
NOTES ON CHERN–SIMONS THEORY

1. PRELIMINARIES

1.1. Connections on principal bundles. Throughout, we fix a compact Lie group G
with Lie algebra g. Let π : P →M be a principal G-bundle over a smooth manifoldM.
For a point p ∈ P, we have an exact sequence of vector spaces

0 −→ g
ρp−→ TpP

dpπ−→ Tπ(p)M −→ 0,

where ρp denotes the infinitesimal action of G on P. The following is elementary:

Lemma 1.1. The following are equivalent:

i) a section σp : Tπ(p)M→ TpP of dpπ, i.e., dpπ ◦ σp = 1,
ii) a map τp : TpP → g such that τp ◦ ρp = 1,
iii) a subspace Hp ⊂ TpM such that TpP = g⊕Hp.

We refer to any of these equivalent choices as a splitting of the short exact sequence.
Varying over p ∈ P we get a short exact sequence of vector bundles over P:

(1.1) 0 −→ g× P ρ−→ TP
dπ−→ π∗TM −→ 0.

The group G naturally acts on these bundles making the maps above equivariant:

• trivially on π∗TM,
• by the derivative dRg : TP → TP of the right action Rg on P,
• by Adg × Rg on g× P. (This follows from the fact that g is identified with the

vector space of left invariant vector fields on G).

Definition 1.2. A connection on P is a G-equivariant splitting of (1.1)

By point of view ii) in Lemma 1.1 above, a connection is therefore given by a Lie
algebra valued 1-form A ∈ Ω1(P, g) such that

ιξPA = ξ, for all ξ ∈ g,

R∗gA = Adg(A) for all g ∈ G.

Here, ξP is the generating vector field of ξ ∈ g. Equivalently, we can think of a con-
nection as a vector subbundle H ⊂ TP satisfying R∗gH = H for all g ∈ G.
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Remark 1.3 (Linear connections on vector bundles). Recall that for a representation V
of G, we obtain an associated vector bundle

E(V) := (P× V)/G,

where G acts diagonally on P × V . A (local) section s of this bundle is given by a G-
equivariant map s : P → V . Below we will use the associated bundle construction
mostly for the adjoint representation Ad : G → GL(g), and we use the notation ad(P)
for this vector bundle.

Next, for a vector bundle E→M, introduce the space of E-value differential forms

Ωk(M,E) = Γ∞(M,ΛkT∗M⊗ E).

Of course,Ω0(M,E) is just the space of smooth sections of E. With this, we can define
a linear connection on E as a degree 1 differential operator:

Definition 1.4. A linear connection on a vector bundle E is a map

∇ : Ω0(M,E)→ Ω1(M,E)

satisfying the Leibniz rule

(1.2) ∇(fs) = df⊗ s+ f∇(s),

for any f ∈ C∞(M) and s ∈ Γ∞(M,E).

The two notions of connections on principal and vector bundles correspond to each
other under the associated vector bundle construction:

Lemma 1.5. Let π : P →M be a principalG-bundle equipped with a connection σ : π∗TM→
TP. For any representation V of G, the the formula

(∇Xs)(p) := ds(σp(Xπ(p)),

where s : P → V is a G-equivariant map, defines a linear connection on E(V).

Example 1.6. The trivial bundle P = G×M → M has a canonical connection given by
Hg,x := TxM ⊂ TP.

Lemma 1.7. Every principal G-bundle admits a connection. Furthermore, the space of all
connections Conn(P) is an affine space modeled onΩ1(M, ad(P)).

Proof. For the first statement one uses local triviality of the P to exhibit the existence
of a local connection. Then one uses a partition of unity to construct a global one. For
the second statement, let A1,A2 ∈ Ω1(P, g) be two connections on P. The difference
A1 −A2 ∈ Ω1(P, g) is:
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• G-invariant because both A1 and A2 are,
• G-basic: ιξP(A1 −A2) = 0 for all ξ ∈ g.

It therefore descend to a 1-form on the quotient (P×g)/G, but this is exactly the adjoint
bundle ad(P). �

Finally, let us discuss the curvature of a connection A: From the point of view i) of
Lemma 1.1 as a splitting σ : π∗TM → TP, it is clear that with a connection we can lift
vector fields X ∈ X(M) to X̃ ∈ X(P). The curvature is the obstruction to this lift being
a morphism of Lie algebras with respect to the Lie bracket of vector fields:

R(X, Y) := [X̃, Ỹ] − [̃X, Y], X, Y ∈ X(M).

