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Abstract. In this paper we study the Hochschild cohomology ring of convo-
lution algebras associated to orbifolds, as well as their deformation quantiza-
tions. In the first case the ring structure is given in terms of a wedge product
on twisted polyvectorfields on the inertia orbifold. After deformation quanti-
zation, the ring structure defines a product on the cohomology of the inertia
orbifold. We study the relation between this product and an S1-equivariant
version of the Chen–Ruan product. In particular, we give a de Rham model
for this equivariant orbifold cohomology.
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1. Introduction

In this paper, we study orbifolds within the language of noncommutative ge-
ometry. According to [Mo], an orbifold X can be represented by a proper étale
Lie groupoid G, and different representations of the same orbifold X are Morita
equivalent. A paradigm from noncommutative geometry tells that one should view
the groupoid algebra Ao G of a proper étale groupoid G representing the orbifold
X as the “algebra of functions” on X , where A is the sheaf of functions on the unit
space G0 of G. Though it is noncommutative, the algebra A o G contains much
important information of X .

We provide in this paper a complete description of the ring structures on the
Hochschild cohomology of the groupoid algebra Ao G and its deformation quanti-
zation A~ oG when X is a symplectic orbifold. We thus complete projects initiated
in [Ta] and [NePfPoTa]. By our results one obtains a cup product on the space

of multivector fields on the inertia orbifold X̃ associated to X , and a Frobenius

structure on the de Rham cohomology of the inertia orbifold X̃. This Frobenius
structure is closely related to the Chen-Ruan orbifold cohomology [ChRu04], and
inspires us to introduce a de Rham model for some S1-equivariant Chen-Ruan
orbifold cohomology. We prove that the algebra of the Hochschild cohomology of
the deformation quantization A~ o G is isomorphic to the graded algebra of the
Chen-Ruan orbifold cohomology with respect to a natural filtration.

In this paper, we view the algebraAoG as a bornological algebra with the canon-
ical bornology inherited from the Frechet topology and compute its Hochschild
cohomology respect to this bornology. In [NePfPoTa], we constructed a vector
space isomorphism

H•(Ao G,Ao G) = Γ∞
(
∧•−` TB0 ⊗ ∧

`N
)G
,

where B0 is the space of loops of G defined as {g ∈ G | s(g) = t(g)}, ` is a locally
constant function on B0, namely the codimension of the germ of B0 inside G1,
and where N is the normal bundle of B0 in G1. In this article, we determine the
cup product on the Hochschild cochain H•(A o G,A o G). To do so, we need
to understand the maps realizing the above isomorphisms of vector spaces. In
[NePfPoTa], the ring structures got lost at the end of the final equality, since
there we were dealing with a clumsy chain of quasi-isomorphisms. The first goal
of this work is to present a sequence of explicit quasi-isomorphisms of differential
graded algebras preserving cup products. Some parts of these quasi-isomorphisms
have already appeared in [NePfPoTa] and [HaTa], but in this work we succeeded
to put all ingrediants together in the right way and thus determine the cup products
we were looking for. The new input consists in the following. Firstly, we introduce a
complex of fine presheavesH• on X which has a natural cup product and the global
sections of which form a complex quasi-isomorphic to the Hochschild cohomology
complex. Secondly, we use Čech cohomology methods to localize the computation
of the cohomology ring of H•(X). Thirdly, we use the twisted cocycle construction
and the local quasi-inverse map T from [HaTa] to compute the cup product locally.
By gluing together the local cup products to a global one we finally arrive at a
transparent computation of the cup product on H•(Ao G,Ao G). We would like
to mention that in [An], some similar but incomplete results in the local situation
were obtained.
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The above sequence of explicit quasi-isomorphisms opens a way to compute the
Hochschild cohomology of the deformation quantization A~ o G, which originally
has been constructed in [Ta]. In the case of a global quotient, the Hochschild
cohomology of this algebra has been computed by Dolgushev and Etingof [DoEt]
as a vector space using van den Berg duality. Our method is completely different
from [DoEt] and allows even to determine the ring structure onH•(A~oG,A~oG)
in full generality. The crucial step in our approach is that we generalize the above
complex of presheves H• on X and the asssociated Čech double complex to the
deformed case. With the quasi-isomorphisms for the undeformed algebra, one can
check that there are natural morphisms of differential graded algebras from the
Hochschild cochain complex of A~ o G to the presheaf complex H•loc,~ and the

associated Čech double complex. We prove these maps to be quasi-isomorphisms
by looking at the E1 terms of the spectral sequence associated to the ~-filtration,
which agrees with the undeformed complexes. To perform the local computations,
we generalize the Fedosov–Weinstein–Xu resolution in [Do] for the computation of
the Hochschild cohomology of a deformation quantization to the G-twisted situation
using ideas of Fedosov [Fe]. We use essentially an explicit map from the Koszul
resolution of the Weyl algebra to the corresponding Bar resolution by Pinczon [Pi].
Our main theorem is that we have a natural isomorphism of algebras over C((~))

H•
(
A~ o G,A~ o G

)
∼= H•−`

(
X̃,C((~))

)
,

where the product structure on the right hand side is defined (cf. Section 4) by

[α] ∪ [β] =

∫

m`

pr∗1 α ∧ pr∗2 β. (1.1)

This generalizes Alvarez’s result [Al] on the Hochschild cohomology ring of the
crossed product algebra of a finite group with the Weyl algebra.

The cup product (1.1) together with integration with respect to the symplectic
volume form defines a Frobenius structure on the de Rham cohomology of the iner-

tia orbifold X̃. One notices that there is similarity between (1.1) and the de Rham
model defined by Chen and Hu [ChHu]. However, Chen and Hu’s model was only
defined for abelian orbifolds and works in a formal level. To connect the Hochschild
cohomology of A~ o G to the Chen-Ruan orbifold cohomology, we extend the de
Rham model to an arbitrary almost complex orbifold using methods from equi-
variant cohomology theory and [JaKaKi]’s result on obstruction bundles. More
precisely, we prove that the algebra (H•(A~ o G,A~ o G),∪) is isomorphic to the
graded algebra of the S1-equivariant Chen-Ruan orbifold cohomology with respect
to a natural filtration. In general, the Hochschild cohomology and the Chen-Ruan
orbifold cohomology are not isomorphic as algebras. By construction, the Chen-
Ruan orbifold cohomology depends on the choice of an almost complex structure,
but the Hochschild cohomology is independent of the choice of an almost complex
or symplectic structure. Therefore, one naturally expects that information on the
almost complex structure should be contained in the filtration on the de Rham
model. It is a very interesting question whether one can detect different almost
complex structures through the filtration on the de Rham model. Our de Rham
model and the computation of the Hochschild cohomology ring of the deformed con-
volution algebra give more insight to the Ginzburg-Kaledin conjecture [GiKa] for
hyper-Kähler orbifolds. Our computations within the differential category suggest
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that it is crucial to work in the holomorphic category of deformation quantiza-
tion, otherwise conjecture from [GiKa] that there is an isomorphism between the
Hochschild cohomology ring of a deformation quantization and the Chen-Ruan orb-
ifold cohomology will in general not be true. Concerning the de Rham model for
orbifold cohomology let us also mention that recently, a similar model has been
obtained independantly by R. Kaufmann [Ka].

Our paper is organized as follows. In Section 2, we outline the strategy and
the main results of this paper, in Section 3, we provide a detailed computation
of the Hochschild cohomology and its ring structure of the algebra A o G. Next,
in Section 4, we compute the Hochschild cohomology and its ring structure of the
deformed algebra A~ o G. Then we switch in Section 5 to orbifold cohomology
theory. We introduce a de Rham model for some S1-equivariant Chen-Ruan orb-
ifold cohomology and connect this model to the ring structure of the Hochschild
cohomology of the deformed convolution algebra. In the Appendix, we provide a
full introduction to bornological algebras, their modules and their Morita theory.
We want to emphasize that the Appendix contains some original results on Morita
equivalence of bornological algebras, which to our knowledge has not been covered
in the literature before. We have chosen to keep these results in the Appendix to
avoid too technical arguments in the main part of our paper.

Acknowledgements: H.P. and X.T. would like to thank Goethe-Universität Frank-
furt/Main for hosting their visits. M.P., X.T., and H.-H.T. thank the organizers of
the trimester “Groupoids and Stacks in Physics and Geometry” for hosting their
visits of the Institut de Henri Poincaré, Paris. X.T. would like to thank G. Pinczon
and G. Halbout for helpful discussions, M.P. and H.P. thank M. Crainic for fruitful
discussions. M.P. acknowledges support by the DFG. H.P. is supported by NWO.
X.T. acknowledges support by the NSF.

2. Outline

As is mentioned above, the main goal of this article is to determine the ring
structure of the Hochschild cohomology of a deformation quantization on a proper
étale Lie groupoid. In this section, we outline the strategy to achieve that goal and
begin with a brief overview over the basic notation and results needed from the
theory of groupoids. For further details on the latter we refer the interested reader
to the monograph [MoMr] and also to our previous article [NePfPoTa].

Recall that a groupoid is a small category G with set of objects denoted by G0

and set of morphisms by G1 such that all morphisms are invertible. The structure
maps of a groupoid are depicted in the diagram

G1 ×G0 G1
m
→ G1

i
→ G1

s

⇒
t

G0
u
→ G1,

where s and t are the source and target map, m is the multiplication resp. composi-
tion, i denotes the inverse and finally u is the inclusion of objects by identity mor-
phisms. In the most interesting cases, the groupoid carries an additional structure,
like a topological or differentiable structure. If G1 and G0 are both topological spaces
and if all structure maps are continuous, then G is called a topological groupoid.
Such a topological groupoid is called proper, if the map (s, t) : G1 → G0 × G0 is a
proper map, and étale, if s and t are both local homeomorphisms. In case G1 and
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G0 carry the structure of a C∞-manifold such that s, t,m, i and u are smooth and
s, t submersions, then G is said to be a Lie groupoid.

The situation studied in this article consists of an orbifold represented by a
proper étale Lie groupoid G. As a topological space, the orbifold coincides with
the orbit space X = G0/G. In the following we introduce several sheaves on G and
X . By A we always denote the sheaf of smooth functions on G0, and by Ao G the
convolution algebra, i.e. the space C∞cpt(G1) together with the convolution product
∗ which is defined by the formula

a1 ∗ a2 (g) =
∑

g1·g2=g

a1(g1) a2(g2) for all a1, a2 ∈ C
∞
cpt(G1) and g ∈ G1. (2.1)

Next, let ω be a G-invariant symplectic form on G0 and choose a G-invariant (local)
star product ? on G0. The resulting sheaf of deformed algebras of smooth functions
will be denoted by A~. The crossed product algebra A~ o G has the underlying
vector space C∞cpt(G1)[[~]] = Γ∞cpt(G1, s

∗A~) and carries the product ?c given by

[a1 ?c a2]g =
∑

g1·g2=g

[a1]g1g2 ? [a2]g2 for all a1, a2 ∈ C
∞
cpt(G1) and g ∈ G1. (2.2)

Hereby, [a]g denotes an element of the stalk (s∗A~)g ∼= A
~
s(g), and it has been used

that G acts from the right on the sheaf A~ (see [NePfPoTa, Sec. 2] for details).

For every open subset U ⊂ X define the space Ã(U) by

Ã(U) := (πs)∗s
∗A(U) = C∞((πs)−1(U)),

where π : G0 → X is the canonical projection. Denote by Ãfc(U) the subspace
{
f ∈ C∞((πs)−1(U)) | supp f ∩ (πs)−1(K) is compact for all compact K ⊂ U

}

of all smooth functions on (πs)−1(U) with fiberwise compact support. Observe that
the convolution product ∗ can be extended naturally by Eq. (2.1) to each of the

spaces Ãfc(U). Indeed, since for Ki := suppai with ai ∈ Ãfc(U), i = 1, 2 the set

m
(
(K1 ×K2) ∩ (G1 ×G0 G1) ∩ (πs)−1(K)

)

= m
((

(K1 ∩ (πs)−1(K))× (K2 ∩ (πs)−1(K))
)
∩ (G1 ×G0 G1)

)

is compact by assumption on the ai, the product a1 ∗ a2 is well-defined and lies

again in Ãfc(U). Hence, the spaces Ãfc(U) all carry the structure of an algebra and

form the sectional spaces of a sheaf Ãfc on X . Likewise, one constructs the sheaf

Ã~
fc. Finally note that the natural maps A o G ↪→ Ãfc(X) and A~ o G ↪→ Ã~

fc(X)
are both algebra homomorphisms.

From Appendix A.6 one can derive the following result.

Theorem O. The algebras AoG and A~oG carry in a natural way the structure of a

bornological algebra and are both quasi-unital. Likewise, the sheaves Ãfc and Ã~
fc are

sheaves of quasi-unital bornological algebras. Moreover, the natural homomorphisms

Ao G ↪→ Ãfc(X) and A~ o G ↪→ Ã~
fc(X) are bounded.

Proof. Prop. A.6 and Prop. A.8 in the appendix show that Ao G and A~ o G are
quasi-unital bornological algebras. By exactly the same methods as in there one

shows that Ãfc and Ã~
fc are sheaves of quasi-unital bornological algebras. That the

homomorphisms in Theorem O. are bounded is straightforward. �
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According to Appendix A.4, Theorem O implies in particular that each one of
the algebras in the claim is H-unital and that the Bar complex provides a projective
resolution. This will be the starting point for proving that several of the chain maps
constructed in the following steps are indeed quasi-isomorphisms.

To formulate the next step, consider the Hochschild cochain complex (see A.4)

C•(Ao G,Ao G) := Hom(AoG)e(Bar•(Ao G),Ao G),

where (A o G)e is the enveloping algebra (see Sec. A.4), and define for each open
U ⊂ X the bornological space Hk

G
(U) by

HkG(U) := Hom
(
(A|U o G|U )⊗̂k, Ãfc(U)

)
,

where G|U is the groupoid with object set G|U 0
= π−1(U) and morphism set G|U 1

=

(πs)−1(U) and where A|U is the sheaf of smooth functions on π−1(U). Obviously,

the spaces Hk
G
(U) form the sectional spaces of a presheaf Hk

G
on X which we denote

by Hk if no confusion can arise. The Hochschild coboundary map β := b∗ on
C•(A|UoG|U ,A|UoG|U ) extends to a coboundary map β onH•(U) by the following
definition:

βF (a1 ⊗ . . .⊗ ak) := a1 F (a2 ⊗ . . .⊗ ak)+

+

k−1∑

i=2

(−1)i+1 F (a1 ⊗ . . .⊗ ai ai+1 ⊗ . . .⊗ ak)

+ F (a1 ⊗ . . .⊗ ak−1)ak, for F ∈ Hk(U) and a1, . . . , ak ∈ C
∞
cpt((πs)

−1(U)).

