EXERCISE SHEET III

Exercise 1. We consider an n-dimensional TQFT.
a) Let Σ be an $(n-1)$-dimensional oriented manifold and let $\varphi: \Sigma \rightarrow \Sigma$ be an orientation preserving diffeomorphism. Denote by C_{φ} the cobordism given by $\Sigma \times I$, where we identify the outgoing boundary with Σ via the identity map, and the incoming boundary using φ. Prove that in the category $\mathrm{Bord}_{n}^{o r}$ we have

$$
C_{\varphi_{1}} \circ C_{\varphi_{2}}=C_{\varphi_{1} \circ \varphi_{2}} .
$$

b) Prove that two diffeomorphisms that are smoothly homotopic induce the same cobordism class. Use this fact to show that the vector space $Z(\Sigma)$ of a TQFT carries a representation of the group $\pi_{0}\left(\operatorname{Diff}^{+}(\Sigma)\right)$ (this is the mapping class group).

Exercise 2. Consider the TQFT associated to a finite group. Work out the details of this TQFT in 2 dimensions. (What is the corresponding Frobenius algebra?)

Exercise 3 (Principal bundles).
a) Let $P \rightarrow M$ be a principal bundle equipped with a flat connection A. Show that the corresponding horizontal distribution in TP is integrable. Use Frobenius' theorem to turn P (by changing the topology) into a covering of M. With this, show that A determines a homomorphism

$$
\pi_{1}(M) \rightarrow G, \quad \gamma \mapsto \operatorname{Hol}_{\gamma}(A) .
$$

(Hol stands for holonomy).
b) Use the correspondence in a) to show that

$$
\begin{aligned}
\mathcal{M}(M, G): & =\{\text { flat connections }\} /\{\text { gauge transformations }\} \\
& \cong \operatorname{Hom}\left(\pi_{1}(M), G\right) / G
\end{aligned}
$$

c) When $G=\mathbb{T}$, show that $\mathcal{M}(M, G) \cong H^{1}(M, \mathbb{T})$. Given a flat line bundle (L, ∇) use the Cech complex together with local trivializations, to construct an explicit cocycle representing the class in $H^{1}(M, \mathbb{T})$.

Exercise 4. Let Σ be an orientable 2D surface of genus g. Given a compact Lie group G, we have constructed in the lectures the moduli space of flat connections on a trivial principal G-bundle:

$$
\mathcal{M}(\Sigma, G) \cong \operatorname{Hom}\left(\pi_{1}\left(\Sigma, x_{0}\right), G\right) / G
$$

As in the lectures, we will ignore the unpleasant fact that this space has singularities.
We can construct observables (=smooth functions) on $\mathcal{M}(\Sigma, G)$ as follows: Let γ be a closed curve in Σ and choose a finite dimensional representation V of G. For any flat connection A on P, the Wilson loop is defined as

$$
W_{\gamma}(A):=\operatorname{Tr}_{V}\left(\operatorname{Hol}_{\gamma}(A)\right),
$$

where $\operatorname{Hol}_{\gamma}(A) \in G$ denotes the holonomy of A along γ.
a) Show that W_{γ} is invariant under the action of the gauge group and therefore defines a function on $\mathcal{M}(\Sigma, G)$. Show that when γ is contractible, $W_{\gamma}=0$.
b) Argue that, when $\gamma_{1} \cap \gamma_{2}=\varnothing$, we have

$$
\left\{W_{\gamma_{1}}, W_{\gamma_{2}}\right\}=0
$$

c) Let $G=S U(2)$ with

$$
B(X, Y):=\operatorname{Trace}(X Y)
$$

Show that, by choosing suitable loops $\gamma, \mathcal{M}(\Sigma, S U(2))$ carries an integrable system in the following sense:

Definition 1. An (completely) integrable system on a smooth $2 n$-dimensional symplectic manifold (X, ω) is an n-tuple of smooth functions $f_{1}, \ldots, f_{n} \in C^{\infty}(X)$, satisfying $d f_{1}(x) \wedge \ldots \wedge d f_{n}(x) \neq 0$, for almost all each $x \in X$, as well as

$$
\left\{f_{i}, f_{j}\right\}=0
$$

for all $i, j \in\{1, \ldots, n\}$.
Exercise 5 (Abelian Chern-Simons theory). In this exercise we consider Chern-Simons theory for the circle group \mathbb{T}. Before getting started, let's recall some standard Gaussian integrals. Let $\langle x, Q x\rangle$ be a nondegenerate quadratic form on \mathbb{R}^{n} and let $v \in \mathbb{R}^{n}$ be a fixed vector. Define

$$
Z(v):=\int_{\mathbb{R}^{n}} e^{-\frac{\sqrt{-1}}{2}\langle x, Q x\rangle+\sqrt{-1}\langle v, x\rangle} d x
$$

