
Mock exam Topology in Physics 2018

May 24, 2018

This is the mock exam for the course topology in physics academic year
2017/2018. Some remarks beforehand:

• This mock exam was made with short notice and may therefore contain
some typos and we apologize for those in advance, we also guarantee
that the actual exam will have no such mistakes and will of course be
present at this exam.

• This mock exam should give an indication of the type/style and dif-
ficulty of questions on the exam, we do not guarantee that the exam
covers the exact same topics as this mock exam. Any topics discussed
in the relevant lectures of the course (depending on whether you take
the 6 EC or 8 EC version) could be on the exam

• While the mock exam does not have a marked problem that can be
skipped for the 6 EC version of the course the actual exam will have
such a problem.

• While the mock exam does not have an indication of the amount of
points that can be earned per problem the actual exam will have such
an indication for each subproblem.

You can ask questions about the problems on the mock exam during the
next lecture on the 28th of May.
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Quickfire Questions

We will start the exam off with a lightning round. This means you do not
need to motivate your answers for these quickfire questions.

i) Ind

 5 10 3 7
29 31 11 9
101 97 4 13

 = ?.

ii) Consider the following picture of a 2-torus as a unit square in the usual
(x, y) plane with opposite ends identified.

a

b

c

Over which of the dashed loops does the integral of dx vanish?

iii) Which of the following integrals in Maxwell theory is a topological
invariant:

1
4π

∫
S2

~E · d~σ, 1
4π

∫
S2

~B · d~σ.
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Problem 1: The Dirac monopole

In this exercise, we consider three-dimensional space with a single point
removed: M = R3 \ (0, 0, 0).

a. Using de Rham’s theorem, explain why the second de Rham cohomol-
ogy group of M is nontrivial: H2

dR(M) 6= {0}.

Instead of rectangular coordinates x, y and z, we will use polar coordinates

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ. (1)

b. Show that in polar coordinates, the volume 3-form Ω = dx ∧ dy ∧ dz
can be written as Ω = r2 sin θdr ∧ dθ ∧ dφ.

One way to construct a nontrivial element of H2
dR(M) is as follows. Begin

by writing
Ω = dr ∧ ω, (2)

where ω is of course a 2-form. Now let S2 be a round 2-sphere of radius R
around the origin.

c. Argue that ∫
S2

ω = 4πR2, (3)

that is: ω is the volume form on the S2.
Hint: you don’t need a lengthy computation involving sines and cosines;
you can for example start by integrating Ω over a shell of thickness δr
around the S2 and then let δr → 0.

Now, we remove the r-dependence by defining

F =
ω

4πr2
(4)

d. Show that F is a closed form on M , but that it is not exact. Could
we also have viewed F as a closed form on R3? Why (not)?

As you know, the field configuration F describes the Dirac magnetic monopole.
To describe it mathematically, one can use the exact sequence

0
f0−→ H1

dR(M)
f1−→ Ω1(M)/dΩ0(M)

f2−→ Ω2
cl(M)

f3−→ H2
dR(M)

f4−→ 0. (5)

e. Describe the maps fi appearing in this sequence. (You do not have
to prove that the sequence is exact!)
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Since in our setup, H1
dR(M) = {0}, one obtains from this sequence that

H2
dR(M) ∼=

Ω2
cl(M)

Ω1(M)/dΩ0(M)
. (6)

f. Using this identity and the field strength we have studied in this exer-
cise, explain why “gauge fields modulo gauge transformations” is not
always sufficient to describe a physical setup.
Note: no computations are required; an explanation of the physical in-
terpretation of the above identity and how the Dirac monopole example
fits in there suffices.
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Problem 2: The Signature

Recall that given an oriented manifold M of dimension n = 4k we can define
the signature Sign(M) as follows. First we note that there is a bilinear
pairing

Q : H2k
dR(M)×H2k

dR(M) −→ C

given by

Q(α, β) =
∫

M
α ∧ β.