Moreover, there is a product ∪ : H•(U)×H•(U)→ H•(U), which is called the cup
product on H•(U) and which is given as follows:

∪ :Hk(U)×Hl(U)→ Hk+l(U), (F,G) 7→ F ∪G,

F ∪G(a1 ⊗ · · · ⊗ ak+l) := F (a1 ⊗ · · · ⊗ ak)G(ak+1 ⊗ · · · ⊗ ak+l)

for a1, · · · , ak+l ∈ C
∞
cpt((πs)

−1(U)).

It is straightforward to check that the cup product is associative and passes down
to the cohomology of H•(U).

The compatibility between the Hochschild cohomology ring of A o G and the
ring structure on the cohomology of H• is expressed by the following step and will
be proved in Section 3.1.

Theorem I. The canonical embedding

ι : C•(Ao G,Ao G)→ H•(X)

is a quasi-isomorphism which preserves cup products.

Since H• is a complex of presheaves on X , one can use localization techniques
for the computation of its cohomology ring. Thus, methods from Čech cohomology
theory come into play. To make these ideas precise let U be an open cover of the
orbit space X , and denote by Ȟ•,•U := Ȟ•,•

G,U := Č•U (H•
G
) the Čech double complex

associated to the presheaf complex H•
G
. This means that

Ȟp,qU := ČqU (Hp) :=
∏

(U0,··· ,Uq)∈Uq+1

Hp(U0 ∩ · · · ∩ Uq).
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The coboundaries on Ȟ•,•U are given in p-direction by the Hochschild coboundary

β : Ȟp,qU → Ȟ
p+1,q
U

and, in q-direction, by the Čech coboundary

δ : Ȟp,qU → Ȟ
p,q+1
U ,

(
H(U0,··· ,Uq)

)
(U0,··· ,Uq)∈Uq+1 7→

( ∑

0≤i≤q+1

(−1)iH(U0,··· ,cUi,··· ,Uq+1)|U0∩···∩Uq+1

)
(U0,··· ,Uq+1)∈Uq+2

.

The cohomology of the double complex Ȟ•,•U , i.e. the cohomology of the total com-

plex Tot•⊕(Ȟ•,•U ), will be denoted by Ȟ•U (H•). The inductive limit

Ȟ•(H•) := lim
←−
U

Ȟ•U(H
•),

where U runs through the set of open covers of X , then is the Čech cohomology of
the presheaf complex H•. The crucial claim, which will be proved in Section 3.1 as
well, now is the following.

Theorem II. The presheaves Hp are all fine, hence the Čech cohomology of the
presheaf complex H• is concentrated in degree q = 0, i.e. Ȟ•U (H•) is canonically

isomorphic to the cohomology of the cochain complex H•,0U . Moreover, the Čech

cohomology Ȟ•(H•) is given by the global sections of a cohomology sheaf on X. Fi-
nally, for each sufficiently fine and locally finite open covering U of X the canonical
chain map

Hp(X)→ Žp,0U (H•), H 7→ (H|U )U∈U

is a quasi-isomorphism, where Žp,0U (H•) :=
{
H = (HU )U∈U ∈ Ȟ

p,0
U | δH = 0

}
.

By Theorem II one only needs to compute the cohomology of the complexes
H•(U) for all elements U of a sufficiently fine open covering of X . This is the
purpose of the following steps.

Let us consider now a weak equivalence of proper étale groupoids ϕ : H ↪→
G. Assume further that ϕ is an open embedding and denote by H•

H
and H•

G
the

complexes of presheaves as defined above. Then ϕ induces a bounded linear map
ϕ∗ : C∞cpt(H1)→ C

∞
cpt(G1) by putting for a ∈ C∞cpt(H1), g ∈ G1

ϕ∗(a)(g) =

{
a ◦ ϕ−1(g), if g ∈ imϕ,

0, else.

Moreover, one obtains bounded chain maps

ϕ∗ : C•(Ao G,Ao G)→ C•(Ao H,Ao H), F 7→ ϕ∗(F ) and

ϕ∗ :H•G → H
•
H, F 7→ ϕ∗(F ),

where in both cases ϕ∗(F ) is defined by

ϕ∗(F )(a1 ⊗ · · · ⊗ ak) = F
(
ϕ∗a1 ⊗ · · ·ϕ∗ak

)
◦ ϕ for a1, · · · , ak ∈ C

∞
cpt(H1).

By Theorem I, the chain map ι : C•(A o G,A o G) → H•
G
(X) is a quasi-

isomorphism. Hence by Theorems A.11 and A.14 from the Appendix the following
result holds true.

Theorem III. Under the assumptions on G, H and ϕ from above, the convolution
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algebras AoG and AoH are Morita equivalent as bornological algebras. Moreover,
there is a commutative diagram consisting of quasi-isomorphisms

C•(Ao G,Ao G)
ϕ∗

//

ι

��

C•(Ao H,Ao H)

ι

��
H•

G
(X)

ϕ∗

// H•
H
(X)

such that the upper horizontal chain map coincides with the natural isomorphism
between the Hochschild cohomologies H•(A o G,A o G) → H•(A o H,A o H)
induced by the Morita context between Ao G and Ao H.

As an application of this result, we consider a point x ∈ G0 in the object set of a
proper étale Lie groupoid G, and denote by Gx the isotropy group of x that means
the group of all arrows starting and ending at x. Choose for each g ∈ Gx an open
connected neighborhood Wg ⊂ G1 (which can be chosen to be sufficiently small)
such that both s|Wg

: Wg → G0 and t|Wg
: Wg → G0 are diffeomorphisms onto their

images. Let Mx be the connected component of x in
⋂
g∈Gx

s(Wg)∩ t(Wg) and put

Mg := Wg ∩ s
−1(Mx) for all g ∈ Gx. Define an action of Gx on Mx by

Gx ×Mx →Mx, (g, y) 7→ t
(
s−1
|Wg

(y)
)
.

It is now straightforward to check that the canonical embedding

Gx nMx ↪→ G|π(Mx), (y, g) 7→ s−1
|Wg

(y),

is open and a weak equivalence of Lie groupoids. In this article, we will call a
manifold Mx together with a Gx-action on Mx and a Gx-equivariant embedding
ιx : Mx ↪→ G0 a slice around x, if the induced embedding Gx nMx ↪→ G|πι(Mx) is
open and a weak equivalence of Lie groupoids. The argument above shows that for
every point x ∈ G0 there exists a slice. As a corollary to the above one obtains

Theorem IIIb. Let x ∈ G0 be a point and ιx : Mx ↪→ G0 a slice around x. Let
ϕx : Gx nMx ↪→ G|Ux

with Ux := πιx(Mx) be the corresponding weak equivalence.
Then the convolution algebras C∞(Mx)oGx and A|Ux

oG|Ux
are Morita equivalent.

Moreover, the canonical chain map

ϕ∗x : H•(Ux)→ C•
(
C∞(Mx) o Gx, C

∞(Mx) o Gx

)

is a quasi-isomorphism which implements the quasi-isomorphism induced in Hoch-
schild cohomology by the Morita context between C∞(Mx) o Gx and A|Ux

o G|Ux
.

Theorems II and III enable us to localize the computation of the Hochschild
cohomology rings. Locally, we have the following result, also shown in Section 3.

Theorem IV. Let M be a smooth manifold, and Γ a finite group acting on M .
Then the Hochschild cohomology ring H•(C∞cpt(M) o Γ, C∞cpt(M) o Γ) is given as
follows. As a vector space, one has

H•(C∞cpt(M) o Γ, C∞cpt(M) o Γ) =
⊕

γ∈Γ

Γ∞
(
Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ

)Γ

,
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where `(γ) is the codimension of Mγ in M , and Nγ is the normal bundle to Mγ

in M . For elements

ξ =
(
ξα

)
α∈Γ

, η =
(
ηβ

)
β∈Γ
∈

⊕

γ∈Γ

Γ∞
(
Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ

)Γ

their cup product is given by

(ξ ∪ η)γ =
∑

α·β=γ,
`(α)+`(β)=`(γ)

ξα ∧ ηβ .

By globalization of Theorem IV, one obtains the following result.

Theorem V. Let G be a proper étale groupoid. Denote by

B0 := {g ∈ G1 | s(g) = t(g)}

its space of loops, and by N → B0 the normal bundle to TB0 in T|B0
G1. Then the

Hochschild cohomology ring of the convolution algebra is given by

H•(Ao G,Ao G) = Γ∞
(
Λ•−`TB0 ⊗ Λ`N

)G
,

where ` is the locally constant function on B0 the value of which at g ∈ B0 coincides
with the codimension of the germ of B0 at g within G1. The cup-product is given
by the formula

ξ ∪ η =

∫

m

pr∗1ξ ∧ pr
∗
2η,

for “multivectorfields” ξ, η ∈ Γ∞
(
Λ•−`TB0 ⊗ Λ`N

)G
. In the formula above, the

maps m, pr1, pr2 : S → B0 are the multiplication and the projection onto the first
and second component, where

S := {(g1, g2) ∈ B0 × B0 | s(g1) = t(g2)}.

Finally, the integral over m simply means summation over the discrete fiber of m.

Remark 2.1. We remark that one can also compute the Gerstenhaber bracket on
H•(AoG,AoG) by tracing down the quasi-isomorphisms constructed in Theorem
I-III. Though, there is no natural Gerstenhaber bracket defined on the complex H•,
the bracket is well defined on the subcomplex of local cochains which take values
in compactly supported functions. And this subcomplex is quasi-isomorphic to the
whole complex by Teleman’s localization as is explained in Section 3. Therefore,
the Gerstenhaber bracket is well defined on the Hochschild cohomology. Using the
presheaf H• and the local computation in [HaTa], one can generalize the compu-
tation of the Gerstenhaber bracket from [HaTa] to general orbifolds.

Let us now consider the deformed case. The strategy in computing the Hochschild
cohomology of the deformed algebra A~ o G is basically the same as in the unde-
formed algebra. We define the deformed analogue of the complex of presheaves H•

G

in the obvious way and denote it by H•
G,~. The associated Čech complex is denoted

by Ȟ•,•U ,~. With this, the deformed versions of Theorems I–III are straightforward to

prove: the maps in these theorems generalize trivially to the sheaf A~. Using the
~-adic filtrations on the complexes, Theorems I–III imply that in the zero’th order
approximation these maps are quasi-isomorphisms. By an easy spectral sequence
argument, cf. Section 4 one then shows this must be quasi-isomorphisms in general.



10 M.J. PFLAUM, H.B. POSTHUMA, X. TANG, AND H.-H. TSENG

Again, this enables us to localize the computation of the Hochschild cohomology
rings. For a global quotient orbifold, we have the following result, proved in Section
4.4.

Theorem VI. Let M be a smooth symplectic manifold, and Γ a finite group acting
on M preserving the symplectic structure. Then the Hochschild cohomology ring

H•
(
A

((~))
cpt (M) o Γ,A

((~))
cpt o Γ

)
is given as follows. As a vector space, one has

H•
(
A

((~))
cpt (M) o Γ,A

((~))
cpt o Γ

)
∼=

⊕

(γ)⊆Γ

H
•−`(γ)
Z(γ)

(
Mγ ,C((~))

)
,

where Z(γ) is the centralizer of γ in Γ, and (γ) stands for the conjugacy class of γ
inside Γ. For elements

α =
(
ξγ

)
γ∈Γ

, β =
(
βγ

)
γ∈Γ
∈

⊕

γ∈Γ

(
H•−l(γ)

(
Mγ ,C((~))

))Γ

their cup product is given by

α ∪ β =
∑

γ1γ2=γ,

`(γ1)+`(γ2)=`(γ1γ2)

ι∗γ1αγ1 ∧ ι
∗
γ2αγ2 .

Given this result, one might hope for a quasi-isomorphism H•
G,~ → Ω•−`

X̃
to exist,

which implements the isomorphism of the theorem above. The situation however
is more complicated than that, and this is where the deformed case notably differs
from the undeformed case.

First of all, it turns out one has to consider a sub-complex of presheavesH•
G,loc,~ ⊂

H•
G,~, of cochains that are local in a sense explained in the beginning of Section 4.

Second, instead of one quasi-isomorphism, there is a chain

H•G,loc,~ ↪→ C
•,•

X̃
←↩ Ω•−`

X̃
,

where the intermediate double complex of sheaves C•,•
X̃

is a twisted version of the

Fedosov–Weinstein–Xu resolution used in [Do]. With this, we finally obtain the
following result:

Theorem VII. Let G be a proper étale groupoid with an invariant symplectic struc-
ture, modeling a symplectic orbifold X. For any invariant deformation quantization
A~ of G, we have a natural isomorphism

H•
(
A((~)) o G,A((~)) o G

)
∼= H•−`

(
X̃,C((~))

)
.

With this isomorphism, the cup product is given by

α ∪ β =

∫

m`

pr∗1α ∧ pr
∗
2β,

for α, β ∈ H•−`
(
X̃,C((~))

)
and where m` is the restriction of m, cf. Theorem V,

to those connected components of S that satisfy

`(g1g2) = `(g1) + `(g2), (g1, g2) ∈ S.

Moreover, this cup product and symplectic volume form together define a Frobenius
algebra structure on H•−`(X̃,C((~))).

On the other hand, on H•−`(X̃,C((t))), there is the famous Chen-Ruan orbifold
product [ChRu04]. In Section 5, we study the connection between the cup product
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defined in Theorem VI and the Chen-Ruan orbifold product. We introduce a de
Rham model for some particular S1-equivariant Chen-Ruan orbifold cohomology
and relate this de Rham model to the above computation of Hochschild cohomology
of A~ o G.

Given an arbitrary almost complex orbifold X , we introduce a trivial S1-action
on X , but a nontrivial S1-action on the bundle TX → X by rotating each fiber.
This S1-action is compatible with all the orbifold structures on X and the inertia
orbifold X̃ . Therefore, we have the S1-equivariant Chen-Ruan orbifold cohomology
(H•CR(X)((t)), ?t) as introduced in Section 5.1 with ?t the equivariant Chen-Ruan
orbifold product.

The de Rham model (HT •(X)((t)),∧t) for the above S1-equivariant Chen-Ruan

orbifold cohomology is defined as a vector space equal to H•(X̃)((t))[`] with the
product defined by putting

(ξ ∧t η)γ :=
∑

γ=γ1γ2

ι∗γ
(
ιγ1∗(ξγ1) ∧ ιγ2∗(ηγ2)

)
, ξ, η ∈ H•(X̃)((t)),

where ιγi
is the embedding of Xγi into X . The following theorem is proved in

Section 5.

Theorem VIII. The two algebras (H•CR(X)((t)), ?t) and (HT •(X)((t)),∧t) are
isomorphic.

To connect (HT •(X)((t)),∧t) to the above Hochschild cohomology ring, we de-
fine a decreasing filtration F∗ on HT •(X)((t)) by

F∗ = {α ∈ H•(Xγ)((t)) | deg(α) − `(γ) ≥ ∗}.

We prove in Section 5 the following result and thus finish our article.