The right hand side of this equation lies in the kernel of dpπ for each p ∈ P, so by the
exact sequence (1.1), is an element in g. This means that the curvature is an element
R ∈ Ω2(M, ad(P)). The connection is called flat if R = 0.

Proposition 1.8. Let A ∈ Ω1(P, g) be a connection on a principal G-bundle P →M.

i) R(A) = dA+ [A,A]
ii) (Bianchi identity)∇R = 0, where∇ is the induced linear connection on ad(P).

1.2. Chern–Weil theory. Chern–Weil theory gives an explicit construction of charac-
teristic classes as closed differential forms associated invariant polynomials.

Definition 1.9. Let G be a Lie group. An invariant polynomial is a polynomial F : g → C

invariant under the adjoint action:

F(Adg(ξ)) = F(ξ), ξ ∈ g, g ∈ G.

The space of invariant polynomials Iinv(G) is given by the invariant part of the
symmetric algebra Iinv(G) = Sym(g∗)G, and is graded according to the degree of a
monimial. When thinking of a symmetric tensor, we often write F(ξ, . . . , ξ) for the
value of the polynomial F in ξ. A famous theorem of Chevalley asserts that when G is
reductive Iinv(G) is a polynomial algebra with rank(G) generators.

Given an invariant polynomial F of degree k, and a connection A with curvature R
on a principal bundle P →M, we consider

F(R) ∈ Ω2k(M).

This requires some explanation: recall that R(A) ∈ Ω2(M, ad(P)). The vector bundle
ad(P) obviously has fibers ad(P)x ∼= g for each x ∈ M, but it is important to realize
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that in general there is no canonial isomorphism. However, and two isomorphisms
differ by the action of G, so the differential form F(R) is unambiguously defined.

Theorem 1.10 (Chern–Weil). Let F be an invariant polynomial of degree k.

i) For any connection A on P with curvature R the form F(R) ∈ Ω2k(M) is closed:

dF(R) = 0.

ii) The de Rham cohomology class [F(R)] ∈ H2kdR(M) does not depend on the choice of a
connection A.

Proof. i) follows from the Bianchi identity.

For ii), let A0,A1 be two connections on P with curvature R0 and R1. Because the
space of connections on P is affine, we can consider the convex combination Aaff :=

tA1 + (1− t)A0 interpolating between A0 and A1. We now view Aaff as a connection
on the principal G-bundle P× [0, 1] → M× [0, 1], where t ∈ [0, 1] is the coordinate on
the unit interval. This connection has curvature Raff ∈ Ω(M× [0, 1], ad(P), and we can
therefore consider F(Raff) ∈ Ω2kcl (M× [0, 1]). With this we define

(1.3) L(A0,A1) :=
∫1
0

F(Raff)dt ∈ Ω2k−1(M).

The notation above is slightly imprecise: F(Raff) is itself a differential form over M×
[0, 1], and we mean that one integrates the components containing dt. The integral
should be understood as a fiber integral over the fibration M× [0, 1] → M, resulting
in a differential form onM. For such a fiber integral Stokes’ theorem gives

d

∫1
0

α =

∫1
0

dα−αt=1 +αt=0, α ∈ Ωp(M× [0, 1]).

(Remark that in this formula the d on the left hand side refers to the exterior differen-
tial on M× [0, 1] whereas on the right hand side it is the one on M.) In our case this
leads to

dL(A0,A1) = F(R1) − F(R0),

proving the theorem. �

The so-called transgression form L(A0,A1) defined in equation (1.3) is going to play
an important role in the following. Let us remark that it has the following property:

Proposition 1.11. For three connections A0,A1 and A2, the following equality holds true:

L(A0,A1) + L(A1,A2) = L(A0,A2).
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Proof. The three connections A0,A1,A3 define a connection Aaff on the bundle P ×
∆2 → M× ∆2, where ∆ is the 2-simplex. The Proposition then follows from Stokes’
theorem for the fiber integral over M× ∆2 → M applied to the characteristic form
F(Raff). �

Remark 1.12. Recall the following definition, motivated by the proof of de Rham’s
theorem:

Definition 1.13. Let αpcl(M) be a closed differential form of degree p on a smooth manifold
M. Its period group is defined as the subgroup of R (or C when α is C-valued) defined by the
integrals ∫

∆p
σ∗α,

over all smooth singular chains σ ∈ S∞p (M) of degree p.

