmetric operator is closable and that a selfadjoint operator is closed. Another way
to phrase that A is essentially selfadjoint is to say that D(A∗) is dense and that A∗ is
selfadjoint.

The main point about these definitions is that one usually is confronted (e.g. in quan-
tum mechanics) with only a symmetric operator acting on some natural domain. A
general symmetric operator need not have a selfadjoint extension, and when it has, this
extension may not be unique. There are two natural closed extensions of a symmetric
operator:

i) Amin obtained by taking the closure, called the minimal extension.
ii) Amax := A∗, the maximal extension.

One has that Amin ⊂ Amax and any selfadjoint extension Ā is inside this inclusion:
Amin ⊂ Ā ⊂ Amax. A natural way to show that an operator is essentially selfadjoint is
therefore to show that Amin = Amax.

B.2. Friedrichs’ extension. Friedrichs’ method gives a canonical selfadjoint extension
of a nonnegative symmetric operator. A densely defined operator A : D(A) → H is
nonnegative if the associated quadratic function is nonnegative:

〈u, Au〉 ≥ 0, for all u ∈ D(A).

We introduce the following sesquilinear form on D(A):

Q(u, v) := 〈u, v〉+ 〈u, Av〉 .

Since Q(u, u) ≥ ||u||2, Q defines an inner product, and we write V for the completion of
D(A) with respect to this norm. We have V ⊂ H. Define D(Ā) by

D(Ā) := {u ∈ V, v 7→ Q(u, v) is bounded linear onH}.

By Riesz’ Theorem, there exists a Āu ∈ H such that Q(u, v) =
〈

Āu, v
〉
. This defines the

extension Ā of A. It is selfadjoint.

B.3. The spectral theorem.

Theorem B.3 (Spectral Theorem). Let A : D(A) → H be a selfadjoint operator. There is a
unique ∗-homomorphism φ 7→ φ(A) from the bounded Borel functions on R into B(H) such
that

i) ||φ(A)|| ≤ ||φ||∞ ,
ii) If φn → φ point wise and the sequence {||φn||∞}n is bounded, then φn(A) → φ(A)

strongly.
iii) If Au = λu =⇒ φ(A)u = φ(λ)u,
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iv) if φ ≥ 0, then φ(A) ≥ 0.

B.4. One-parameter groups and Stone’s theorem. With the spectral theorem, we can
get dynamics once we have a selfadjoint operator.

Definition B.4. A strongly continuous one-parameter group of unitaries is a unitary repre-
sentation of R on H defined by a homomorphism U : R → U(H) which is continuous
for the strong operator topology.

Proposition B.5. Let A : D(A)→ H be a selfadjoint operator. The operator

U(t) := e
√
−1tA

is unitary and defines a strongly continuous one-parameter group of unitaries. Furthermore,

lim
t→0

(U(t)− 1)u
t

=
√
−1Au, for all u ∈ D(A).

Remark B.6. When A is bounded and selfadjoint, the series

e
√
−1tA =

∞

∑
k=0

(
√
−1t)k Ak

k!

converges in norm, and defines a one-parameter group of unitaries that is norm con-
tinuous. It is important to remark that for unbounded A, the operator e

√
−1tA can’t be

defined directly by the series above, we have to use the spectral theorem.

Stone’s theorem gives the converse to this construction:

Theorem B.7 (Stone’s theorem). Given a strongly continuous one-parameter group of uni-
taries U(t), there is a selfadjoint operator A such that U(t) = e

√
−1tA.

The theory for semigroups is very similar:

Definition B.8. A map R≥0 → B(H), t 7→ S(t) is called a strongly continuous semigroup
of operators if

i) S(0) = 1,
ii) S(t1)S(t2) = S(t1 + t2), for all t1, t2 ≥ 0.

If ||S(t)|| ≤ 1 we say S(t) forms a semigroup of contractions.

Proposition B.9 (c.f. [RSII, p.242]). Let A ≥ 0 be a nonnegative selfadjoint operator. Then
the family of bounded operators

S(t) := e−tA,

defined by means of the spectral theorem, is a strongly continuous semigroup of contractions
satisfying

lim
t↓0

(S(t)− 1)u
t

= −Au, for all u ∈ D(A).
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Remark B.10. Similar remarks as in the unitary case apply to the case that A is bounded:
in this case

e−tA =
∞

∑
k=0

(−t)k Ak

k!

converges in norm and the resulting semigroup is even continuous in norm.
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