Theorem IX The graded algebra gr(HT •(X)((t))) associated to (HT •(X)((t)),∧t)
with respect to the filtration F∗ is isomorphic to the Hochschild cohomology algebra
(H•(A~ oG,A~ oG),∪) by identifying t with ~.

3. Cup product on the Hochschild cohomology of the convolution
algebra

3.1. Localization methods. We start with the proof of Theorem I by using a
localization method going back to Teleman [Te]. Recall that the orbifoldX = G0/G
represented by a proper étale Lie groupoid G carries in a natural way a sheaf C∞X
of smooth functions. More precisely, for every open U ⊂ X the algebra C∞(U)

coincides naturally with the algebra
(
C∞(π−1(U))

)G
of smooth functions on G0

invariant under the action of G. Clearly, Ck(AoG,AoG) is a module over C∞(X),
and Hk is a module presheaf over the C∞X for every k ∈ N. Since C∞X is a fine sheaf,
this implies in particular that Hk has to be a fine presheaf.

Next recall from [NePfPoTa, Sec. 3, Step I] that there is a canonical isomor-
phism

ˆ : Ck(Ao G,Ao G)→ Hom(Ao G
⊗̂k, C∞(G1)) = Ckred(Ao G, C∞(G1)), F 7→ F̂ .

(3.1)
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Hereby, the map F̂ : AoG⊗̂k → C∞(G1) is uniquely determined by the requirement
that for every compact K ⊂ G1 and all a1, . . . , ak ∈ Ao G the relation

F̂ (a1 ⊗ . . .⊗ ak)|K = F (ϕKδu ⊗ a1 ⊗ . . .⊗ ak ⊗ ϕKδu)

holds true, where ϕK : G0 → [0, 1] is a smooth function with compact support such
that ϕK(x) = 1 for all x in a neighborhood of s(K)∪ t(K), and where δu : G1 → R

is the locally constant function which coincides with 1 on G0 and which vanishes
elsewhere.

Now let us fix a smooth function % : R→ [0, 1] which has support in (−∞, 3
4 ] and

which satisfies %(r) = 1 for r ≤ 1
2 . For ε > 0 we denote by %ε the rescaled function

r 7→ %( sε ). Next choose a G-invariant complete riemannian metric on G0, and denote
by d the corresponding geodesic distance on G0 (where we put d(x, y) = ∞, if x
and y are not in the same connected component of G0). Then d2 is smooth on the
set of pairs of points of G0 having finite distance. Put for every k ∈ N ∪ {−1},
i = 1, · · · , k + 1 and ε > 0:

Ψk,i,ε(g0, g1, · · · , gk) =
i−1∏

j=0

%ε
(
d2(s(gj), t(gj+1))

)
, where gj ∈ G1 and gk+1 := g0.

Moreover, put Ψk,ε := Ψk,k+1,ε. Using the above identification (3.1) we then define
for F ∈ Ck := Ck(AoG,AoG) a Hochschild cochain Ψk,εF as follows:

Ψk,εF (a1 ⊗ · · · ⊗ ak) (g0) := F
(
Ψk,ε(g

−1
0 ,−, · · · ,−) · (a1 ⊗ · · · ⊗ ak)

)
(g0),

for g0 ∈ G1 and a1, · · · , ak ∈ C
∞
cpt(G1).

One immediately checks that Ψ•,ε forms a chain map on the Hochschild cochain
complex. Likewise, one defines a chain map Ψ•,ε acting on the sheaf of cochain
complexes H•. In [NePfPoTa, Sec. 3, Step 2] it has been shown that there exist
homotopy operators Hk,ε : Ck → Ck−1 such that

(βHk,ε +Hk+1,εβ)F = F −Ψk,εF (3.2)

for all F ∈ Ck. By a similar argument like in [NePfPoTa] one shows that this
algebraic homotopy holds also for F ∈ Hk(X). By completeness of the metric d,
the cochain Ψ•,εF is an element of Ckred(AoG,AoG) for F ∈ Ck or F ∈ Hk(X).
Hence Ψ•,ε is a quasi-inverse to the canonical embedding C•red(A o G,A o G) ↪→
C•(Ao G,Ao G) resp. to ι : C•red(Ao G,Ao G)→ H•(X). This proves Theorem
I.

Next, we study the properties of the Čech double complex Ȟ•,•U associated to
an open covering U of X and prove Theorem II. We already have shown above
that each presheaf Hk is fine. Denote by Ĥk the sheaf associated to the presheaf
Hk. Then the Čech cohomology of H• coincides with the Čech cohomology of
Ĥ•, and the latter is given by the global sections of the cohomology sheaf of Ĥ•

(see for example [Sp, Sec. 6.8]). To prove the last part of Theorem II choose a
locally finite open covering U of X such that each element U ∈ U is relatively
compact and let (ϕU )U∈U be a subordinate partition of unity by smooth functions
on X . Then the Čech double complex Č•U (H•) collapses at the E1 term, hence its

cohomology can be computed by the cohomology of Ž•,0U (H•). By assumption on U
there exists for every U ∈ U a εU > 0 such that for every HU ∈ H

p(U) the cochain
ϕUΨp,εUHU ∈ H

p(U) can be extended by zero to an element of Hp(X) which we
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also denote by ϕUΨp,εUHU . Then it is easily checked that the restriction map

Hp(X)→ Žp,0U (H•) ⊂
∏

U∈U

Hp(U), H 7→ (H|U )U∈U

is a quasi-isomorphism with quasi-inverse given by

Žp,0U (H•) 3 (HU )U∈U 7→
∑

U∈U

ϕUΨp,εUHU ∈ H
p(X). (3.3)

This finishes the proof of Theorem II.

3.2. The global quotient case. In this part, we provide a complete proof of
Theorem IV. Let Γ be a finite group acting on a smooth orientable manifold M .
This defines a transformation groupoid G := (Γ n M ⇒ M). In this case, the
groupoid algebra of G is equal to the crossed product algebra C∞cpt(M) o Γ.

In [NePfPoTa, Thm. 3], we proved that as a vector space the Hochschild co-
homology of the algebra C∞cpt(M) o Γ is equal to

H•(C∞cpt(M) o Γ, C∞cpt(M) o Γ) =
(⊕

γ∈Γ

Γ∞(Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ)
)Γ

,

where `(γ) is the codimension of Mγ in M , and Nγ is the normal bundle to Mγ

in M . The main goal of this section is to compute the cup product between multi-
vector fields on the inertia orbifold, that means between elements of the right hand
side of the preceding equation, from the cup product on the Hochschild cohomol-
ogy of the left hand side of that equation. We hereby restrict our considerations
to the particular case, where M carries a Γ-invariant riemannian metric such that
M is geodesically convex. This condition is in particular satisfied for a linear Γ-
representation space carrying a Γ-invariant scaler product. Theorem IV can there-
fore be immediately reduced to the case considered in the following by Theorems
II and III and the slice theorem.

In the first part of our construction, we outline how to determine the Hochschild
cohomology as a vector space. To this end we construct two cochain maps L and
T between the Hochschild cochain complex and the space of sections of multi-
vector fields on the inertia orbifold. These two cochain maps are actually quasi-
isomorphisms. The map L has already been constructed in [NePfPoTa], the map
T in [HaTa]. In the second part of our construction, we will use the cochain maps
T and L to compute the cup product.

3.2.1. The cochain map L. Following [NePfPoTa, Theorem 3.1] we construct

L : C•(C∞cpt(M) o Γ, C∞cpt(M) o Γ) −→
(⊕

γ∈Γ

Γ∞(Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ)
)Γ

.

The map L is the composition of three cochain maps L1, L2 and L3 defined in the
following.

To define the first map L1 recall that Γ acts on F ∈ Ck(C∞cpt(M), C∞cpt(M) o Γ)
by

γF :=
(
C∞cpt(M)

⊗̂k
3 f1 ⊗ · · · ⊗ fk 7→ δγ · F

(
γ−1(f1)⊗ · · · ⊗ γ

−1(fk)
)
· δγ−1

)
.

Given f ∈ C∞cpt(M) and γ ∈ Γ we hereby (and in the following) use the notation
fδγ for the function in C∞cpt(M) o Γ which maps (σ, p) ∈ Γ×M to f(γp), if σ = γ,
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and to 0 else. Now we put

L1 : Ck(C∞cpt(M) o Γ, C∞cpt(M) o Γ) −→ Ck(C∞cpt(M), C∞cpt(M) o Γ)Γ,

F 7→ L1F :=
(
C∞cpt(M)

⊗̂k
3 f1 ⊗ · · · ⊗ fk 7→ F (f1δe ⊗ · · · ⊗ fkδe)

)
.

Next we explain how the map L2 is constructed. It has the following form:

L2 : C•(C∞cpt(M), C∞cpt(M) o Γ)Γ −→
(⊕

γ∈Γ

Γ∞(Λ•T|MγM)
)Γ

,

where T|MγM is the restriction of the vector bundle TM to Mγ , and where the
differential on the complex

⊕
γ∈Γ Γ∞(Λ•T|MγM) is given by the ∧-product with

a nowhere vanishing vector field κ on M which we define later. Actually, we will
define a Γ-equivariant chain map L2 slight more general than what is stated above,
namely a map

L2 : C•(C∞cpt(M), C∞cpt(M) o Γ) −→
⊕

γ∈Γ

Γ∞(Λ•T|MγM).

As a C∞cpt(M)-C∞cpt(M) bimodule, C∞cpt(M) o Γ has a natural splitting into a direct
sum of submodules

⊕
γ∈Γ C

∞
cpt(M)γ . Accordingly, the Hochschild cochain complex

C•
(
C∞cpt(M), C∞cpt(M) o Γ

)
naturally splits as a direct sum

⊕

γ∈Γ

C•
(
C∞cpt(M), C∞cpt(Mγ)

)
.

Therefore, to define the map L2, it is enough to consider each single map

Lγ2 : C•
(
C∞cpt(M), C∞cpt(Mγ)

)
−→ Γ∞(Λ•T|MγM).

In the following we use ideas from the paper [Co] to construct Lγ2 . To this end
let pr2 : M ×M → M be the projection onto the second factor of M ×M , and ξ
the vector field on M ×M which maps (x1, x2) to exp−1

x2
(x1). By our assumptions

on the riemannian metric on M the vector field ξ is well-defined and Γ-invariant.
According to [Co, Lemma 44], the complex K• =

(
Γ∞cpt(pr∗2(Λ

•T ∗M)), ξx
)

de-
fines a projective resolution of C∞cpt(M). Essentially, it is a Koszul resolution for
C∞cpt(M). Following Appendix A.4, we use the resolution K• to determine the

Hochschild cohomology H•
(
C∞cpt(M), C∞cpt(Mγ)

)
as the cohomology of the cochain

complex HomC∞cpt(M
2)

(
K•, C∞cpt(Mγ)

)
. By [Co] the following chain map is a quasi-

isomorphism between the resolution K• and the Bar resolution Bar•(C
∞
cpt(M)

)
:

Φ :Kk → Bark(C
∞
cpt(M)) = C∞cpt(M

k+2),

ω 7→
(
Mk+2 3 (a, b, x1, · · · , xk) 7→ 〈ξ(x1, b) ∧ · · · ∧ ξ(xk , b), ω(a, b)〉

)
.

Hence the dual of the chain map Ψ defines a quasi-isomorphism

Φ∗ : HomC∞cpt(M
2)(C

∞
cpt(M

k+2), C∞cpt)→ HomC∞cpt(M
2)(K

k, C∞cpt(M)).

Now consider the embedding ∆γ : M → M × M given by ∆γ(x) = (γ(x), x).
According to [NePfPoTa, Sec. 3, Step 4], the map

η : Γ∞(ΛkTM)→ HomC∞cpt(M
2)(K

k, C∞cpt(M)), τ 7→ η(τ),
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defined by η(τ)(ω) = 〈∆∗γω, τ〉 for ω ∈ Γ∞cpt pr∗2(Λ
•T ∗M)) is an isomorphism. So fi-

nally we can define for F ∈ Ck(C∞cpt(M), C∞cpt(M)γ) an element Lγ2(F ) ∈ Γ∞(ΛkTM)
by

Lγ2(F ) = η−1Φ∗Ψk,ε(F ),

where we have used the cut-off cochain map Ψk,ε defined above. Thus we obtain
an isomorphism of complexes

Lγ2 :
(
Ck(C∞cpt(M), C∞cpt(M)), b

)
→ (Λ•TM, κγ∧),

where κγ is the restriction of the vector field ξ on M ×M to the γ-diagonal ∆γ .
In the case, where M is a (finite dimensional) vector space V with a linear Γ-

action, we can write down Lγ2 explicitly. Choose coordinates xi, i = 1, . . . , dim V
on V . Then the vector field ξ on V × V can be written as

ξ(x1, x2) =
∑

i

(x1 − x2)
i ∂

∂xi2
. (3.4)

Moreover, Lγ2(F ) is given as follows:

Lγ2(F ) (x) =
∑

i1,··· ,ik

F
(
Ψk,ε(−, x1, · · · , xk)·

· 〈ξ(x1, x) ∧ · · · ∧ ξ(xk, x), pr∗2(dx
i1 ∧ · · · ∧ dxik )〉

)
(x)

∂

∂xi1
∧ · · · ∧

∂

∂xik

=
∑

i1,···ik

( ∑

σ∈Sk

(−1)σF
(
(xσ(1) − x)

i1 · · · (xσ(k) − x)
ik

))
(x)

∂

∂xi1
∧ · · · ∧

∂

∂xik
,

(3.5)

where x ∈ V , and where we have identified F with a bounded linear map from
C∞cpt(V

k) to C∞(V ).
To define L3 we construct for each γ ∈ Γ a localization map to the fixed point

sub manifold Mγ . Recall that we have chosen a Γ-invariant complete riemannian
metric on M , and consider the normal bundle Nγ to the embedding ιγ : Mγ ↪→M .
The riemannian metric allows us to regard Nγ as a subbundle of the restricted
tangent bundle T|MγM . Now we denote by prγ the orthogonal projection from

Λ•T|MγM to Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ . The chain map

L3 :
(⊕

γ∈Γ

Γ∞(Λ•TM), κ ∧ −
)
−→

⊕

γ∈Γ

(
Γ∞(Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ), 0

)
.

is then constructed as the sum of the maps Lγ3 defined by

Lγ3(X) = prγ(X |Mγ ) for X ∈ Γ∞(Λ•TM).

In [NePfPoTa, Sec. 3] we proved that L = L3 ◦L2 ◦L1 is a quasi-isomorphism
of cochain complexes.