By Stokes’ theorem, the values of these integrals only depends on the homology
class [σ] ∈ Hsing

p (M) and the de Rham cohomology class [α] ∈ HpdR(M). If the period
group Per(α) of a form α is a subgroup of Z, we say that α is integral.

Definition 1.14. An invariant polynomial F ∈ Iinv(G) is called integral if for all principal
G-bundles P equipped with a connection A with curvature R, the differential form F(R) has
integral periods.

Example 1.15. ForG = GL(n, C), let Fk be the k-th symmetric polynomial in the eigenvalues
of matrices in gl(n, C). Then

Iin(GL(n, C)) ∼= C[F1, . . . , Fn].

The associated characteristic class

ck(P) :=

[
1

(2π
√
−1)k

Fk(R)

]
∈ H2kdR(M),

is called the k-th Chern class. It is a fundamental fact in the theory of characteristic classes
that these classes are integral.

2. THE CHERN–SIMONS ACTION

2.1. Definition. Now we letG be a compact Lie group. Chern–Simons theory depends
on the following datum of an invariant integral inner product on the Lie algebra g:

Definition 2.1. We denote by B : g× g → R the choice of an inner product on g satisfying
the following properties:
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• it is Ad-invariant:

B(Adg(ξ), Adg(η) = B(ξ,η), ξ,η ∈ g, g ∈ G.

• it is integral in the sense of Definition 1.14 when we view B as an invariant quadratic
polynomial.

Example 2.2. Such inner products exist: for G = SU(N) we can take

B(X, Y) := TrCN(XY).

This choice of inner product gives the second Chern class of vector bundles, c.f. Example 1.15.
More generarlly, we can take kB with k ∈N.

We now assume that M is a closed 3-manifold and that P → M is a trivializable
principal G-bundle. (Remark that since π2(G) = 0 for a compact Lie group, if we
assume that G is simply connected, any principal G-bundle is automatically trivial.)
We therefore explicitly trivialize P by choosing a global section s : M → P. Since this
gives an isomorphism P ×M×G, this equips P with a flat connection as in Example
1.6. We write As for this connection. Now let A be any other connection and consider
the transgression form L(A,As) (1.3) for the characteristic form defined by B in Chern–
Weil theory. The Chern–Simons action is defined as

(2.1) CS(A) :=

∫
M

L(A,As).

Implicit in the notation is:

Lemma 2.3. CS(A) ∈ R/Z is independent of the choice of section s.

Proof. Let s ′ be another section. This introduces another flat connection As ′ on P. By
Proposition 1.11 above we have

L(A,As) = L(A,As ′) − L(As,As ′).

For the construction of the last term on the right hand side, we have to equip P× [0, 1]
with the connection Aaff

s,s ′ := tAs ′ + (1− t)As. The curvature Raff
s,s ′ of this connection is

given by

Raff
s,s ′ =dt∧ (As ′ −As) + tdAs ′ + (1− t)dAs

+ t2[As ′ ,As] + (1− t)2[As,As] + 2t(1− t)[As ′ ,As].

At t = 0 and at t = 1 this expression reduces to the same form dt∧ (As ′ −As), because
both As and As ′ are flat. We can therefore view the fiber integral over [0, 1] as being



NOTES ON CHERN–SIMONS THEORY 7

over S1 and with this∫
M

∫1
0

B(Raff
s,s ′ ,R

aff
s,s ′) =

∫
M×S1

B(Raff
s,s ′ ,R

aff
s,s ′) ∈ Z,

by the integrality assumption on B. �

Because of this Lemma the exponent

exp
(
2π
√
−1CS(A)

)
is well-defined. Let us now compute the Chern–Simons action explicitly. For this we
consider P =M×G so that As = 0, and we consider the connection Aaff = tA on the
bundle P× [0, 1]→M× [0, 1]. This connection has curvature

Raff = dt∧A+ tdA+ t2[A,A].

