EXERCISE SHEET II

The discussion about quantization in §4.1. of the notes bears great resemblance to the well-known PBW-theorem in Lie theory. The following exercise aims to make this more visible.

Exercise 1 (The Poincaré-Birkhoff-Witt theorem). Let \mathfrak{g} be a finite dimensional Lie algebra (over \mathbb{R}). Its universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ is defined as the quotient of the tensor algebra $T(\mathfrak{g})$ by the two-sided ideal

$$
I:=\langle X \otimes Y-Y \otimes X-[X, Y], X, Y \in \mathfrak{g}\rangle .
$$

a) Which algebra do you get when \mathfrak{g} is abelian, i.e., [,] $=0$? When is the $\mathcal{U}(\mathfrak{g})$ commutative?
b) Denote by F_{k} the vector subspace generated by elements of the form $X_{1} \cdots X_{l}$, with $X_{i} \in \mathfrak{g}$, and $l \leq k$ i.e., products of up to k elements in \mathfrak{g}. Show that, with $F_{0}=\mathbb{R}$, this turns $\mathcal{U}(\mathfrak{g})$ into a filtered algebra.
c) Show that the graded quotient of $\mathcal{U}(\mathfrak{g})$ is a commutative algebra and that

$$
X_{1} \cdots X_{k} \mapsto \frac{1}{k!} \sum_{\sigma \in S_{k}} X_{\sigma(1)} \cdots X_{\sigma(k)}
$$

defines a map $\operatorname{Sym}(\mathfrak{g}) \rightarrow \mathcal{U}(\mathfrak{g})$ which descends to a morphism $\operatorname{Sym}(\mathfrak{g}) \rightarrow$ $\operatorname{Gr}(\mathcal{U}(\mathfrak{g}))$ of commutative algebras. (Here, $\operatorname{Sym}(\mathfrak{g})$ denotes the symmetric algebra of the vector space underlying \mathfrak{g}, i.e., the algebra of polynomials on the dual vector space \mathfrak{g}^{*}.)
d) The Poincaré-Birkhoff-Witt theorem asserts that the morphism in c) is an isomorphism. (you don't have to prove this!) Use this to show that the commutator of elements in $\mathcal{U}(\mathfrak{g})$ induces a Lie bracket on $\operatorname{Sym}(\mathfrak{g})$. Show that with this bracket, $\operatorname{Sym}(\mathfrak{g})$ is a Poisson algebra. What is the bracket of linear elements in $\mathfrak{g} \subset \operatorname{Sym}(\mathfrak{g})$?
e) Let \langle,$\rangle be an inner product on \mathfrak{g}$ satisfying

$$
\langle[X, Y], Z\rangle+\langle Y,[X, Z]\rangle=0, \quad \text { for all } X, Y, Z \in \mathfrak{g} .
$$

Show that the associated quadratic polynomial Poisson commutes with all other elements in $\operatorname{Sym}(\mathfrak{g})$.

The following exercise shows one of the fundamental techniques to construct the heat kernel in a toy model:

Exercise 2. Let $V=\mathbb{R}^{n}$ and let $H \in \operatorname{End}(V)$ a matrix. We are looking for a solution to the "heat equation"

$$
\frac{d K}{d t}+H K=0, \quad K(0)=\mathrm{id}_{V}
$$

for $K: \mathbb{R}_{>0} \rightarrow \operatorname{End}(V)$.
a) Solve the ODE above directly.
b) Suppose now that we have already found an "asymptotic solution", i.e.,

$$
\frac{d K}{d t}+H K=R_{t}, \quad\left\|R_{t}\right\|<C t^{\alpha}, \text { for some } \alpha>0
$$

and $K(0)=\mathrm{id}_{V}$. Define

$$
Q^{k}(t):=\int_{t \Delta^{k}} K_{t-t_{k}} R_{t_{k}-t_{k-1}} \cdots R_{t_{2}-t_{1}} R_{t_{1}} d t_{1} \cdots d t_{k}
$$

where $t \Delta^{k}=\left\{\left(t_{1}, \ldots, t_{k}\right), 0 \leq t_{1} \leq \ldots \leq t_{k} \leq t\right\}$ denotes the rescaled k-simplex. We put $Q^{0}(t)=K(t)$. Show that

$$
\left(\frac{d}{d t}+H\right) Q^{k}=R^{(k+1)}+R^{(k)}
$$

where

$$
R^{(k)}(t)=\int_{t \Delta^{k}} R_{t-t_{k}} R_{t_{k}-t_{k-1}} \cdots R_{t_{2}-t_{1}} R_{t_{1}} d t_{1} \cdots d t_{k}
$$

Hint: use the following easy fact from calculus about convolution on \mathbb{R} :

$$
\frac{d}{d t} \int_{0}^{t} f(t-s) g(s) d s=\int_{0}^{t} \frac{d f}{d t}(t-s) g(s) d s+f(0) g(t) .
$$

c) Show that $\sum_{k \geq 0}(-1)^{k} Q^{k}(t)$ converges and solves the heat equation. How does this relate to a)?
d) As an application, let $H=H_{0}+H_{1}$ and consider $K(t)=e^{-t H_{0}}$ as an asymptotic solution to the heat equation of H. Derive a series expansion of the form

$$
e^{-t\left(H_{0}+H_{1}\right)}=e^{-t H_{0}}+\sum_{k \geq 1}(-1)^{k} I_{k} .
$$

Give a formula for the $I_{k}^{\prime} s$.
Exercise 3 (The heat kernel on S^{1}). In this exercise we consider the heat kernel for the standard Laplacian $\Delta_{S^{1}}=-d^{2} / d x^{2}$ on S^{1}. Here $x \in \mathbb{R} / 2 \pi \mathbb{Z}$ is the canonical global coordinate.
a) Use Fourier theory to determine the eigenfunctions and eigenvalues of the Laplacian and with this give a proof of Theorem 7 of the lecture notes. Use this to
write down the heat kernel $K^{S^{1}}(x, y)$ and verify that it indeed satisfies the heat equation, as well as the initial condition

$$
\lim _{t \downarrow 0} \int K_{t}^{S^{1}}(x, y) f(y) d y=f(x)
$$

b) Prove that

$$
K^{S^{1}}(x, y)=\sum_{n \in \mathbb{Z}} K_{t}^{\mathbb{R}}(x, y+2 \pi n) .
$$

(Hint: use uniqueness of the heat kernel) Why would you expect such a result intuitively to be true?
c) Take the trace of the heat kernel and deduce the following result of Jacobi:

$$
\sum_{n \in \mathbb{Z}} e^{-n^{2} t} \sim \sqrt{\frac{\pi}{t}}, \quad t \rightarrow 0
$$

What happens for a circle of radius $\ell \in \mathbb{R}_{+}$? Relate to Weyl's asymptotic result.