3.2.2. The chain map T . Under the assumption that M is a linear Γ-representation
space V we construct in this section a quasi-inverse

T :
( ⊕

γ∈Γ

Γ∞(Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ)
)Γ

−→ C•(C∞cpt(M) o Γ, C∞cpt(M) o Γ).
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to the above cochain map L. To this end we first recall the construction of the
normal twisted cocycle

Ωγ ∈ C
l(γ)(C∞cpt(V ), C∞cpt(V )γ)

from [HaTa]. Since Γ acts linearly on V , V γ is a linear subspace of U and has
a normal space V ⊥. Let xi, i = 1, · · · , n − `(γ), be coordinates on V γ , and yj ,
j = 1, · · · , `(γ), coordinates on V ⊥. We write ỹ = γy, and for every σ ∈ S`(γ) we

introduce the following vectors in V ⊥:

z0 = (y1, · · · , y`(γ)), z1 = (y1, · · · , ỹσ(1), · · · , y`(γ)),
z2 = (y1, · · · , ỹσ(1), · · · , ỹσ(2), · · · , y`(γ)), · · ·

z`(γ)−1 = (ỹ1, · · · , yσ(`(γ)), · · · , ỹ`(γ)), z`(γ) = (ỹ1, · · · , ỹ`(γ)).

Then we define a cochain Ωγ ∈ C
`(γ)(C∞cpt(V ), C∞cpt(V )γ) as follows:

Ωγ (f1, · · · , f`(γ))(x, y) :=
1

`(γ)!
·

·
∑

σ∈S`(γ)

(f1(x, z
0)− f1(x, z

1))(f2(x, z
1)− f2(x, z

2)) · · · (f`(γ)(x, z
n−1)− f`(γ)(x, z

n))

(y1 − ỹ1) · . . . · (y`(γ) − ỹ`(γ))
,

where f1, · · · , f`(γ) ∈ C
∞
cpt(V ), x ∈ V γ and y ∈ V ⊥. It is straightforward to check

that Ωγ is a cocycle in C`(γ)(C∞cpt(V ), C∞cpt(V )γ) indeed. Now define the cochain map

T1 :
(⊕

γ∈Γ

Γ∞(Λ•−`(γ)TV γ ⊗ Λ`(γ)Nγ)
)Γ

−→ C•(C∞cpt(V ), C∞cpt(V ) o Γ)Γ

as the sum of maps

T γ1 : Γ∞(Λk−`(γ)TV γ ⊗ Λ`(γ)Nγ) −→ Ck(C∞cpt(V ), C∞cpt(V )γ),

defined by

T γ1 (X ⊗ Yγ) = Yγ(y1, · · · , y`(γ))X]Ωγ ,

where X ∈ Γ∞(Λk−`(γ)TV γ), Yγ ∈ Γ∞(Λ`(γ)Nγ), and where X]Ωγ(f1, · · · , fk) is
equal to

X(f1, · · · , fk−`(γ)) Ωγ(fk−`(γ)+1, · · · , f`(γ)).

Observe hereby that X to act on f1, · · · , fk−`(γ), we need to use a Γ-invariant
connection, i.e. the Levi-Civita connection of the invariant metric, on the normal
bundle of V γ in V to lift X to a vector field on V .

The map

T :
(⊕

γ∈Γ

Γ∞(Λ•−`(γ)TV γ ⊗ Λ`(γ)Nγ)
)Γ

−→ C•(C∞cpt(V ) o Γ, C∞cpt(V ) o Γ)

is now written as the composition of T1 and T2, where T2 is the standard cochain
map from the Eilenberg-Zilber theorem:

T2 : C•(C∞cpt(V ), C∞cpt(V ) o Γ)Γ −→ C•(C∞cpt(V ) o Γ, C∞cpt(V ) o Γ).

More precisely, for F ∈ Ck(C∞cpt(V ), C∞cpt(V ) o Γ) one has

T2(F )(f1δγ1 , · · · , fkδγk
) = F (f1, γ1(f2), · · · , γ1 · · · γk−1(fk))δγ1···γk

.

The following result then holds for the composition T = T2 ◦ T1. Its proof is
performed by a straightforward check (cf. [HaTa, Sec. 2] for some more details).
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Theorem 3.1. Let V be a finite dimensional real linear Γ-representation space.
Then the cochain maps L and T defined above satisfy L ◦ T = id. In particular, T
is a quasi-inverse to L.

By the above considerations one concludes that there is an isomorphism of vector
spaces between the Hochschild cohomology of C∞cpt(M)oΓ and the space of smooth
sections of alternating multi-vector fields on the corresponding inertia orbifold.

3.2.3. The cup product. In this part, we use the above constructed maps to compute
the cup product on the Hochschild cohomology of the algebra C∞cpt(M) o Γ. By
proving the following proposition, we will complete proof of Theorem IV.

Proposition 3.2. For every smooth Γ-manifold M the cup product on the Hochschild

cohomology H•(C∞cpt(M)oΓ, C∞cpt(M)oΓ) ∼=
( ⊕

γ∈Γ Γ∞(Λ•−`(γ)TMγ⊗Λ`(γ)Nγ)
)Γ

is given for two cochains

ξ = (ξα)α∈Γ, η = (ηβ)β∈Γ ∈
( ⊕

γ∈Γ

Γ∞(Λ•−`(γ)TMγ ⊗ Λ`(γ)Nγ)
)Γ

as the cochain ξ ∪ η with components

(ξ ∪ η)γ =
∑

αβ=γ,`(α)+`(β)=`(γ)

ξα ∧ ηγ .

Proof. It suffices to prove the claim under the assumption that M is a linear Γ-
representation space V . Then we have the above defined quasi-inverse T to the
cochain map L at our disposal. To compute ξ ∪ η we thus have to determine
the multivector field L(T (ξ) ∪ T (η)). Since L is the composition of L1, L2, and
L3, we compute L1(T (ξ) ∪ T (η)) first. Recall that the cochain L1(T (ξ) ∪ T (η)) ∈
Cp+q(C∞cpt(V ), C∞cpt(V )γ) is defined by

L1(T (ξ)∪T (η))(f1, · · · , fp+q) =
∑

αβ=γ

Tα1 (ξα)(f1, · · · , fp)α(T β1 (ηβ)(fp+1, · · · , fp+q)),

(3.6)
where f1, · · · , fp+q ∈ C

∞
cpt(V ), Recall also that the cochain map

L2 : Ck(C∞cpt(V ), C∞cpt(V ) o Γ)→
⊕

γ∈Γ

Γ∞
(
ΛkTV γV

)

essentially is the anti-symmetrization of the linear terms of a cochain. Hence
L2(L1(T (ξ) ∪ T (η))) is equal to

∑

αβ=γ

Lα2 (Tα1 (ξα)) ∧ α(Lβ2 (T β2 (ηβ))).

To compute L2(L1(T (ξ) ∪ T (η))), it thus suffices to determine

Lα2 (Tα1 (ξα)) ∧ α(Lβ2 (T β2 (ηβ))),

which defines a (p+q)-multivector field Z supported in a neighborhood of V α∩V β in
V . By Equation (3.5), one observes that when the restrictions of the normal bundles
Nα andNβ to V α∩V β have a nontrivial intersection, for instance along a coordinate
x0, then in Equation (3.6), the derivative ∂

∂x0 shows up in both Lα2 (Tα1 (ξα)) and

α(Lβ2 (T βx (ηβ))). Therefore their wedge product then has to vanish. This argument
shows that the nontrivial contribution of the cup product ξ ∪ η comes from those
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components, where Nα and Nβ do not have a nontrivial intersection. By the
following Lemma (3.3) this implies that at a point x ∈ V α∩V β with Nα

x ∩N
β
x = {0}

one has TxV
α + TxV

β = TxV and therefore V αβ = V α ∩ V β . This last condition
by Lemma 5.6 is equivalent to `(α) + `(β) = `(γ). When V α ∩ V β = V αβ and
Nα ∩Nβ = {0}, one computes L3(Z) using the definition of L3 and obtains

L(T (ξ) ◦ T (η)) =
∑

αβ=γ
`(α)+`(β)=`(β)

L3

(
Lα2 (Tα1 (ξα)) ∧ α(Lβ2 (T β2 (ηβ)))

)

=
∑

αβ=γ
`(α)+`(β)=`(β)

ξα ∪ α(ηβ).

Note that on V α ∩ V β = V αβ one has α(ηβ) = ηβ . This finishes the proof of the
claim. �

To end this section we finally show a lemma which already has been used in the
proof of the preceding result.

Lemma 3.3. Let α, β be two linear automorphisms on the real vector space V . Let
〈−,−〉 be a scalar product preserved by α and β and let V α, V β be the corresponding
fixed point subspaces. If V α + V β = V , then V α ∩ V β = V αβ.

Proof. Obviously, V α ∩ V β ⊂ V αβ . It is enough to show that if v ∈ V αβ , then
v ∈ V α ∩ V β.

Since v ∈ V αβ , one has αβ(v) = v, hence β(v) = α−1(v). Define w = β(v)− v =
α−1(v)− v. We prove that w is orthogonal to both V α and V β . For every u ∈ V α

one has

〈w, u〉 = 〈α−1(v)− v, u〉 = 〈α−1(v), u〉 − 〈v, u〉

= 〈v, α(u)〉 − 〈v, u〉 = 〈v, u〉 − 〈v, u〉 = 0,

where in the first equality of the second line we have used the fact that α preserves
the metric 〈−,−〉, and in the second equality of the second line we have used that
u is α-invariant. Therefore one concludes that w is orthogonal to V α. Likewise one
shows that w is orthogonal to V β. Therefore, w is orthogonal to V α + V β = V ,
hence w has to be 0. This implies that v is invariant under both α and β. �

4. Cup product on the Hochschild cohomology of the deformed
convolution algebra

In this section we compute the Hochschild cohomology together with the cup
product of a formal deformation of the convolution algebra of a proper étale groupoid
G. For this we assume that the orbifold X is symplectic or in other words that G0

carries a G-invariant symplectic form ω, i.e., satisfying s∗ω = t∗ω. We let A~ be
a G-invariant formal deformation quantization of A = C∞

G0
, where the deformation

parameter is denoted by ~. This means that A~ is a G-sheaf over G0 and the asso-
ciated crossed product A~ o G is a formal deformation of the convolution algebra,
cf. [Ta].

As a formal deformation the algebra A~ o G is filtered by powers of ~, i.e.,
Fk(A

~ o G) := ~k(A~ o G) and we have

Fk
(
A~ o G

)/
Fk−1

(
A~ o G

)
∼= Ao G. (4.1)
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As usual, the Hochschild cochain complex is defined by

C•
(
A~ o G,A~ o G

)
:= HomC[[t]]

(
(A~ o G)⊗̂•,A~ o G

)
,

with differential β defined with respect to the deformed convolution algebra. The
justification for this definition comes from Proposition A.8, which also shows that
the cup-product, defined by (A.6), extends this complex to a differential graded
algebra (DGA). The ~-adic filtration of A~ o G above induces a complete and ex-
haustive filtration of the Hochschild complex. Since the product in A~ o G is a
formal deformation of the convolution product, cf. equation (4.1), the associated
spectral sequence has E0-term just the undeformed Hochschild complex of the con-
volution algebra.

This has the following useful consequence that we will use several times in the
course of the argument: Suppose that A~

1 and A~
2 are formal deformations of the

algebras A1 and A2, and

f : C•
(
A~

1 , A
~
1

)
→ C•

(
A~

2 , A
~
2

)

is a morphism of filtered complexes. Then f is a quasi-isomorphism, if it induces an
isomorphism at level E1. The proof of this statement is a direct application of the
Eilenberg–Moore spectral sequence comparison theorem, cf. [We, Thm. 5.5.11].

Let us apply this to the following situation: consider the following subspace of
the space of Hochschild cochains on A~ o G:

Ckloc

(
A~ o G,A~ o G

)
:=

{
Ψ ∈ Ck(A~ o G,A~ o G) | πs

(
supp Ψ(a1, . . . , ak)

)
⊂

k⋂

i=1

πs(supp ai)
}
.

Here supp(a) denotes the support of a function. These are the local cochains with
respect to the underlying orbifold X . Notice that because of the convolution nature
of the algebra A~ o G, which involves the action of G, it is unreasonable to require
locality with respect to G0 or G1. The important point now is:

Proposition 4.1. The complex of local Hochschild cochains C•loc

(
A~oG,A~ oG

)
is

a subcomplex of C•
(
A~ o G,A~ o G

)
, and the canonical inclusion map is a quasi-

isomorphism preserving cup-products.

Proof. The orbifold X can be identified with the quotient space G0/G1. The de-
formed convolution product on A~ o G involves the local product on the G-sheaf
A~ on G0 and the groupoid action, and the product in turn defines the Hochschild
complex as well as the cup-product. With this, it is easy to check that the locality
condition on X is compatible with both the differential and the product.

To show that the canonical inclusion is a quasi-isomorphism, first observe that
the map clearly respects the ~-adic filtration. It follows from Theorem IV that for
the undeformed convolution algebra the local Hochschild cochain complex computes
the same cohomology, since the vector fields clearly satisfy the locality condition.
Therefore the inclusion map is a quasi-isomorphism at the E0-level, and by the
above, a quasi-isomorphism in general. �

Remark 4.2. In the following we will often consider the ring extension

A((~)) := A~⊗̂C[[~]]C((~),
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where C((~)) denotes the field of formal Laurent series in ~, and will then re-
gard A((~)) as an algebra over the ground field C((~)). By standard results from
Hochschild (co)homology theory one knows that

H•
(
A((~)) o G,A((~)) o G

)
= H•

(
A~ o G,A~ o G

)
⊗̂C[[~]]C((~). (4.2)

In the remainder of this article we will tacitly make use of this fact.

4.1. Reduction to the Čech complex. As in the undeformed case, the idea is
to use a Čech complex to compute the cohomology. For U ⊂ X , introduce

HkG,~(U) := HomC[[~]]

(
Γ∞cpt(U, Ã

~
fc)
⊗̂k, Ã~

fc(U)
)
.

This is clearly a deformation of the sheafH•
G
. The sheafHk

G,loc,~ is similarly defined.
As in the undeformed case, we now have an obvious map

I~
loc : C•loc

(
A~ o G,A~ o G

)
→ H•G,loc,~(X).

Proposition 4.3. The map I~
loc is a quasi-isomorphism of DGA’s.

Proof. By the Eilenberg-Moore spectral sequence, this follows from Theorem I. �

4.2. Twisted cocycles on the formal Weyl algebra. Our aim is to reduce
the computation of Hochschild to sheaf cohomology. The present section can be
viewed as a stalkwise computation. Let V = R2n equipped with the standard
symplectic form ω, and suppose that Γ ⊂ Sp(V, ω) is a finite group acting on V
by linear symplectic transformations. The action of an element γ ∈ Γ induces a
decomposition V = V γ ⊕ V ⊥ into symplectic subspaces. Put

`(γ) := dim(V ⊥) = dim(V )− dim(V γ).

Let W2n be the formal Weyl algebra, i.e., W2n = C[[y1, . . . , yn]][[~]] equipped with
the Moyal product

f ? g =

∞∑

k=0

∑

1≤i1,...,ik≤n

1≤j1,...,jk≤n

Πi1j1 · · ·Πikjk
~k

k!