With this we compute

L(A, 0) =
∫1
0

B(Raff,Raff)dt

=

∫1
0

2B(dt∧A, tdA+ t2[A,A])

= B(A,dA+
2

3
B(A, [A,A]).

We therefore find the expression

CS(A) =

∫
M

(
B(A,dA) +

2

3
B(A, [A,A])

)
.

Lemma 2.4. The critical points of the Chern–Simons action are the flat connections.

Proof. Consider a small variation A+ tα, t ∈ (−ε, ε) of a connection A. Then

d

dt

∣∣∣∣
t=0

CS(A+ tα) =

∫
M

(B(α,dA) +B(A,dα) + 2B(α, [A,A]))

= 2

∫
M

(B(α,dA) +B(α, [A,A])) +
∫
M

dB(α,A)

= 2

∫
M

B(α,R),

where we have used Stokes’ theorem to go to the third line. For a critical point, this
derivative should be zero for all α ∈ Ω1(M, g). We therefore see that the critical points
are exactly the flat connections. �
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2.2. The Witten invariant of 3-manifolds. LetM be a closed 3-manifold. Assume we
have chosen a B as above. Then kB satisfies the same integrality assumption, and can
also be uses in the definition of the Chern–Simons action. The Witten invariant of a
three manifold is defined by the formal path integral

Zk(M) :=

∫
Conn(P)

exp
(
2π
√
−1kCS(A)

)
DA.

Indeed, the Chern–Simons action does not make use of a metric, so this number only
depends on the underlying manifold structure ofM. But how can we make mathemat-
ical sense of this? One thought would perhaps be to consider a perturbative expansion
around classical solutions (i.e., flat connections) using Feynman diagrams. However
it turns out that the critical points of the Chern–Simons action are highly degenerate
due to the presence of a large symmetry group that we shall discuss in the next sub-
section. A better approach is therefore to use the structure of a TQFT: we should cut
up our 3-manifold M along a compact oriented surface Σ and construct a the vector
space associated to Σ to compute the invariant Zk(M). This is closer to a Hamiltonian
approach to Chern–Simons theory that we shall discuss in the next section.

2.2.1. The Jones Polynomial. We can add observables to the path integral above. Let
G = SU(N), and consider an embedded curve γ : S1 → S3, i.e., a knot K ⊂ S3. The
associated Wilson loop is the function on Conn(P) defined by

Wγ(A) := TrCN(Holγ(A)),

where Holγ(A) ∈ G is the holonomy of A along γ, defined as follows: along γ we try
to gauge transform the connection A to the trivial connection by solving the ODE

Adϕ(t)(A(t)) +
dϕ

dt
ϕ−1, ϕ(0) = e.

This initial value problem has a unique solution leading to an element ϕ(t) ∈ PG,
the space of paths in G. The value γ(1) ∈ G is the holonomy. Varying the base point
this is well defined up to conjugacy and because of the trace the resulting function is
unambiguous. Witten’s remarkable claim is that the formal integral

(2.2) VK(q = e2π
√
−1/(N+k)) :=

∫
Conn(P)

WK(A) exp
(
2π
√
−1kCS(A)

)
DA,

gives the Jones polynomial!
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2.3. The Gauge group. Recall that a morphism of principal G-bundles P → M and
P ′ → M ′ is a smooth equivariant map P → P ′. It therefore induces a map M → M ′.
The gauge group Aut(P) is defined as

Aut(P) := {morphisms ϕ : P → P covering the identity map on M}.

Indeed such maps are automatically invertible.

The gauge group Aut(P) has a natural action on the space of connections Conn(P)
by pull-back: for a connection A ∈ Ω1(P, g) one easily verifies that ϕ∗A is also a
connection.

When P = M × G is the trivial bundle, the gauge group takes the simple form
Aut(P) = C∞(M,G) acting on P via

ϕ · (x,g) = (x,ϕ(x)g).

Indeed ϕ : M → G should act from the left to be able to commute with the right
action. For the trivial bundle Conn(P) = Ω1(M, g) and the action of Aut(P) can be
written down explicitly as

(2.3) ϕ ·A = Adϕ(A) + dϕϕ−1.