Then given a basis (αi)r
i=1 of H2k

dR(M) we set

Sign(M) = #{1 ≤ i ≤ r | Q(αi, αi) > 0} −#{1 ≤ i ≤ r | Q(αi, αi) < 0}

and note that this is independent of the chosen basis. Above we have im-
plicitely assumed that differential forms are defined with complex values.

Recall that CP is the 4 dimensional manifold of (complex) lines in C3. As
a set this is given by equivalence classes [(z1, z2, z3)] where (z1, z2, z3) ∼
(w1, w2, w3) if there is 0 6= λ ∈ C such that λzi = wi for i = 1, 2, 3. In the
lectures we considered the atlas given by the three charts

Ui := {[(z1, z2, z3)] | zi 6= 0}

and we considered U1 ' C2 by the map φ1([(z1, z2, z3)]) = ( z2
z1
, z3

z1
) and

similar for U2 and U3.

a. Use the Mayer–Vietoris sequence to determine the cohomology of CP2.

b. Show that |Sign(CP2)| = 1.

Suppose M is equipped with a metric g and recall the Hodge star operator
? : Ωp(M)→ Ωn−p(M). Recall in particular the fact that ?2α = (−1)np+pα
on p-forms α. Also set

δα = (−1)np+n+1 ? d?

and recall that it is the dual of d.

c. Consider the operator ε : Ωp(M)→ Ωn−p(M)

εα = i2k+p(p−1) ? α.

How does ε define a grading

Ω•(M) = Ω+(M)⊕ Ω−(M)

such that d+ d∗ maps Ω+(M) into Ω−(M)?
Note: Really use a property of ε, we are not looking for the grading
Ωeven(M)⊕ Ωodd(M).
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It turns out that the operator

S := d+ d∗ : Ω+(M) −→ Ω−(M)

has Ind S = Sign M . Recall that the Atiyah–Singer index theorem states
that

Ind S = (−1)n

∫
M

Ch
(∧+ T ∗M −∧− T ∗M) Td ((TM)C)

e (TM)
.

If we pick a connection on the tangent bundle so that the corresponding
connection on the complexified tangent bundle may be diagonalized with
eigenvalues 2πx1,−2πx1, . . . , 2πxn,−2πxn we may express the integrand

(−1)nCh
(∧+ T ∗M −∧− T ∗M) Td ((TM)C)

e (TM)

as a symmetric polynomial in the xi. We will spare you the formal power
series yoga which shows that this polynomial agrees in the nth degree with
the polynomial

n∏
i=1

xi

tanhxi

corresponding to the so-called L-class of the tangent bundle TM , denoted
L(TM). Thus, the Atiyah–Singer index theorem gives

Sign(M) =
∫

M
L(TM).

d. Argue that for vector bundles E and F we have

L(E ⊕ F ) = L(E) ∧ L(F ).

e. Use the fact in d. and the fact that

H•dR(S4) =

{
R if • = 0, 4
0 otherwise

to argue the value of |Sign(S4 × CP2)|.
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Problem 3: Spinors in odd dimensions

We consider the Clifford algebra Cliffn(R) generated by ψi, i = 1, . . . , n
satisfying

ψiψj = −ψjψi, i 6= j,

ψ2
i = −1.

We assume n to be odd.

a) Show that the element
η := ψ1 · · ·ψn

lies in the center of Cliffn(R), i.e., commutes with all elements.

b) By adding one extra generator ψn+1 we can embed Cliffn(R) ⊂ Cliffn+1(R).
Let V now be a vector space carrying a representation of Cliffn+1(R),
e.g. the spinor representation. We now consider the action of Cliffn(R)
on V via the embedding above. Use the element η to decompose
V = V + ⊕ V − into two subspaces that are invariant under the action
of Cliffn(R).

c) Is the Dirac operator

D =
∑

i

ψi
∂

∂xi
,

acting on functions in C∞(Rn, V ) an even or odd operator with respect
to the grading in b)?
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