∂kf

∂y1 . . . ∂yk

∂kg

∂y1 . . . ∂yk
,

where Π := ω−1 is the Poisson tensor associated to ω. With this product, the
formal Weyl algebra W2n is a unital algebra over C[[~]]. It is a formal deformation
of the commutative algebra C[[y1, . . . , y2n]]. With an automorphism γ ∈ Γ, we can
consider the Weyl algebra bimodule W2n,γ which equals W2n except for the fact
that the right action of W2n is twisted by γ. With this we have:

Proposition 4.4 (cf. [Pi]). The twisted Hochschild cohomology is given by

Hk (W2n,W2n,γ) =

{
C[[~]], for k = `(γ),

0, else.

There exists a generator Ψγ in the reduced Hochschild complex satisfying

Ψγ |ΛV ∗ =
(
Π⊥γ

)`(γ)/2
.

In fact, Ψ is, up to a coboundary, uniquely determined by this property.
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Proof. The first part of the Proposition is essentially well-known, cf. [AlFaLaSo,
Al]. It is conveniently proved by the Koszul resolution of the Weyl algebra

0←−W2n
?
←−W2n ⊗W

op
2n

∂
←− K1

∂
←− K2

∂
←− . . .

where

Kp := W2n ⊗ ΛpV ∗ ⊗W
op
2n,

and where the differential ∂ : Kp → Kp−1 is defined by

∂(a1 ⊗ a2 ⊗ dyi1 ∧ . . . ∧ dyip) :=
p∑

j=1

(−1)j
(
(yij ? a1)⊗ a2 − a1 ⊗ (a2 ? yij )

)
dyi1 ∧ . . . ∧ d̂yij ∧ . . . ∧ dyip ,

with respect to a Darboux basis of V , i.e., ω(yi, yi+n) = 1 and zero otherwise.
To compute the Hochschild cohomology, we take HomW2n

(−,W2n,γ) to obtain
the complex

Kp
γ := ΛpV ⊗W2n, (4.3)

with differential dγ : Kp → Kp+1 given by

dγ
(
a⊗ yi1 ∧ . . . ∧ yip+1

)
=

2n∑

j=1

(−1)j (yj ? a− a ?γ yj) yj ∧ yi1 ∧ . . . ∧ yip .

The cohomology of this complex can easily be computed using the spectral sequence
of the ~-adic filtration. In degree zero one finds the ordinary, i.e. commutative
Koszul complex and therefore we find

Ep,q1 = Λp+qV ⊥.

The differential d1 : Ep,q1 → Ep+1,q
1 is given by the Poisson cohomology differential,

which has trivial cohomology except in maximal degree and therefore

Ep,q2 =

{
Λ`(γ)V ⊥, for p+ q = `(γ),

0, else.

The spectral sequence degenerates at this point and the first part of the Proposi-
tion is proved. The second part is as in [Pi]: the Koszul complex is naturally a
subcomplex of the reduced Bar complex (K•, ∂) ⊂ (Bred

• , b), where

Bred
k = W2n ⊗ (W2n/C[[~]])⊗k ⊗W2n,

and the embedding is induced by the natural inclusion V ∗ ↪→ W2n as degree one
homogeneous polynomials. This leads to a natural projection

RV : (C•red (W2n,W2n) , βγ)→ (K•, dγ)

given by restricting cochains to ΛV ∗. It is easily checked that
(
Π⊥γ

)`(γ)/2
defines a

cocycle of degree `(γ) in the complex (K•, dγ), and the statement follows. �

Let µγ : K•γ → C[[~]] be the morphism defined by

µγ(a⊗ vi1 ∧ . . . ∧ vik ) := a(0)
(
ω⊥γ

)`(γ/2)
(vi1 , . . . , vik ) .

Clearly, this map is only nontrivial in degree `(γ) and maps the differential dγ on
K•γ to zero. Define

Pγ : C•red (W,Wγ)→ C[[~]]
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to be Pγ := µ ◦RV . On the other hand, choosing Ψγ as in the proposition defines
a morphism IΨγ

: C[[~]][`(γ)] → C•red (W,Wγ). The argument in the proof of the
proposition then shows:

Corollary 4.5. The inclusion IΨγ
and the projection Pγ are quasi-isomorphisms

satisfying Pγ ◦ IΨγ
= id.

Finally, we come to the full crossed product W2n o Γ. As usual, we have

H• (W2n o Γ,W2n o Γ) ∼=


⊕

γ∈Γ

H•(W2n,W2n,γ)




Γ

,

where the Γ-action is as explained in Section 3.2.

Corollary 4.6. The generators Ψγ , γ ∈ Γ satisfy

γ1 ·Ψγ2 −Ψγ1γ2γ
−1
1

= exact.

Therefore they define a canonical isomorphism

H• (W2n o Γ,W2n o Γ) =
⊕

〈γ〉⊂Γ

C[[~]][`(〈γ〉)].

Proof. Restricting to Λ•V ∗, we find

(
γ1 ·Ψγ2 −Ψγ1γ2γ

−1
1

)
|Λ•V ∗

= γ1 ·
(
Π⊥γ2

)`(γ2)/2
−

(
Π⊥
γ1γ2γ

−1
1

)`(γ1γ2γ−1
1 )/2

= 0

in K
`(γ2)

γ1γ2γ
−1
1

. By the argument above, the cocycles γ1 ·Ψγ2 and Ψγ1γ2γ
−1
1

therefore

differ by a coboundary, and the result follows. �

4.3. The Fedosov–Weinstein–Xu resolution over B0. Let B0 be the space of
loops in G:

B0 := {g ∈ G1 | s(g) = t(g)}.

We recall from [NePfPoTa] that the canonical inclusion ι : B0 ↪→ G1 gives B0 a
symplectic form by pull-back. Denote by A~

B0
:= ι−1A~ the pull-back of the defor-

mation quantization of G; this is not quite a deformation quantization of (B0, ι
∗ω),

because it involves the germ of B0 inside G1. Recall from [PfPoTa] that the sheaf
A~

B0
has a canonical local automorphism, denoted θ, coming from the fact that

B0 has a cyclic structure [Cr]. This enables us to define the following complex of
sheaves on B0:

C0 βθ
−→ C1 βθ

−→ . . .

where

Ck := HomC[[~]]

((
A~

B0

)⊗̂k
,A~

B0,θ

)

is the sheaf of Hochschild k-cochains, and βθ : Ck → Ck+1 is the twisted Hochschild
coboundary. We will now write down a resolution of this complex of sheaves. For
this, let WG be the bundle of Weyl algebras over G0. This is just the bundle
FSp,G0 ×Sp W associated to the symplectic frame bundle over G0 with typical fiber
W. This construction shows that WG carries a canonical action of the groupoid G.
In the following we will denote its sheaf of sections by the same symbol WG.



ORBIFOLD CUP PRODUCTS 23

Proposition 4.7 (cf. [Fe]). On B0 there exists a resolution

0 −→ A~
B0
−→ Ω0

B0
⊗WG

D
−→ Ω1

B0
⊗WG

D
−→ . . . , (4.4)

where D is a Fedosov connection on WG.

Proof. Let us first construct the Fedosov differential D. The sequence of maps

TB0
ω̃0−→ T ∗B0 → T ∗G→WG

determines an element A0 ∈ Ω1(B0,WG). On easily verifies that

[A0, A0] = ω0 ∈ Ω2
B0
⊗ C[[~]],

which is central inWG. Therefore, δ = ad(A0) defines a differential on Ω•(B0,WG),
and we have

Hk
(
Ω•B0
⊗WG, ad(A0)

)
=

{
Ω0

B0
⊗WN , for k = 0,

0, for k 6= 0,

because ad(A0) is simply a Koszul differential in the tangential directions along B0.
Choose a symplectic connection ∇B0 on B0 and a symplectic connection ∇N on

the normal bundle N → B0. We will consider connections on WG of the form

D = δ +∇+ ad(A•),

where ∇ = (∇B0 ⊗ 1 + 1⊗∇N ) and A ∈ Ω1(B0,WG) has deg(A) ≥ 2. Notice that
deg(δ) = 0 and deg(∇) = 1. Such a connection has Weyl curvature given by

Ω = ω0 + R̃ +∇A+
1

2
[A,A].

By the usual Fedosov method, we can find A such that Ω is central, i.e., Ω ∈
Ω2

B0
⊗C[[~]]. Since the differential D is a deformation of the Koszul complex above,

acyclicity of the sequence (4.4) follows. This shows the existence of the resolution

0 −→ Ω0
B0
⊗WN −→ Ω0

B0
⊗WG

D
−→ Ω1

B0
⊗WG

D
−→ . . . ,

so it remains to construct an isomorphism Ω0
B0
⊗WN

∼= ι−1A~
G
. This is done by

minimal coupling in [Fe]. �

Consider now the following double complex (C•,•, βθ, D) of sheaves:

...
...

...

Ω0
B0
⊗ C1

βθ

OO

D // Ω1
B0
⊗ C1

βθ

OO

D // Ω2
B0
⊗ C1

βθ

OO

D // . . .

Ω0
B0
⊗ C0

βθ

OO

D // Ω1
B0
⊗ C0

βθ

OO

D // Ω2
B0
⊗ C0

βθ

OO

D // . . .

where C• is the sheaf of formal power series of polydifferential operators onWG. This
complex is a twisted version of the Fedosov–Weinstein–Xu resolution considered in
[Do].

Proposition 4.8. The total cohomology of this complex is given by

Hk(Tot (C•,•) , βθ +D) = Hk(C•, βθ).
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Proof. Consider the spectral sequence by filtering the total complex by rows. This
yields

Ep,q1 = Hp
v (C
•,q) =

{
Ω0

B0
⊗ Cq, for p = 0,

0, for p 6= 0,

since the resolution (4.4) is acyclic. At the second stage

E0,q
2 = Hq(C•, βθ)⇒ Hq (Tot (C•,•)) .

Since the spectral sequence collapses at this point, this proves the statement. �

Of course the cohomology sheaf of the vertical complex is computed by Propo-
sition 4.4. If we replace the vertical complex by its reduced counterpart, we get a
natural projection

R : Γ
(
B0, C

`
)
→ Γ

(
B0,Ω

`
G

)
,

where ` is the locally constant function on B0 defined in Section 2. The transversal
Poisson structure induced by ω ∈ Ω2(G0) induces a section

(
Π⊥θ

)`/2
∈ Γ

(
B0,Ω

`
G

)
,

and we choose Ψ ∈ Γ
(
B0, C

`
)

which generates the fiberwise vertical cohomology
and projects onto the section above.

Proposition 4.9. The map IΨ extends to a morphism

IΨ :
(
Ω•B0
⊗ C[[~]][`], d

)
→ (Tot• (C•,•) , D + βθ)

of cochain complexes of sheaves by the formula

IΨ(α) := α⊗Ψ.

In fact, this is a quasi-isomorphism.

Proof. Let us first prove that IΨ is a map of cochain complexes of sheaves. Consider
the projection map P : Ω•

B0
⊗ C•red → Ω•

B0
⊗ C((t)). It satisfies P ◦ IΨ = id. We

therefore have to show that

P ◦D ◦ IΨ = d.

Since the statement of the proposition is a local statement we can write the Fedosov
connection as

D = d+ ad(A),

with A ∈ Ω1
B0
⊗WG = Ω1

B0
⊗C0. It then follows easily that D : Ωk

B0
⊗C• → Ωk+1

B0
⊗C•

is given by

D = d+ [βA, ],

where [ , ] is the Gerstenhaber bracket on the Hochschild cochain complex. We
now compute

PDIΨ(α) − dα = α⊗ P ([βA,Ψ])

= α⊗ P (β ([A,Ψ])− [A, βΨ])

= 0,

where we have used that Ψ is a cocycle, i.e., βΨ = 0, and the fact that P maps
coboundaries to zero. This proves that IΨ is a map of cochain complexes of sheaves.

�

Using Proposition 4.8 we now find:
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Corollary 4.10. There is a natural isomorphism

H•(C•B0
, βθ) ∼= H•−` (B0,C[[~]]) .

Finally, notice that C•,•
B0

is in a natural way a double complex of Λ(G)-sheaves
on B0, because the Fedosov resolution of Proposition 4.7 carries a natural G-action.
Therefore, we can define the following sheaf on X̃ :

C•,•
X̃

(Ũ) := C•,•
B0

(π̃−1(Ũ))Λ(G)|Ũ .

Because G, and therefore also Λ(G), is proper, it follows from Corollary 4.10 that
its hypercohomology is given by

H•(C•,•
X̃
, βθ) ∼= H•−`

(
X̃,C[[~]]

)
. (4.5)

4.4. Local computations. In this section we will perform several explicit compu-
tations in some open orbifold charts. This suffices to prove the result in the case of
a global quotient orbifold. The general case is treated in the next section.

Let U ⊂ R2n be an open orbifold chart with a finite group ΓU acting by linear
symplectic transformations, so that we have U/ΓU ⊂ X .

Proposition 4.11. There exist a natural quasi-isomorphism

H•MoΓ,loc,~(M/Γ)→ C•,•
M̃/Γ

(
M̃/Γ

)
.

Proof. We first use the natural map

H•G,loc,~(U/ΓU )→ C•loc

(
A~(U) o ΓU ,A

~(U) o ΓU
)

of the “deformed version” of Theorem IIIb. As in the undeformed case, there is a
quasi-isomorphism

L~
1 : C•loc

(
A~(U) o ΓU ,A

~(U) o ΓU
)
→ C•loc

(
A~

cpt(U),A~
cpt(U) o ΓU

)ΓU
,

given by the same formula as for L1. The right hand side is the space of ΓU -
invariants of a complex which decomposes into

⊕

γ∈ΓU

C•loc

(
A~(U),A~(U)γ

)
.

There is a natural morphism

C•loc

(
A~(U),A~(U)γ

)
→ C•loc

(
ι−1A~(Uγ), ι−1A~(Uγ)γ

)
,

where ι−1A~(Uγ) := Γ
(
Uγ , ι−1A~

)
is by definition the algebra given by the jets

along the embedding ι : Uγ ↪→ U . Indeed the locality condition for cochains
Ψ ∈ Ckloc states in this case that the value Ψ(f1, . . . , fk)(x) can only depend on the
germs of f1, . . . , fk at the points of the γ-orbit of x ∈ U . Restricted to U γ ⊂ U , such
cochains therefore preserve the subalgebra ι−1A~(Uγ) ⊂ A~(U), and the restriction
map above is well-defined. Even stronger, it is a quasi-isomorphism because on E0-
level of the spectral sequence associated to the filtration by powers of ~ this map
is simply given by localization, which we already know to be a quasi-isomorphism,
cf. Section 3.2.