This new connection has curvature

(2.4) R(ϕ∗A) = Adϕ(R(A)).

We now want to consider the behavior of the Chern–Simons action under the action
of the gauge group.

Lemma 2.5. CS(ϕ∗A) −CS(A) ∈ Z.

Proof. Recall the definition of the Chern–Simons action (2.1). Using invariance of Bwe
claim that

L(ϕ∗A,As) = −L(A,ϕ∗As) = −L(A,Aϕ·s),

where ϕ ∈ Aut(P) acts by changing the section s. The Lemma therefore follows di-
rectly from (even better: is equivalent to) Lemma 2.3. �

We therefore see that exp 2π
√
−1CS(A) is invariant under the action of Aut(P) and

therefore descends to the quotient space Conn(P)/Aut(P).
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3. THE MODULI SPACE OF FLAT CONNECTIONS

3.1. Some more symplectic geometry: reduction. Let (X,ω) be a symplectic mani-
fold, and consider a smooth (left)-action of a Lie group K on X. We say that the action
of K is symplectic if k∗ω = ω, ∀k ∈ K. Infinitesimally this means that LξXω = 0, where
ξX is the generating vector field of the action of K associated to a Lie algebra element
ξ ∈ k. Becauseω is a closed form, this implies by Cartan’s formula that ιξXω is closed.
When it is also exact, we say the action is Hamiltonian. This means that there exists a
smooth map J : X→ k∗ such that

(3.1) d 〈J, ξ〉 = dιξXω, for allξ ∈ k.

We shall assume that J is K-equivariant, where K acts on k∗ by the coadjoint action, the
dual of the adjoint. The map J is called the moment (or momentum) map and gives
the conserved quantities for the infinitesimal action of k via Noether’s theorem. In this
situation symplectic reduction is a way to construct a new symplectic space, where the
action of K is modded out.

Theorem 3.1 (Symplectic reduction). Assume that K acts properly and free, and that 0 ∈ k∗

is a regular value of J so that that J−1(0) ⊂ X is smooth submanifold. Then the quotient space

Xred := J−1(0)/K

carries a unique symplectic form ωred satisfying π∗ωred = i∗0ω, where π : J−1 → Xred is the
quotient map, and i0 : J−1(0) ↪→ X the inclusion.

Proof. The assumptions guarantee that Xred is a smooth manifold. Consider the 2-form
ω0 := i0ω on J−1(0). Clearly, it is K-invariant. Because of the moment map conditon
(3.1) we see that

ιξω0 = i
∗
0ιξω = i∗0d 〈J, ξ〉 = di∗0 〈J, ξ〉 = 0.

We therefore find that it is K-basic as well, and therefore descends to the quotient Xred.
We only are left to prove that ωred is nondegenerate. Let x ∈ J−1(0), and consider the
maps

(3.2) k
ρx−→ TxX

dxJ−→ k∗.

The kernnel of dxJ is exactly the annihilator of the image of ρx. Therefore on the
quotient

T[x]Xred = ker(dxJ)/im(ρx),

ωred is exactly nondegenerate! �
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3.2. The Atiyah–Bott construction. As before we have fixed the Lie group G with
an invariant integral inner product B. Let Σ be an oriented closed 2-manifold. We
consider the space of connections Conn(P) = Ω1(Σ, g) on the trivial G-bundle P :=

Σ×G. Because Σ is two-dimensional, we can define the following bilinear form on
Ω1(Σ, g):

ω(α,β) :=
∫
Σ

B(α,β), α,β ∈ Ω1(Σ, g).

Here the notation B(α,β) means that we combine the inner product on g with the
wedge product of α and β as 1-forms. Therefore, ω is antisymmetric, and one easily
observes that it is also nondegenerate in the sense that

ω(α,β) = 0, ∀β =⇒ α = 0.

It is therefore a symplectic form!

We now consider the action of the infinite dimensional group Aut(P) given by (2.3)
on the infinite dimensional symplectic manifold Conn(P). We view Aut(P) as a Lie
group with Lie algebra Ω0(Σ, g) and exponential map given by the pointwise (in Σ)
exponential on G.