By completing the square, one easily proves that

$$
\frac{Z(v)}{Z(0)}=e^{-\frac{\sqrt{-1}}{2}\left\langle x, Q^{-1} x\right\rangle}
$$

a) Identify $\operatorname{Conn}(P) \cong \Omega^{1}(M)$ by writing a connection as $\sqrt{-1} \alpha, \alpha \in \Omega^{1}(M)$. Show that for a curve γ,

$$
\operatorname{Hol}_{\gamma}(A)=e^{\sqrt{-1}} \int_{\gamma} \alpha .
$$

b) Use this to write the Witten invariant (see equation (2.2.) of the notes) for a link $L=K_{1} \cup K_{2}$ in \mathbb{R}^{3} as

$$
Z\left(K_{1}, K_{2}\right)=\int_{\Omega^{1}\left(\mathbb{R}^{3}\right) / d \Omega^{0}\left(\mathbb{R}^{3}\right)} \exp \left(\frac{\sqrt{-1}}{4 \pi} \int_{\mathbb{R}^{3}} \alpha \wedge d \alpha+\sqrt{-1} \int_{K_{1}} \alpha+\sqrt{-1} \int_{K_{2}} \alpha\right) D \alpha
$$

(don't worry about the normalization of the Chern-Simons action).
c) Write the last two terms in the exponent as

$$
\int_{K_{i}} \alpha=\int_{\mathbb{R}^{3}} \alpha \wedge \delta_{K_{i}}
$$

where $\delta_{K_{i}}$ is a " δ-type 2 -form" supported at $K_{i}, i=1$, 2. (This is known as a de Rham current.) With this, we can view $\int_{\mathbb{R}}^{3} \alpha \wedge d \alpha$ as a nondegenerate quadratic form on $\Omega^{1}\left(\mathbb{R}^{3}\right) / d \Omega^{0}\left(\mathbb{R}^{3}\right)$ and formally apply the Gaussian integral formula above to obtain

$$
\frac{Z\left(K_{1}, K_{2}\right)}{Z(\varnothing)}=\exp \left(-\frac{\sqrt{-1}}{4 \pi} \sum_{i, j} \int_{\mathbb{R}^{3}} \delta_{K_{i}} \wedge d^{-1} \delta_{K_{j}}\right)
$$

d) Consider the following 2 -form on \mathbb{R}^{3} :

$$
\omega(x)=\frac{1}{4 \pi} \frac{x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}}{\|x\|^{3}}
$$

Show that ω satisfies

$$
d \omega=\delta_{0}
$$

With this, show that

$$
d_{x} \int_{K_{i}} \omega(x-y) d y=\delta_{K_{i}} .
$$

With this, arrive at the final result that

$$
\log \frac{Z\left(K_{1}, K_{2}\right)}{Z(\varnothing)}=\sqrt{-1} \pi \sum_{i, j} \int_{x \in K_{i}, y \in K_{j}} \omega(x-y)
$$

This is the Gauss linking number.
Exercise 6. The goal of this exercise is to understand better why the model explained $\S 8.1$ of the Lecture notes is the same as $2 D$ Yang-Mills theory.
a) Let (Σ, g) be a two-dimensional riemannian manifold, and fix a compact Lie group with an invariant inner product \langle,$\rangle on its Lie algebra \mathfrak{g}$. We consider the trivial principal G-bundle $G \times \Sigma$. On this bundle, a connection is given by $\alpha \in \Omega^{1}(\Sigma, \mathfrak{g})$, a \mathfrak{g}-valued one-form. Its curvature is given by

$$
F_{\alpha}:=d \alpha+\frac{1}{2}[\alpha, \alpha] \in \Omega^{2}(\Sigma, \mathfrak{g}) .
$$

Here the bracket means taking the Lie bracket on \mathfrak{g} combined with the wedge of the one-forms: this is a symmetric operation.)

The action of $2 D$ Yang-Mills is given by the function $S: \Omega^{1}(\Sigma, \mathfrak{g}) \rightarrow \mathbb{R}$ defined by

$$
S(\alpha):=\frac{1}{2} \int_{\Sigma}\left\langle F_{\alpha}, * F_{\alpha}\right\rangle .
$$

Explain why this action only depends on the induced volume form of the metric, and therefore it is to be expected that $2 D$ Yang-Mills theory is an area dependent QFT.
b) We consider a lattice approximation of the theory. For this we pick a triangulation of the surface Σ, and we write Σ_{0}, Σ_{1} and Σ_{2} for the set of 0,1 and 2 simplices. Instead of the connection itself, we now consider its holonomy along the 1 -simplices which gives a map $h: \Sigma_{1} \rightarrow G$. To a 2 -simplex $\sigma=\left[v_{0}, v_{1}, v_{2}\right]$ in the triangulation we then associate

$$
K_{h}(\sigma):=h\left(v_{0} v_{1}\right) h\left(v_{1} v_{2}\right) h\left(v_{2} v_{0}\right),
$$

and this defines a map $K_{h}: \Sigma_{2} \rightarrow G$. We now consider the following expression ${ }^{11}$,

$$
e^{-S(h)}:=\prod_{\sigma \in \Sigma_{2}} \epsilon_{t(\sigma)}\left(K_{h}(\sigma)\right),
$$

where $t(\sigma)$ is the area of σ and ϵ_{t} is as in the lecture notes. Proof that the approximation to the path integral

$$
\int_{G^{\times\left|\Sigma_{1}\right|}} e^{-S(h)} d h
$$

is independent of the triangularization. Hint: it is known that any two triangulations of a manifold are related by a finite sequence of moves, the so-called Pachner moves. In two dimensions, there are two of them, namely:

c) Can you show that the partition function in b) coincides with the one coming from the model in $\S 8.1$. of the lecture notes?

[^0]
[^0]: ${ }^{1}$ Using the asymptotics for the heat kernel for $t \rightarrow 0$, one can show that this expression approximates the exponential of the action in equation a) as the triangulation gets finer. If you have the courage, show this yourself.

