
EXERCISE SHEET III

Exercise 1. We consider an n-dimensional TQFT.

a) Let Σ be an (n − 1)-dimensional oriented manifold and let ϕ : Σ → Σ be an
orientation preserving diffeomorphism. Denote by Cϕ the cobordism given by
Σ × I, where we identify the outgoing boundary with Σ via the identity map,
and the incoming boundary using ϕ. Prove that in the category Bordor

n we have

Cϕ1 ◦ Cϕ2 = Cϕ1◦ϕ2 .

b) Prove that two diffeomorphisms that are smoothly homotopic induce the same
cobordism class. Use this fact to show that the vector space Z(Σ) of a TQFT
carries a representation of the group π0(Diff+(Σ)) (this is the mapping class
group) .

Exercise 2. Consider the TQFT associated to a finite group. Work out the details of this
TQFT in 2 dimensions. (What is the corresponding Frobenius algebra?)

Exercise 3 (Principal bundles).

a) Let P → M be a principal bundle equipped with a flat connection A. Show that
the corresponding horizontal distribution in TP is integrable. Use Frobenius’
theorem to turn P (by changing the topology) into a covering of M. With this,
show that A determines a homomorphism

π1(M)→ G, γ 7→ Holγ(A).

(Hol stands for holonomy).
b) Use the correspondence in a) to show that

M(M, G) : = {flat connections}/{gauge transformations}
∼= Hom(π1(M), G)/G.

c) When G = T, show thatM(M, G) ∼= H1(M, T). Given a flat line bundle (L,∇)
use the Čech complex together with local trivializations, to construct an explicit
cocycle representing the class in H1(M, T).

Exercise 4. Let Σ be an orientable 2D surface of genus g. Given a compact Lie group
G, we have constructed in the lectures the moduli space of flat connections on a trivial
principal G-bundle:

M(Σ, G) ∼= Hom(π1(Σ, x0), G)/G.
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As in the lectures, we will ignore the unpleasant fact that this space has singularities.
We can construct observables (=smooth functions) onM(Σ, G) as follows: Let γ be

a closed curve in Σ and choose a finite dimensional representation V of G. For any flat
connection A on P, the Wilson loop is defined as

Wγ(A) := TrV(Holγ(A)),

where Holγ(A) ∈ G denotes the holonomy of A along γ.

a) Show that Wγ is invariant under the action of the gauge group and therefore
defines a function onM(Σ, G). Show that when γ is contractible, Wγ = 0.

b) Argue that, when γ1 ∩ γ2 = ∅, we have

{Wγ1 , Wγ2} = 0.

c) Let G = SU(2) with
B(X, Y) := Trace(XY).

Show that, by choosing suitable loops γ,M(Σ, SU(2)) carries an integrable sys-
tem in the following sense:

Definition 1. An (completely) integrable system on a smooth 2n-dimensional sym-
plectic manifold (X, ω) is an n-tuple of smooth functions f1, . . . , fn ∈ C∞(X),
satisfying d f1(x) ∧ . . . ∧ d fn(x) 6= 0, for almost all each x ∈ X, as well as

{ fi, f j} = 0,

for all i, j ∈ {1, . . . , n}.

Exercise 5 (Abelian Chern–Simons theory). In this exercise we consider Chern–Simons
theory for the circle group T. Before getting started, let’s recall some standard Gaussian
integrals. Let 〈x, Qx〉 be a nondegenerate quadratic form on Rn and let v ∈ Rn be a fixed
vector. Define

Z(v) :=
∫

Rn
e−
√
−1
2 〈x,Qx〉+

√
−1〈v,x〉dx

By completing the square, one easily proves that

Z(v)
Z(0)

= e−
√
−1
2 〈x,Q−1x〉

a) Identify Conn(P) ∼= Ω1(M) by writing a connection as
√
−1α, α ∈ Ω1(M).

Show that for a curve γ,

Holγ(A) = e
√
−1
∫

γ α.

b) Use this to write the Witten invariant (see equation (2.2.) of the notes) for a link
L = K1 ∪ K2 in R3 as

Z(K1, K2) =
∫

Ω1(R3)/dΩ0(R3)
exp

(√
−1

4π

∫
R3

α ∧ dα +
√
−1

∫
K1

α +
√
−1

∫
K2

α

)
Dα.
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(don’t worry about the normalization of the Chern–Simons action).
c) Write the last two terms in the exponent as∫

Ki

α =
∫

R3
α ∧ δKi ,

where δKi is a “δ-type 2-form” supported at Ki, i = 1, 2. (This is known as a de
Rham current.) With this, we can view

∫ 3
R

α ∧ dα as a nondegenerate quadratic
form on Ω1(R3)/dΩ0(R3) and formally apply the Gaussian integral formula
above to obtain

Z(K1, K2)

Z(∅)
= exp

(
−
√
−1

4π ∑
i,j

∫
R3

δKi ∧ d−1δKj

)

d) Consider the following 2-form on R3:

ω(x) =
1

4π

x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

||x||3

Show that ω satisfies

dω = δ0.

With this, show that

dx

∫
Ki

ω(x− y)dy = δKi .

With this, arrive at the final result that

log
Z(K1, K2)

Z(∅)
=
√
−1π ∑

i,j

∫
x∈Ki ,y∈Kj

ω(x− y)

This is the Gauss linking number.

Exercise 6. The goal of this exercise is to understand better why the model explained
§8.1 of the Lecture notes is the same as 2D Yang–Mills theory.

a) Let (Σ, g) be a two-dimensional riemannian manifold, and fix a compact Lie
group with an invariant inner product 〈 , 〉 on its Lie algebra g. We consider
the trivial principal G-bundle G × Σ. On this bundle, a connection is given by
α ∈ Ω1(Σ, g), a g-valued one-form. Its curvature is given by

Fα := dα +
1
2
[α, α] ∈ Ω2(Σ, g).

Here the bracket means taking the Lie bracket on g combined with the wedge of
the one-forms: this is a symmetric operation.)

The action of 2D Yang–Mills is given by the function S : Ω1(Σ, g)→ R defined
by

S(α) :=
1
2

∫
Σ
〈Fα, ∗Fα〉 .
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Explain why this action only depends on the induced volume form of the metric,
and therefore it is to be expected that 2D Yang–Mills theory is an area dependent
QFT.

b) We consider a lattice approximation of the theory. For this we pick a triangu-
lation of the surface Σ, and we write Σ0, Σ1 and Σ2 for the set of 0, 1 and 2
simplices. Instead of the connection itself, we now consider its holonomy along
the 1-simplices which gives a map h : Σ1 → G. To a 2-simplex σ = [v0, v1, v2] in
the triangulation we then associate

Kh(σ) := h(v0v1)h(v1v2)h(v2v0),

and this defines a map Kh : Σ2 → G. We now consider the following expression1:

e−S(h) := ∏
σ∈Σ2

εt(σ)(Kh(σ)),

where t(σ) is the area of σ and εt is as in the lecture notes. Proof that the approx-
imation to the path integral ∫

G×|Σ1 |
e−S(h)dh

is independent of the triangularization. Hint: it is known that any two triangula-
tions of a manifold are related by a finite sequence of moves, the so-called Pachner moves.
In two dimensions, there are two of them, namely:

c) Can you show that the partition function in b) coincides with the one coming
from the model in §8.1. of the lecture notes?

1Using the asymptotics for the heat kernel for t → 0, one can show that this expression approximates
the exponential of the action in equation a) as the triangulation gets finer. If you have the courage, show
this yourself.