Lemma 3.2. The generating vector field of the action Aut(P) is given by

∇Aξ, ξ ∈ Ω0(Σ, g),

where ∇A denotes the covariant derivative on ad(P) = Σ× g induced by a connection A.

Proof. This is a small computation: write ϕt := etξ for ξ ∈ C∞(Σ, g), and compute the
derivative with respect to t:

d

dt

∣∣∣∣
t=0

ϕ∗tA = [A, ξ] + dξ =: ∇Aξ.

This proves the Lemma. �

Proposition 3.3. The action of Aut(P) on Conn(P) is Hamiltonian with momentum map
given by minus the curvature of a connection:

J(A) := −R(A).

Proof. Recall that the curvature R(A) of a connection A ∈ Conn(P) is an element in
Ω2(Σ, g) which we view as being dual to the Lie algebraΩ0(Σ, g) via the pairing

(ξ,γ) 7→
∫
Σ

B(ξ,γ), ξ ∈ Ω0(Σ, g), γ ∈ Ω2(Σ, g).

Since
R(A+ tα) = R(A) + t∇Aα+O(t2), α ∈ Ω1(Σ, g),
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the derivative of the curvature map A 7→ R(A) is given by ∇A : Ω1(Σ, g) → Ω2(Σ, g).
With this we can check the momentum map condition (3.1). Let ξ ∈ Ω1(Σ, g) and
α ∈ Ω1(Σ, g):

ιξω(α) =

∫
Σ

B(∇Aξ,α)

= −

∫
Σ

B(ξ,∇Aα)

= 〈ξ,dAJ(α)〉 .

�

Corollary 3.4. The symplectic quotient

M(Σ,G) := Conn(P)flat/Aut(P),

carries a symplectic form.

There is a very explicit description of this moduli space of flat connections:

Theorem 3.5. There is an isomorphism

M(Σ,G) ∼= Hom(π1(Σ),G)/G.

Proof. Exercise. �

Remark 3.6. In general, M(Σ,G) will not be smooth because Aut(P) does not quite act
freely. We see this in the model above as the fact that the conjugacy action of G is not
free. On the level of tangent spaces, a little thinking reveals that in the gauge theoretic
picture the maps in equation (3.2) are given by

Ω0(Σ, g) ∇A−→ Ω1(Σ, g) ∇A−→ Ω2(Σ, g).

When A ∈ Conn(P) is flat, this is a complex: ∇2A = 0, and the tangent space of of
M(Σ,G) is given by the first “de Rham cohomology group”

T[A]M(Σ,G) ∼= ker(∇A)/im(∇A) = H1dR(Σ, g).

But this is only true in the smooth points where H0dR(Σ, g) = H2dR(Σ, g) = 0. In the
following we will ignore singularities from the discussion and simply pretend M(Σ,G)
is a smooth space.
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3.3. Prequantization. To construct the quantum Chern–Simons theory, we need to
quantize the symplectic space M(Σ,G). For this we use geometric quantization, so
we need to find a prequantum line bundle. For this we use the fact that M(Σ,G) is
constructed from the infinite dimensional symplectic space Conn(P) by symplectic
reduction. As a vector space, there is a (up to isomorphism) unique prequantum line
bundle (L,∇,h) on Conn(P), where

• L := Conn(P)×C is the trivial line bundle,
• ∇ := d+ 2π

√
−1θ, with θ the 1-form on Conn(P) given by

θA(α) :=

∫
Σ

B(A,α), A ∈ Conn(P), α ∈ Ω1(Σ, g),

• h is the standard hermitian metric on C.

Indeed, if we compute the first Chern form of this bundle we find

c1(L,∇) = dθ = ω,

as required for a prequantum line bundle. The aim is now to define a lift of the action
of Aut(P) on Conn(P) to this prequantum line bundle preserving the connection and
the hermitian metric. Then we can define a line bundle

Lred := L|Conn(P)flat
/Aut(P),

with induced metric and connection. One easily checks that this defines a prequantum
line bundle on M(Σ,G). So the question is really how to define the action of Aut(P) on
L. For the answer to this question, we reconsider the Chern–Simons action.

Consider a 3-manifold with boundary ∂M = Σ, equipped with the trivial G-bundle
M×G.

