EXERCISE SHEET II

The discussion about quantization in §4.1. of the notes bears great resemblance to the
well-known PBW-theorem in Lie theory. The following exercise aims to make this more
visible.

Exercise 1 (The Poincaré-Birkhoff-Witt theorem). Let g be a finite dimensional Lie alge-
bra (over R). Its universal enveloping algebra U(g) is defined as the quotient of the tensor
algebra T(g) by the two-sided ideal

a) Which algebra do you get when g is abelian, i.e., [, | = 02 When is the U(g)
commutative?

b) Denote by F; the vector subspace generated by elements of the form X - - - Xj,
with X; € g, and I < ki.e., products of up to k elements in g. Show that, with
Fy = R, this turns ¢/ (g) into a filtered algebra.

¢) Show that the graded quotient of U/(g) is a commutative algebra and that

1
Xi X Y Xoq) - Xow

T oeSk
defines a map Sym(g) — U(g) which descends to a morphism Sym(g) —
Gr(U(g)) of commutative algebras. (Here, Sym(g) denotes the symmetric al-
gebra of the vector space underlying g, i.e., the algebra of polynomials on the
dual vector space g*.)

d) The Poincaré-Birkhoff-Witt theorem asserts that the morphism in c) is an iso-
morphism. (you don’t have to prove this!) Use this to show that the commu-
tator of elements in U/ (g) induces a Lie bracket on Sym(g). Show that with this
bracket, Sym(g) is a Poisson algebra. What is the bracket of linear elements in
g C Sym(g)?

e) Let (, ) be an inner product on g satisfying

([X,Y],Z) + (Y,[X,Z]) =0, forallX,Y,Z e g.

Show that the associated quadratic polynomial Poisson commutes with all other
elements in Sym(g).
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The following exercise shows one of the fundamental techniques to construct the heat
kernel in a toy model:

Exercise 2. Let V = R" and let H € End(V) a matrix. We are looking for a solution to

the “heat equation”
dK

for K: R>9 — End(V).
a) Solve the ODE above directly.

b) Suppose now that we have already found an “asymptotic solution”, i.e.,

dK
s + HK =R;, |R¢| < Ct*, for some a > 0,

and K(0) = idy. Define

Qk(t) = A Ki—t,Rt,—t, - Rey—, Ry dtq - - - dty,

where tA* = {(t1,...,t), 0 < t; < ... <t <t} denotes the rescaled k-simplex.

We put Q°(t) = K(t). Show that
<; +H> Qk — R(k+1) +R(k),
t
where

R(k)(t) - /tAk Ryt R4, |- Rey—p, Ry dty - - - dty

Hint: use the following easy fact from calculus about convolution on R:

% /Otf(t—s)g(s)ds = /O t‘Z(t—s)g(s)dH £(0)g(t).

c) Show that Y ;~((—1)¥Q*(t) converges and solves the heat equation. How does
this relate to a)?

d) As an application, let H = Hp + H; and consider K(t) = e~Ho as an asymptotic
solution to the heat equation of H. Derive a series expansion of the form

eft(HO‘FHl) — e*tHo _|_ Z(_:l)klk-
k>1

Give a formula for the I/s.
Exercise 3 (The heat kernel on S'). In this exercise we consider the heat kernel for the

standard Laplacian Ag = —d?/dx? on S!. Here x € R/2nZ is the canonical global
coordinate.

a) Use Fourier theory to determine the eigenfunctions and eigenvalues of the Lapla-
cian and with this give a proof of Theorem 7 of the lecture notes. Use this to
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write down the heat kernel KS' (x,y) and verify that it indeed satisfies the heat
equation, as well as the initial condition

tim [ K (5, 9)f )iy = £(2)

b) Prove that
KSl(x,y) =) KR (x,y +27n).

nez
(Hint: use uniqueness of the heat kernel) Why would you expect such a result

intuitively to be true?
c) Take the trace of the heat kernel and deduce the following result of Jacobi:

7T
Z et~ \/ =, t—0.
nez t

What happens for a circle of radius ¢ € IR, ? Relate to Weyl’s asymptotic result.