As remarked above, local cochains, in the sense defined above, are truly local
with respect to Uγ , because points in Uγ by definition have a trivial γ-orbit. From
this we see that there is a canonical isomorphism

C•loc

(
ι−1A~

cpt(U
γ), ι−1A~

cpt(U
γ)γ

)
∼= C•(Uγ),



26 M.J. PFLAUM, H.B. POSTHUMA, X. TANG, AND H.-H. TSENG

compatible with differentials. Taking the sum over all γ ∈ ΓU , and taking ΓU -
invariants, defines the map of the proposition. As the argument shows, it is a
quasi-isomorphism. �

Using the Fedosov–Weinstein–Xu resolution, this result suffices to compute the
Hochschild cohomology for a global quotient symplectic orbifold:

Corollary 4.12. For a global quotient X = M/Γ of a finite group Γ acting on a
symplectic manifold M , there is a natural isomorphism

H•(A
((~))
cpt (M) o Γ,A

((~))
cpt o Γ) ∼=

⊕

(γ)⊂Γ

H
•−`γ
Z(γ) (Mγ ,C((~))).

Proof. This follows from the isomorphism (4.5). �

Next, we consider the cup-product. An easy computation shows that the map

L~
1 induces the following product on the complex C•loc

(
A~

cpt(U),A~
cpt(U) o ΓU

)ΓU
:

(ψ • φ)γ :=
∑

γ1γ2=γ

ψγ1 ∪tw φγ2

where the map

∪tw : Ck(A~(U),A~(U)γ1)× C
l(A~(U),A~(U)γ2)→ Ck+l(A~(U),A~(U)γ1γ2)

is defined as

(ψγ1 ∪tw φγ2) (a1, . . . , ak+l) := ψγ1(a1, . . . , ak)γ1φγ2(ak+1, . . . , ak+l).

Indeed one easily checks that

βγ1γ2 (ψγ1 ∪tw φγ2) = (βγ1ψγ1) ∪tw φγ2 + (−1)deg(ψ)ψγ1 ∪tw (βγ2φγ2).

Restricting to Ũ =
⊔
γ U

γ , this induces the following product on the Fedosov–

Weinstein–Xu resolution C•,•
Ũ/ΓU

(Ũ/ΓU ):

((α ⊗ ψ) • (β ⊗ φ))γ :=
∑

γ1γ2=γ

(
ι∗γ(αγ1) ∧ ι

∗
γ(βγ2)

)
⊗

(
ι∗γ(ψγ1) ∪tw (ι∗γ(φγ2)

)
,

where an element of C•,•
Ũ/ΓU

(Ũ/ΓU ) is written as α ⊗ ψ =
∑

γ αγ ⊗ ψγ , with αγ ∈

Ω•(Uγ) and ψγ is a local section the sheaf of Hochschild cocycle onWG overUγ ⊂ U .
We therefore have:

Proposition 4.13. The map of Proposition 4.11 is compatible with products that
means defines a quasi-isomorphism of sheaves of DGA’s on U/ΓU .

For a global quotient orbifold, this leads immediately to:

Corollary 4.14. Under the isomorphism of Corollary 4.12, the cup-product is
given by

α • β =
∑

γ1γ2 = γ

`(γ1) + `(γ2) = `(γ1γ2)

ι∗γαγ1 ∧ ι
∗
γ2αγ2 .

Proof. The isomorphism of Corollary 4.12 is induced by the quasi-isomorphism

IΨ :
(
Ω•
X̃
⊗ C[[~]], d

)
→

(
C•,•
X̃
, D + βtw

)
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of Proposition 4.9. We therefore find

IΨ(α) • IΨ(β) =
∑

γ1γ2=γ

(
ι∗γ(αγ1) ∧ ι

∗
γ(βγ2)

)
⊗

(
ι∗γ(Ψγ1) ∪tw (ι∗γ(Ψγ2)

)
.

We will now consider the second component ι∗γ(Ψγ1) ∪tw (ι∗γ(Ψγ2) for a moment.
An easy calculation shows that in the Koszul complex (4.3), the product

∪tw : Kp
γ1 ×K

q
γ → Kp+q

γ1γ2

is given by (
a1 ⊗ yIq

)
∪tw

(
a2 ⊗ yIq

)
= (a1γ1a2)⊗ yIp

∧ γ1yIq
,

where Ip and Iq are multi-indices of length p resp. q. Therefore,

(
Π⊥γ1

)`(γ1)/2
∪tw

(
Π⊥γ2

)`(γ2)/2
=

{(
Π⊥γ1γ2

)`(γ1γ2)/2
, if `(γ1) + `(γ2) = `(γ1γ2),

0, else.

In the reduced Hochschild complex, this gives

Ψγ1 ∪tw Ψγ2 =

{
Ψγ1γ2 + exact, if `(γ1) + `(γ2) = `(γ1γ2),

exact, else.

Taking cohomology we find the product as stated above. �

4.5. The general case. Recall that we have spaces and morphisms as in the fol-
lowing diagram:

B0
//

π̃

��

G0

π

��
X̃

ψ // X

As in [ChHu], define the space

S
1
G := {(g1, g2) ∈ G1 × G1 | s(g1) = t(g1) = s(g2) = t(g2)}.

It comes equipped with three maps pr1,m, pr2 : S1
G
→ B0, where pr1(g1, g2) = g1,

m(g1, g2) = g1g2 and pr2(g1, g2) = g2. For differential forms α, β ∈ Ω•(B0), define
the following product:

α • β =

∫

m`

pr∗1 α ∧ pr∗2 β, (4.6)

where m` : S
1
G,` → B0 is the restriction of the multiplication map and

S
1
G,` := {(g1, g2) ∈ S

1
G | `(g1) + `(g2) = `(g1g2)}.

Both S1
G,` and B0 carry a natural action of G by conjugating loops and the quotient

B0/G = X̃. We have

Ω•(X̃) = Ω•(B0)
G,

and the product (4.6) defines an associative graded product on Ω•(X̃). Together

with the de Rham differential, it turns Ω•(X̃) into a differential graded algebra. Of

course, Ω•(X̃) is the global sections of a sheaf on X̃ , but it is important to notice
that the product (4.6) is not local. However, if we consider ψ∗Ω

•
X̃

, the push-forward

to X , we have Γ(X,ψ∗Ω
•
X̃

) = Ω•(X̃) and now the product is local, i.e., (ψ∗Ω
•
X̃
, d, •)

does define a sheaf of DGA’s on X .
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The same can be done for the FWX-resolution on X̃ . This time we introduce
the product

(α⊗ ψ) • (β ⊗ φ) :=

∫

m`

(pr∗1α ∧ pr∗2 β)⊗ (pr∗1 ψ ∪tw pr∗2 φ) . (4.7)

Again, because of the integration over the fiber, this defines a local product on
ψ∗C•,•

X̃
, so that the total sheaf complex is a sheaf of DGA’s.

Lemma 4.15. The embedding of Proposition 4.9 defines a quasi-isomorphism

IΨ : ψ∗Ω
•−`

X̃
⊗ C[[~]]→ ψ∗C

•,•

X̃

compatible with products up to homotopy.

Proof. By Corollary 4.6, if we choose Ψ ∈ Γ
(
B0, C

`
)

to be G-invariant, it descends
to a morphism

IΨ : ψ∗Ω
•−`

X̃
⊗ C[[~]]→ ψ∗C

•,•

X̃

By assumption, the groupoid G is proper, so we have

H

(
X̃, (Ω•

X̃
, d)

)
∼= H

(
B0, (Ω

•
B0
, d)

)G
,

and similarly for C•,•
X̃

. Therefore the morphism IΨ is a quasi-isomorphism be-

cause it is a quasi-isomorphism on B0. The fact that it preserves products up to a
coboundary, is a simple calculation as in the proof of Corollary 4.14. �

Proposition 4.16. There is a quasi-isomorphism

H•G,loc,~ → ψ∗C
•,•

X̃

which maps the cup-product to the product (4.7)

Proof. For any x ∈ X , choose a local slice to obtain a morphism

H•G,loc,~(Ux)→ C•
(
A~(Mx) o Gx,A

~(Mx) o Gx

)
,

as in Theorem IIIb. By this very same Theorem IIIb, one knows that on E0 of
the spectral sequences associated to the ~-filtration, the above chain morphism
is a quasi-isomorphism, and therefore it is a quasi-isomorphism on the original
complexes. We now compose with the morphism of Proposition 4.11 to get a map

H•G,loc,~ → ψ∗C
•,•

˜Mx/Gx

(Ux) ∼= ψ∗C
•,•

X̃
(Ux).

Because the sheaves are fine, this in fact defines a global quasi-isomorphism over
the orbifold X . �

Finally, combining Lemma 4.15 with Proposition 4.16, we have arrived at the
main conclusion:

Theorem 4.17. Let G be a proper étale groupoid with an invariant symplectic
structure, modeling a symplectic orbifold X. For any invariant deformation quan-
tization A~ of G, we have a natural isomorphism

H•
(
A((~)) o G,A((~)) o G

)
∼= H•−`

(
X̃,C((t))

)
.

With this isomorphism, the cup product is given by (4.6).
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Remark 4.18. We explain the product (4.6) using the orbifold language. Let X

be represented by the groupoid G such that X = G0/G, and X̃ be the corresponding
inertia orbifold represented by B0/G. Locally, an open chart of X is like U/Γ with

Γ a finite group acting linearly on an open subset U of Rn. Accordingly X̃ is locally
represented by

( ∐
γ∈ΓU

γ
)
/Γ ∼=

∐
(γ)⊂Γ U

γ/Z(γ), where (γ) is the conjugacy class

of γ in Γ. We usually use Xγ to stand for the component of X̃ containing Uγ/Z(γ).
With these notations, the above S1

G
and S1

G,` are locally represented as

S1
G =

∐

γ1,γ2

Uγ1 ∩ Uγ2 , S1
G,` =

∐

γ1, γ2,

`(γ1) + `(γ2) = `(γ1γ2)

Uγ1 ∩ Uγ2 .

As we are considering G-invariant differential forms on B0, their pull-backs
through projections pr1, pr2 to S1

G
and S1

G,` are invariant under the following G-

action on S1
G

and S1
G,`, which is defined as

(g1, g2)g = (g−1g1g, g
−1g2g), (g1, g2) ∈ S

1
G,`, s(g) = t(g2) = t(g2).

Locally this action can be written as a Γ-action on
∐
γ1,γ2

Uγ1 ∩ Uγ2 ,

(x, γ1, γ2)γ = (γ−1(x), γ−1γ1γ, γ
−1γ2γ), γ1(x) = γ2(x) = x, γ ∈ Γ.

The corresponding quotient space S1
G
/G is usually denoted by

X3 = {(x, (g1, g2, g3)) | g1, g2 ∈ Stab(x), g1g2g3 = id, x ∈ X}. (4.8)

One can see that locally X3 = Xg1 ∩Xg2 . The pullbacks of G-invariant differential
forms on B0 are differential forms on X3. Therefore, the formula (4.6) can be

interpreted as follows. For α1, α2 ∈ Ω•(X̃),

α1 • α2|γ =
∑

γ1, γ2,

`(γ1) + `(γ2) = `(γ1γ2)

ι∗γ1(α1|γ1) ∧ ι
∗
γ2(α2|γ2),

where ι∗γi
is the embedding of X3 in Xγi , i = 1, 2.

4.6. Frobenius algebras from Hochschild cohomology. The product struc-
ture of Theorem 4.17 is part of a natural graded Frobenius algebra associated
to A((~)) o G. Recall that a Frobenius algebra is a commutative unital algebra
equipped with an invariant trace. The construction of this Frobenius algebra on
the Hochschild cohomology uses one additional piece of data, namely the trace on
the algebra A~ o G constructed in [PfPoTa].

Let A be a unital algebra over a field k equipped with a trace tr : A → k. As
we have seen, the cup-product (A.6) gives the Hochschild cohomology H•(A,A)
the structure of a graded algebra. The Hochschild homology HH•(A) is a natural
module over this algebra if we let a cochain ψ ∈ Ck(A,A) act as ιψ : Cp(A) →
Cp−k(A) given by

ιψ(a0 ⊗ . . .⊗ ap) = (−1)deg(ψ)a0ψ(a1, . . . , ak)⊗ ak+1 ⊗ . . .⊗ ap.

With this module structure, the trace induces a pairing

〈 , 〉 : H•(A,A)×HH•(A)→ k

which is given by

〈ψ, a0 ⊗ . . .⊗ ak〉 = tr (ιψ(a0 ⊗ . . .⊗ ak)) .
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Let us assume, as in our case, that the Hochschild cohomology and homology are
finite dimensional and that this pairing is perfect.

Proposition 4.19. Under these assumptions, the ring structure on H•(A,A) is
part of a natural graded Frobenius algebra structure.

Proof. The pairing gives us a canonical isomorphism H•(A,A) ∼= H•(A)∗. The
trace defines a canonical element [tr] ∈ H0(A)∗ which defines the unit. Furthermore,
the unit 1 ∈ H0(A) ∼= H0(A,A)∗ defines an invariant trace. �

In the case at hand, the deformation of the convolution algebra on a symplectic
orbifold, the Hochschild homology was computed in [NePfPoTa] to be

H•

(
A((~)) o G

)
∼= H2n−•

cpt

(
X̃,C((~))

)
.

With the trace of [PfPoTa], one checks that the pairing between Hochschild ho-

mology and cohomology above is nothing but Poincaré duality on X̃.

5. Chen-Ruan orbifold cohomology

In this section, we study S1-equivariant Chen-Ruan orbifold cohomologies on
an almost complex orbifold. In a special case, we apply the idea from [ChHu] to
introduce a de Rham model (topological Hochschild cohomology) to compute this
equivariant cohomology. In the last subsection, we compare this de Rham model
with the previous computation of Hochschild cohomology of the quantized groupoid
algebra. The Hochschild cohomology of the quantized groupoid algebra is identified
as a graded algebra of the de Rham model with respect to some filtration.

5.1. S1-Equivariant Chen-Ruan orbifold cohomology. In this subsection, we
briefly introduce the idea of S1-equivariant Chen-Ruan orbifold cohomology. Let
X be an orbifold with an S1 action. This means that there is a morphism f :
S1 × X → X of orbifolds. One can think of a morphism between two orbifolds
as a collection of morphisms between charts and group homomorphisms between
local groups such that the morphisms between charts are equivariant with respect
to local group actions, and are compatible with overlaps of charts. (See [ChRu04]
and [AdLeRu] for more details.) The action is assumed to be associative, which is a
somewhat delicate property since the category of orbifolds is not a category but a 2-
category. This means that the standard associativity diagram for a group action on
an orbifold is only required to be commutative up to 2-morphisms. Generalities on
group actions on categories can be found in [Ro]. The S1-equivariant cohomology
is defined via the standard Borel construction:

H•S1(X) := H•(X ×S1 ES1).

We identify H•S1(pt) = C[t]. With this, H•S1(X) is considered as a C[t]-module. As
usual, we consider the fraction field C((t)) and put

H•S1(X)((t)) := H•S1(X)⊗C[t] C((t)).