Lemma 3.7. Any connection A ∈ Conn(P) and gauge transformation ϕ ∈ Aut(P) can be
extended toM.

Proof. A connection A ∈ Conn(P) = Ω1(Σ, g) is nothing but a differential form with
values in the Lie algebra g, and therefore a section of a vector bundle. Therefore, a
partition of unity argument shows that we can extend an element in Ω1(Σ, g) to one
in Ω1(M, g). For the gauge group Aut(P) = C∞(Σ,G), first remark any element in
the connected component of the unit can be written as ϕ = eξ, with ξ ∈ Ω0(Σ, g). As
before, as a section of a vector bundle, ξwill extend to an element inΩ0(M, g) and this
defines an extension by taking the exponential. Because π2(G) = 0 for any compact
Lie group, π0(Aut(P)) = 0, so the previous argument suffices for the proof. �
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Proposition 3.8. Let ϕ ∈ Aut(P) and A ∈ Conn(P). For ϕ ′ and A ′ extending ϕ and A,
the element in the circle group

Θ(ϕ,A) := exp 2π
√
−1

(
CS((ϕ ′)∗A ′) −CS(A ′)

)
,

only depends on the restrictions (ϕ,A) of (ϕ ′,A ′) to the boundary, and satisfies the cocycle
condition

Θ(ϕ1,A)Θ(ϕ2,ϕ∗1A) = Θ(ϕ1ϕ2,A)

Proof. Consider two extensions (ϕ ′,A ′) and (ϕ ′′,A ′′) over 3-manifolds M ′ and M ′′

of the pair (ϕ,A). We can then glue M ′ and M ′′ over Σ to obtain a closed 3-manifold
M(3) :=M ′ ∪ΣM

′′. Also the connections A ′ and A ′′ glue to a global connection A(3)

and a gauge transformation ϕ(3). By Lemma 2.5 we see that

1 = exp 2π
√
−1

(
CS(ϕ∗(3)A(3)) −CS(A(3))

)
= Θ(ϕ ′,A ′)Θ(ϕ ′′,A ′′)−1.

This proves the first claim. The cocycle property is immediate from the definition of
Θ(ϕ,A). �

We are now in a position to define the lifting of the action to L. Let ϕ ∈ Aut(P) and
(A, z) ∈ Conn(P)×C =: L. Define

ϕ · (A, z) := (ϕ∗A,Θ(ϕ,A)z).

The cocycle property of Θ ensures that this indeed defines a group action. Further-
more, since Θ(ϕ,A) ∈ T, this action obviously preserves the hermitian metric on L.
We therefore only need to check that this action preserves the connection ∇. For this
we first need the following

Lemma 3.9. The derivative of the cocycle Θ is given by:

d

dt

∣∣∣∣
t=0

Θ(ϕ,A+ tα) = Θ(ϕ,A)2π
√
−1

∫
Σ

B(Adϕ(α),dϕϕ−1).

Proof. Reconsidering the proof of Lemma 2.4, and taking into account that now ∂M 6=
∅, we easily derive that

d

dt

∣∣∣∣
t=0

CS(A ′ + tα ′) = 2

∫
M

B(α ′,R ′) +
∫
Σ

B(α,A).

Likewise, a small computation shows that for the other term

d

dt

∣∣∣∣
t=0

CS((ϕ ′)∗(A ′ + tα ′)) =
d

dt

∣∣∣∣
t=0

CS((ϕ ′)∗A ′ + tAdϕ ′(α ′))

= 2

∫
M

B(Adϕ ′α ′, Adϕ ′(R ′)) +
∫
Σ

B(Adϕ(α),ϕ∗A).
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Substracting the two, and taking into account that B is invariant, the result now fol-
lows. �

Let s : Conn(P)→ C be a section of L. With the lift of the action, Aut(P) acts on s by

(ϕ · s)(A) = Θ(ϕ,A)s(ϕ∗A).

Let us now verify that this action commutes with taking the covariant derivative. Re-
call that ∇ = d+ 2π

√
−1θ, so the commutator between d and the action of ϕ is given

by the derivative of Θ computed in the Lemma above as 2π
√
−1(ϕ∗θ − θ). On the

other hand, since this is exactly minus the commutator between 2π
√
−1θ and the ac-

tion of ϕ, the result follows.
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