
EXERCISE SHEET II

The discussion about quantization in §4.1. of the notes bears great resemblance to the
well-known PBW-theorem in Lie theory. The following exercise aims to make this more
visible.

Exercise 1 (The Poincaré–Birkhoff–Witt theorem). Let g be a finite dimensional Lie alge-
bra (over R). Its universal enveloping algebra U (g) is defined as the quotient of the tensor
algebra T(g) by the two-sided ideal

I := 〈X⊗Y−Y⊗ X− [X, Y], X, Y ∈ g〉 .

a) Which algebra do you get when g is abelian, i.e., [ , ] = 0? When is the U (g)
commutative?

b) Denote by Fk the vector subspace generated by elements of the form X1 · · ·Xl ,
with Xi ∈ g, and l ≤ k i.e., products of up to k elements in g. Show that, with
F0 = R, this turns U (g) into a filtered algebra.

c) Show that the graded quotient of U (g) is a commutative algebra and that

X1 · · ·Xk 7→
1
k! ∑

σ∈Sk

Xσ(1) · · ·Xσ(k)

defines a map Sym(g) → U (g) which descends to a morphism Sym(g) →
Gr(U (g)) of commutative algebras. (Here, Sym(g) denotes the symmetric al-
gebra of the vector space underlying g, i.e., the algebra of polynomials on the
dual vector space g∗.)

d) The Poincaré–Birkhoff–Witt theorem asserts that the morphism in c) is an iso-
morphism. (you don’t have to prove this!) Use this to show that the commu-
tator of elements in U (g) induces a Lie bracket on Sym(g). Show that with this
bracket, Sym(g) is a Poisson algebra. What is the bracket of linear elements in
g ⊂ Sym(g)?

e) Let 〈 , 〉 be an inner product on g satisfying

〈[X, Y], Z〉+ 〈Y, [X, Z]〉 = 0, for all X, Y, Z ∈ g.

Show that the associated quadratic polynomial Poisson commutes with all other
elements in Sym(g).
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The following exercise shows one of the fundamental techniques to construct the heat
kernel in a toy model:

Exercise 2. Let V = Rn and let H ∈ End(V) a matrix. We are looking for a solution to
the “heat equation”

dK
dt

+ HK = 0, K(0) = idV ,

for K : R>0 → End(V).

a) Solve the ODE above directly.
b) Suppose now that we have already found an ”asymptotic solution”, i.e.,

dK
dt

+ HK = Rt, ||Rt|| < Ctα, for some α > 0,

and K(0) = idV . Define

Qk(t) :=
∫

t∆k
Kt−tk Rtk−tk−1 · · · Rt2−t1 Rt1 dt1 · · · dtk,

where t∆k = {(t1, . . . , tk), 0 ≤ t1 ≤ . . . ≤ tk ≤ t} denotes the rescaled k-simplex.
We put Q0(t) = K(t). Show that(

d
dt

+ H
)

Qk = R(k+1) + R(k),

where

R(k)(t) =
∫

t∆k
Rt−tk Rtk−tk−1 · · · Rt2−t1 Rt1 dt1 · · · dtk

Hint: use the following easy fact from calculus about convolution on R:

d
dt

∫ t

0
f (t− s)g(s)ds =

∫ t

0

d f
dt

(t− s)g(s)ds + f (0)g(t).

c) Show that ∑k≥0(−1)kQk(t) converges and solves the heat equation. How does
this relate to a)?

d) As an application, let H = H0 + H1 and consider K(t) = e−tH0 as an asymptotic
solution to the heat equation of H. Derive a series expansion of the form

e−t(H0+H1) = e−tH0 + ∑
k≥1

(−1)k Ik.

Give a formula for the I′ks.

Exercise 3 (The heat kernel on S1). In this exercise we consider the heat kernel for the
standard Laplacian ∆S1 = −d2/dx2 on S1. Here x ∈ R/2πZ is the canonical global
coordinate.

a) Use Fourier theory to determine the eigenfunctions and eigenvalues of the Lapla-
cian and with this give a proof of Theorem 7 of the lecture notes. Use this to
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write down the heat kernel KS1
(x, y) and verify that it indeed satisfies the heat

equation, as well as the initial condition

lim
t↓0

∫
KS1

t (x, y) f (y)dy = f (x).

b) Prove that
KS1

(x, y) = ∑
n∈Z

KR
t (x, y + 2πn).

(Hint: use uniqueness of the heat kernel) Why would you expect such a result
intuitively to be true?

c) Take the trace of the heat kernel and deduce the following result of Jacobi:

∑
n∈Z

e−n2t ∼
√

π

t
, t→ 0.

What happens for a circle of radius ` ∈ R+? Relate to Weyl’s asymptotic result.