In the following, we shall use the Cartan model for equivariant cohomology to
represent cohomology classes by equivariant differential forms.

As before, X̃ is the inertia orbifold, and p : X̃ → X the natural projection.
It is easy to check that the S1-action lifts to X̃. Indeed, for any s ∈ S1 the
action morphism fs : s ×X → X defines for each x ∈ X a group homomorphism



ORBIFOLD CUP PRODUCTS 31

ρs : Stab(x) → Stab(fs(x)). This induces the S1-action on X̃, whose points are
pairs (x, (γ)), x ∈ X, γ ∈ Stab(x). More precisely, the action is given by

S1 × X̃ → X̃, (s, (x, (γ))) 7→ (fs(x), (ρs(γ))).

As a C[t]-module, the S1-Chen-Ruan orbifold cohomology can be defined exactly
in the same fashion as its non-equivariant version [ChRu04], that is

H•S1(X̃) := H•(X̃ ×S1 ES1).

There is a natural involution I : X̃ → X̃ which maps a point (x, (γ)) to (x, (γ−1)).
The orbifold Poincaré pairing 〈 , 〉, which is defined by

〈a, b〉 :=

∫

X̃

a ∧ I∗b,

naturally extends to a non-degenerate pairing on H•S1(X̃).
The additional structures one defines on Chen-Ruan orbifold cohomology require

a choice of an almost complex structure on the tangent bundle TX , which we now
make. We also assume that the S1-action on TX is compatible with this almost
complex structure.

We will assume an S1-action on the tangent bundle TX which commutes with
the S1-action on the base X . It should be noted that we do not necessarily work
with the canonical action on TX induced from that on X . This will be important in
what follows. Therefore the pull-back bundle p∗TX admits an S1-action covering
that on X̃. Let Xγ be a component of X̃. The bundle p∗TX |Xγ splits into a direct
sum of γ-eigenbundles. This allows one to define the age function, denoted by ι(γ)

(c.f. [ChRu02]). This is a locally constant function on X̃ . We consider the shifted

S1-equivariant cohomology of X̃,

H•S1(X̃)((t))[−2ι(γ)].

Here t is assigned degree 2.
The S1-action on p∗TX |Xγ restricts to an S1-action on each eigenbundle. Now

consider the tri-cyclic sector (4.8), i.e., the quotient SG/G. There are three evalu-

ation maps ei : X3 → X̃ , ei((x, (γ1, γ2, γ3)) = (x, (γi)). The S1-action also lifts to
tri-cyclic sector:

S1 ×X3 → X3, (s, (x, (γ1, γ2, γ3))) 7→ (fs(x), (ρs(γ1), ρs(γ2), ρs(γ3))).

The evaluation maps are clearly S1-equivariant. It follows from the above discussion
that the obstruction bundle Θ over the tri-cyclic sector X3 is an S1-equivariant
orbifold bundle on X̃. Therefore, we can define S1-equivariant orbifold cup product
?t by

〈α1 ?t α2, α3〉 =

∫

X3

e∗1(α1) ∧ e
∗
2(α2) ∧ e

∗
3(I
∗(α)) ∧ euS1(Θ),

where euS1(Θ) is the equivariant Euler class of the obstruction bundle. Many
properties of the Chen-Ruan orbifold cohomology algebra holds for the algebra

(H•S1(X̃)((t))[−2ι(γ)], ?t),

with the same proofs. For example, the associativity of ?t is reduced to the rational
equivalence between two points in the moduli spaceM 0,4 of genus zero stable curves

with four marked points. (Note that M 0,4 ' CP
1.) See [ChRu04] for more details.
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5.2. Equivariant de Rham model. In this subsection, we define an equivariant
de Rham model for a special case of the above introduced S1-equivariant Chen-
Ruan orbifold cohomology. We introduce our definition of topological Hochschild
cohomology algebra with the following steps.

Step I: We start with an arbitrary almost complex orbifold X locally like M/Γ,

and introduce a trivial S1 action on X and therefore also on X̃ which is locally
like (

∐
γ∈ΓM

γ)/Γ. Accordingly, the S1-equivariant cohomology of X̃ is equal to

H•(X̃)((t)).

Step II: We introduce a “nontrivial” S1-action on the tangent bundle TX of X
which commutes with the trivial S1-action on X . Since TX is an almost complex
bundle, S1 identified with U(1) acts on TX as the center of the principal group
GL(dimC(TX),C). Geometrically, this action is simply rotation by an angle. We
remark that since S1 is identified as the center of the principal group, the above
S1-action commutes with all the orbifold structure. And we have made TX into
an S1-equivariant orbifold bundle on X , and the same is for p∗TX on X̃.

Step III: We consider the normal bundle Nγ of the embedding of Xγ into X .
Since the S1-action on TX commutes with the γ-action, Nγ inherits an S1-action,
and becomes an S1-equivariant vector bundle on Xγ. We decompose Nγ into a
direct sum of S1-equivariant line bundles ⊕iN

γ
i , with respect to the eigenvalue of

γ-action, i.e. exp(2πiθi) and 0 ≤ θi < 1. Let ti be the equivariant Thom form for
Nγ
i , and the equivariant Thom class Tγ of Nγ be defined by

Tγ :=
∏

i

ti.

For the following, it is important to remark that Tγ is invertible in Ω•S1(Nγ).

Definition 5.1. Define the topological Hochschild cohomology HT •(X)((t)) of an
orbifold X to be ⊕

H•(Xγ)((t))[−`(γ)],

where `(γ) is, as before, the codimension of Xγ ∈ X .
On HT •(X)((t)), we define a cup product ∧t as follows. First of all, the cup

product is C((t)) linear. For αi ∈ Ω•−`(γi)(Xγi)((t)), i = 1, 2, α1 ∧α2 is defined by
the following integral,

〈α1 ∧t α2, α3〉 =

∫

Xγ1γ2

ι∗(α1 ∧ Tγ1 ∧ α2 ∧ Tγ2)

ι∗(Tγ1γ2)
∧ I∗(α3),

for any α3 ∈ Ω•−`(γ1γ2)(Xγ1γ2)((t)),

Remark 5.2. More explicitly, if ι∗ is the pushforward of Ω∗(X̃) into Ω∗(X) we
have that α1 ∧t α2 = ι∗(ι∗(α1) ∧ ι∗(α2)). A more global way to write the product,
in the style of Section 4.5, is as follows:

α1 ∧t α2 =

∫

m

pr∗1(α1 ∧ T ) ∧ pr∗2(α2 ∧ T )

m∗T
,

where, as before m : S → B0 is the multiplication and
∫
m means integration over

the discrete fiber.
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We remark that the associativity of ∧t is an easy corollary of the associativity
of the wedge product on differential forms of X . The following are a few simple
observations of HT •(X)((t)), which we state without proofs. (They are corollaries
of Theorem 5.2.)

(1) the product ∧t is C((t))-linear;
(2) (HT •(X)((t)),∧t) is a graded algebra.

In summary, with the S1-action introduced in Step I and II, we can introduce
two cohomology algebra structures on Ω•(X̃)((t)).

(1) S1-equivariant Chen-Ruan orbifold cohomology algebra as in Section 5.1;
(2) topological Hochschild cohomology algebra as in Definition 5.1.

In the rest of this subsection, we relate the topological Hochschild cohomol-
ogy (HT •(X̃)((t))[−l],∧t) with the S1-equivariant Chen-Ruan orbifold cohomology

(H•CR(X̃)((t))[−2ι], ?t). The key ingredient connecting these two algebra structures
is a certain equivariant Euler class naturally associated to the orbifold.

We consider a stringy K-group class [JaKaKi] sγ associated to the normal bundle
Nγ of an orbifold X , i.e.,

sγ :=
⊕

i

θiN
γ
i . (5.1)

The equivariant Euler class tγ of sγ is defined to be

tγ := ι∗(
∏

i

tθi

i ) ∈ H2ι(γ)(Xγ)((t)),

where ti is the S1-equivariant Thom class of Nγ
i , ι∗ is the pullback of the Thom

form to Xγ which is embedded as the zero section. We remark that tθi

i and tγ
are well defined in the S1-equivariant cohomology H•(Xγ)((t)) by using the Taylor
expansion of tθi for the θ-power.

We define the following isomorphism Jγ : H•(Xγ)((t))[−2ι(γ)]→ H•−l(γ)(Xγ)((t))
of vector spaces,

Jγ(α) = α/tγ−1 , for all α ∈ H•−2ι(γ)(Xγ)((t)).

Remark 5.3. We observe that tγ is invertible in H•(Xγ)((t)), because it has a
nonzero constant term. Accordingly, Jγ is a linear isomorphism of the vector spaces.

The collection of all Jγ defines an isomorphism J = ⊕γJγ on H•(X̃).
The map J preserves grading. The degree of tγ−1 is equal to `(γ) − 2ι(γ). If α

is an element in H•(Xγ)((t))[−2ι(γ)] = H•−2ι(γ)(Xγ)((t)), J(α) is of degree

• − 2ι(γ)− (`(γ)− 2ι(γ)) = • − `(γ).

The following theorem is a generalization of the result in [ChHu].

Theorem VI. The map J is an isomorphism of C((t))-algebras from the algebra
(H•CR(X)((t)), ?t) to (HT •(X)((t)),∧t).

Proof. As we have remarked, J is an isomorphism of vector spaces preserving the
degrees. It is sufficient to show that J is compatible with the algebra structures.
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For αi ∈ H•(Xγi)((t))[−2ι(γi)], i = 1, 2, and α3 ∈ H•(Xγ1γ2)((t))[−2ι(γ1γ2)]
we have

〈J(α1) ∧ J(α2), α3〉

=

∫

Xγ1γ2

ι∗( α1

t
γ1

−1
∧ Tγ1 ∧

α2

t
γ2

−1
∧ Tγ2)

ι∗(Tγ1γ2)
∧ I∗(α3)

=

∫

Xγ1,γ2

ι∗( α1

t
γ1

−1
∧ Tγ1 ∧

α2

t
γ2

−1
∧ Tγ2)

ι∗(Tγ1γ2)
∧ I∗(α3) ∧

ι∗(Tγ1γ2)

ι∗(Tγ1,γ2)

=

∫

Xγ1,γ2

ι∗(α1) ∧ ι
∗(α2) ∧ ι

∗(I∗(α3)) ∧
ι∗(Tγ1) ∧ ι

∗(Tγ2)

ι∗(tγ1−1) ∧ ι∗(tγ2−1) ∧ ι∗(Tγ1,γ2)
,

whereXγ1,γ2 := Xγ1
⋂
Xγ2 , and Tγ1,γ2 is the equivariant Thom form for the normal

bundle of Xγ1,γ2 in X , and ι∗ is the pullback of the forms to Xγ1,γ2 . And we can
summarize the above computation in the following equation, for γ3 = (γ1γ2)

−1,

〈J(α1) ∧ J(α2), α3〉 =

∫

Xγ1,γ2

ι∗(α1) ∧ ι
∗(α2) ∧ ι

∗(I∗(α3)) ∧ Rγ1,γ2,γ3 , (5.2)

with

Rγ1,γ2,γ3 =
ι∗(Tγ1) ∧ ι

∗(Tγ2)

ι∗(tγ1−1) ∧ ι∗(tγ2−1) ∧ ι∗(Tγ1,γ2)

We now apply the result of [JaKaKi] to better understand the term Rγ1,γ2,γ3 .
By [JaKaKi][Thm. 1.2], for γ1γ2γ3 = id, when restricted to Xγ1,γ2 := Xγ1

⋂
Xγ2 ,

the obstruction bundle Θγ1,γ2 as a stringy K-group class has a natural splitting

Θγ1,γ2 = T (Xγ1,γ2)	 TX |Xγ1,γ2 ⊕ sγ1 |Xγ1,γ2 ⊕ sγ2 |Xγ1,γ2 ⊕ sγ3 |Xγ1,γ2 , (5.3)

where we remind that sγi is an element in the stringy K-group [JaKaKi] as defined
in Eq. (5.1).

We remark that the above isomorphism for Θγ1,γ2 again holds as S1−equivariant
bundles because the S1 actions on the respective bundles are defined by the almost
complex structures and the equation (5.3) preserves almost complex structures.
Now taking the equivariant Euler classes of the bundles in Eq. (5.3) on Xγ1,γ2 , we
have that on Xγ1,γ2

euS1(Θγ1,γ2) =
ι∗(tγ1) ∧ ι

∗(tγ2) ∧ ι
∗(tγ3)

ι∗(Tγ1,γ2)

=
ι∗(Tγ1) ∧ ι

∗(Tγ2) ∧ ι
∗(Tγ3)

ι∗(tγ1−1) ∧ ι∗(tγ2−1) ∧ ι∗(tγ3−1) ∧ ι∗(Tγ1,γ2)
,

where in the second equality, we have used the fact that on Xγ1,γ2 ,

ι∗(tγi
) =

ι∗(Tγi
)

ι∗(tγ−1
i

)
for i = 1, 2, 3.
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We use the above expression for euS1(Θγ1,γ2) to compute 〈J(α1 ?t α2), α3〉.

〈J(α1 ?t α2), α3〉

=

∫

Xγ1γ2

α1 ?t α2

t(γ1γ2)−1

∧ I∗(α3)

=

∫

Xγ1,γ2

α1 ∧ α2 ∧
ι∗(I∗(α3))

ι∗(t(γ1γ2)−1)
∧ euS1(Θγ1,γ2)

=

∫

Xγ1,γ2

α1 ∧ α2 ∧
ι∗(I∗(α3))

ι∗(t(γ1γ2)−1)
∧

ι∗(Tγ1) ∧ ι
∗(Tγ2) ∧ ι

∗(Tγ3)

ι∗(tγ1−1) ∧ ι∗(tγ2−1) ∧ ι∗(tγ3−1) ∧ ι∗(Tγ1,γ2)
.

Using the equality

ι∗(t(γ1γ2)−1) = ι∗(tγ3) =
ι∗(Tγ3)

ι∗(tγ−1
3

)
,

we conclude that

〈J(α1 ?t α2), α3〉

=

∫

Xγ1,γ2

ι∗(α1) ∧ ι
∗(α2) ∧ ι

∗(I∗(α3)) ∧
ι∗(Tγ1) ∧ ι

∗(Tγ2)

ι∗(tγ1−1) ∧ ι∗(tγ2−1) ∧ ι∗(Tγ1,γ2)

= 〈J(α1) ∧t J(α2), α3〉 .

The last equation, combining with Poincaré duality, implies that

J−1(J(α1) ∧ J(α2)) = α1 ?t α2.

This completes the proof. �

Remark 5.4. Note that when t is equal to 0, the map J is not invertible generally.
However, one can solve this problem by working in the formal framework as in
[ChHu]. In this case our model extends Chen-Hu’s model to an arbitrary almost
complex orbifold.

5.3. Topological and algebraic Hochschild cohomology. In the case of a sym-
plectic orbifold (X,ω), we have two cohomology algebra structures from different
approaches. One is the Hochschild cohomology algebra of the quantized groupoid
algebra computed in Theorem 4.17, the other is the topological Hochschild coho-
mology HT •(X)((t)) defined in Definition 5.1 using essentially a unique (up to
homotopy) compatible almost complex structure to the symplectic structure on X .
We observe that the algebra structure on the Hochschild cohomology of the quan-
tized groupoid algebra is completely topological, which does not depend on the
symplectic structures or the almost complex structures at all. On the other hand,
the topological Hochschild cohomology HT •(X)((t)) does depend on the choices
of almost complex structures. Therefore, it is natural to expect that these two
algebras are not isomorphic. In this subsection, we would like to study the con-
nections between these two algebra structures. We show in the following that the
graded algebra of the topological Hochschild cohomology algebra is isomorphic to
the Hochschild cohomology of the corresponding quantized groupoid algebra.

We introduce a decreasing filtration on the topological Hochschild cohomology
HT •(X)((t)) as follows

F∗ = {α ∈ HT •(Xγ)((t)) | deg(α) − `(γ) ≥ ∗}.

Lemma 5.5. (HT •(X)((t)),∧t,F
∗) is a filtered algebra.



36 M.J. PFLAUM, H.B. POSTHUMA, X. TANG, AND H.-H. TSENG

Proof. One needs to prove that Fk ∧t F
l ⊂ Fk+l. To this end let α1 ∈ F

k and
α2 ∈ F

l and consider α1 ∧t α2. Without loss of generality, let us assume that
α1 ∈ HT k1(Xγ1)((t)) and α2 ∈ HT k2(Xγ2)((t)) with k1 ≥ k + `(γ1) and k2 ≥
l + `(γ2). Since (HT •(X)((t)),∧t) is a graded algebra respect to •, we have that
deg(α1 ∧ α2) = k1 + k2 ≥ k + `(γ1) + l + `(γ2). Since `(γ1) + `(γ2) ≥ `(γ1γ2), we
have that

deg(α1 ∧t α2)− `(γ1γ2) ≥ k + l + `(γ1) + `(γ2)− `(γ1γ2) ≥ k + l.

Therefore, α1 ∧t α2 belongs to Fk+l. �

Lemma 5.6. Let Γ be a finite group acting a vector space V . Then for every
γ1, γ2 ∈ Γ one has `(γ1) + `(γ2) = `(γ1γ2) if and only if V γ1 + V γ2 = V and
V γ1γ2 = V γ1 ∩ V γ2 .

Proof. By linear algebra one knows that

dim(V γ1) + dim(V γ2) = dim(V γ1 + V γ2) + dim(V γ1 ∩ V γ2).

Moreover, one has

`(γ1) + `(γ2) = 2 dim(V )− (dim(V γ1) + dim(V γ2))

= 2 dim(V )− dim(V γ1 + V γ2)− dim(V γ1 ∩ V γ2)

= dim(V )− dim(V γ1 + V γ2) + dim(V )− dim(V γ1 ∩ V γ2).

Since V γ1 + V γ2 ⊂ V and V γ1 ∩ V γ2 ⊂ V γ1γ2 , we have

dim(V )−dim(V γ1 +V γ2) ≥ 0, dim(V )−dim(V γ1∩V γ2) ≥ dim(V )−dim(V γ1γ2).

Therefore

`(γ1) + `(γ2) ≥ `(γ1γ2),

and equality holds, if and only if dim(V ) = dim(V γ1 +V γ2) and dim(V γ1 ∩V γ2) =
dim(V γ1γ2). �

Theorem VII. The graded algebra gr(HT •(X)((t))) of (HT •(X)((t)),∧t) with
respect to the filtration F∗ is isomorphic to the Hochschild cohomology algebra
(H•(A((~)) oG;A((~)) oG),∪) by identifying t with ~.

Proof. Obviously, the two vector spaces over C((t)) are isomorphic. It is sufficient
to prove that the two product structures agree.

According to the proof of Lemma 5.5, we have that for α1 ∈ F
k and α2 ∈ F

l, the
graded product gr(α1 ∧t α2) is not equal to zero only when `(γ1)+ `(γ2) = `(γ1γ2).

In the case of `(γ1)+`(γ2) = `(γ1γ2), by Lemma 5.6, we have that V γ1 +V γ2 = V
and V γ1γ2 = V γ1∩V γ2 . This implies that Nγ1⊕Nγ2 = Nγ1γ2 on Xγ1γ2 . Therefore,
the following identity of equivariant Thom classes holds true:

ι∗(Tγ1 ∧ Tγ2) = ι∗(Tγ1γ2).

Hence, by Definition 5.1, one obtains

〈α1 ∧t α2, α〉 =

∫

Xγ1,γ2

ι∗γ1(α1|γ1) ∧ ι
∗
γ2(α2|γ2) ∧ I

∗(α)|γ1γ2 ,

where the ∧ on the right hand side is the wedge product on differential forms.
One concludes that gr(α1 ∧t α2) agrees with the cup product on the Hochschild
cohomology algebra. �
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¿From Theorem VII, we can view that the topological Hochschild cohomology
(HT •(X)((t)),∧t) as a deformation of the algebraic Hochschild cohomology

(H•(A((~)) oG;A((~)) oG),∪).

It is very interesting to study this deformation using the Hochschild cohomology
method again, which will illustrate the role of the almost complex structure chosen
to define ∧t. We leave this topic for future research.

Appendix A. Homological algebra of bornological algebras and
modules

A.1. Bornologies on vector spaces. In this appendix we recollect the basic
definitions and constructions in the theory of bornological vector spaces. For further
details on this see [Bo] and [Ho].

Let k be the ground field R or C, and V be a vector space over k. A set B of
subsets of V is called a (convex linear) bornology on V and (V,B) a (convex linear)
bornological vector space, if the following axioms hold true:

(BOR1) Every subset of an element of B belongs to B.
(BOR2) Every finite union of elements of B belongs to B.
(BOR3) The set B is covering for V that means every element of V is contained

in some set belonging to B.
(BOR4) For every B ∈ B, the absolutely convex hull

B3 := {λ1v1 + λ2v2 | v1, v2 ∈ V, λ1, λ2 ∈ k, |λ1|+ |λ2| ≤ 1}

is again B.

The elements of a bornology B are called its bounded sets or sometimes its small
sets.

Given an absolutely convex set S ⊂ V , we denote its linear span by VS and by
‖ · ‖B the seminorm on VS with unit ball S :=

⋂
λ>1 λS. If ‖ · ‖S is a norm on

VS , then S is said to be norming, and completant, if (VS , ‖ · ‖S) is even a Banach
space. A bornological vector space (V,B) is called separated (resp. complete), if
every bounded absolutely convex set B ⊂ V is norming resp. completant.

Proposition A.1. Let V be a bornological vector space. Then there exists a com-
plete bornological vector space V̂ together with a bounded linear map ι : V → V̂
such that the following universal property is fulfilled:

• For every complete bornological vector space W and every bounded linear

map f : V →W there exists a unique bounded linear map f̂ : V̂ →W such
that the diagram

V
f //

ι

��

W

V̂

f̂

88
q

q
q

q
q

q
q

q
q

q
q

q
q

(A.1)

commutes.

Proof. For the proof of this see [Me99]. �

For (V,B) and (W,D) two bornological vector spaces, a linear map f : V →W
is called bounded, if for every S ∈ B the image f(S) is in D . The space of bounded
linear maps V → W will be denoted by Hom(V,W ). It carries itself a canonical
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bornology, namely the bornology of equibounded sets of linear maps, i.e. of subsets
E ⊂ Hom(V,W ) such that for each S ∈ B the set E(S) is bounded in (W,D).
Obviously, the bornological vector spaces together with the bounded linear maps
then form a category. Since the direct sum V ⊕ W of two bornological vector
spaces obviously inherits a canonical bornological structure from its components,
the category of bornological vector spaces is even an additive category. Moreover, it
carries the structure of a tensor category, since the algebraic tensor product V ⊗W
of two bornological vector spaces (V,B) and (W,D) carries a natural bornology
which is generated by the sets S ⊗ T , where S ∈ B, T ∈ D.

In case V and W are both complete bornological vector spaces, the direct sum
V ⊕W is obviously a complete bornological vector space as well. For the tensor
product V ⊗W , though, with its canonical bornological structure, completeness
need not necessarily hold. Therefore, one introduces the completed tensor product
V ⊗̂W := (V ⊗ W )̂ for any pair of bornological vector spaces V,W . Note that
the category of complete bornological vector spaces with ⊕ and ⊗̂ as direct sum
resp. tensor functor also satisfies the axioms of an additive tensor category. We
denote the category of complete bornological vector spaces and bounded linear
maps by Bor.

Example A.2. Let V be a locally convex topological vector space. Then

Bnd(V ) := {S ⊂ V | p(S) <∞ for every seminorm p on V } and

Cpt(V ) := {S ⊂ V | S is precompact in V }

are two, in general different, bornologies on V , which one calls, respectively, the
von Neumann and the precompact bornology.

A.2. Bornological algebras and modules. By a bornological algebra one under-
stands a k-algebra A together with a complete convex bornology B such that the
product map m : A ⊗ A → A is bounded. By the universal property of the com-
pleted bornological tensor product one knows that for such an A the multiplication
m lifts uniquely to a bounded map A⊗̂A→ A.

For any (real or complex) algebra A we denote by A+ the unital algebra A⊕ k,
and by Au the smallest unital algebra containing A, which means that Au coincides
with A, if A is unital, and with A+ otherwise. Obviously, A+ and Au are again
bornological algebras, if that is the case already for A. For every bornological
algebraA we denote by Ae its enveloping algebra which is defined as the bornological
tensor product algebra Au⊗̂(Au)op.

By a (left) A-module over a bornological algebra A one understands a complete
bornological vector space M together with a bounded linear map Au⊗̂M → M
such that the following axioms are satisfied:

(MOD1) One has (a1 · a2) ·m = a1 · (a2 ·m) for all a1, a2 ∈ A and m ∈M .
(MOD2) The relation 1 ·m = m holds for all m ∈M .

Example A.3. For every complete bornological vector space V the tensor product
Au⊗̂V carries in a natural way the structure of a left A-module. Modules of this
form are called free left A-modules; likewise one defines free right A-modules.

Given left A-modules M and N we write HomA(M,N) for the space of bounded
A-module homomorphisms with the equibounded bornology. Obviously, the left
A-modules together with these morphisms form a category, which we will denote
by Mod(A). Note that every morphism f : M → N in Mod(A) has a kernel and a
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cokernel. The kernel simply coincides with the vector space kernel equipped with
the subspace bornology, where the cokernel is the quotient N/f(M)ˆ together with
the quotient bornology. Similarly, one defines right A-modules over a bornological
algebra A and writes Mod(Aop) (resp. HomAop(M,N)) for the category of right
A-modules (resp. the set of right A-module morphisms from M to N). Finally, an
object in the category Mod(Ae) will be called an A-bimodule.

For any right A-module M and any left A-module N we denote by M ⊗̂AN the
A-balanced tensor product that means the cokernel of the bounded linear map

M⊗̂A⊗̂N →M⊗̂N, m⊗ a⊗ n 7→ m · a⊗ n−m⊗ a · n.

A bornological algebra A is said to have an approximate identity, if for every
bounded subset S ⊂ A there is a bounded sequence (uS,k)k∈N and an absolutely
convex bounded TS ⊂ A such that the following properties hold true:

(AID1) For every a ∈ AS one has uS,k · a ∈ ATS
and a · uS,k ∈ ATS

.
(AID2) For all a ∈ S, the sequences uS,k ·a and a ·uS,k converge to a in the Banach

space ATS
, and the convergence is uniform in a.

(AID3) For bounded subsets S1, S2 ⊂ A such that S1 ⊂ S2 one has

‖uS2,k · a− a‖TS2
≤ ‖uS1,k · a− a‖TS2

for all a ∈ ATS1
and k ∈ N.

In other words, an approximate identity
(
uS,k

)
S∈B,k∈N

is essentially a net in A such

that each of the nets
(
uS,k a

)
and

(
a uS,k

)
converges to a.

A bornological algebra A which possesses an approximate identity and which,
additionally, is projective both as a left and a right A-module, is called quasi-unital.
Note that under the assumption that A has an approximate identity, projectivity
of A is equivalent to the existence of a bounded left A-module map l : A→ Au⊗̂A
and a bounded right A-module map r : A→ A⊗̂Au which are both sections of the
multiplication map (cf. [Me04]).

Given a quasi-unital bornological algebra A, a left A-module M (resp. a right A-
module N) is called essential, if the canonical map A⊗̂AM →M (resp. N⊗̂AA→
N) is an isomorphism. If the left A-module M (resp. the right A-module N) has the
property that the canonical map M → HomA(A,M) (resp. N → HomAop(A,N))
is an isomorphism, one calls M (resp. N) a rough module. The category of essen-
tial left A-modules (resp. right A-modules) will be denoted by Mode(A) (resp. by
Mode(A

op)). Since A is assumed to be quasi-unital, one concludes that for every
A-module M , the tensor product A⊗̂AM is an essential module.

A.3. Resolutions and homology. In this article we consider homology theories
in the additive but in general not abelian category of modules over a bornological
algebra A. This implies that we have to use methods from relative homological
algebra. Essentially this means that only so-called allowable chain complexes and
allowable projective resolutions are used to determine homologies and cohomologies.
To define the notion of allowability precisely recall that a bounded epimorphism
of left A-modules f : M −→ N or in other words a short exact sequence of left
A-modules and bounded maps

0 −→ K −→M
f
−→ N −→ 0

is called linearly split, if there exists a bounded linear map N → M which is a
section of f . A left A-module P is now called projective, if the functor HomA(P,−) is
exact on linearly split short exact sequences in Mod(A). Moreover, a chain complex
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(C•, ∂) of A-modules and bounded maps ∂k : Ck → Ck−1 is called allowable, if for
every k the image of ∂k is in Mod(A), i.e. is a complete bornological subspace of
Ck−1, and if the bounded epimorphism ∂k : Ck → im ∂k induced by ∂k is linearly
split. Likewise one defines allowable cochain complexes. For homology theories in
categories of modules of bornological algebras the following result now is crucial.

Proposition A.4. Let A be a quasi-unital bornological algebra A. Then every free
left A-module is projective. Moreover, the category Mod(A) has enough projectives,
that means for every left A-module M there exists a projective left A-module P
together with a split epimorphism of A-modules P →M . Hereby, P can be chosen
to be free. Finally, the functor

Mod(A)→ Mode(A), M 7→ A⊗̂M

preserves projective modules, and the category Mode(A) of essential left A-modules
has enough projectives as well.

Proof. See [Me04, Sec. 4]). �

The proposition implies that for every left A-module there exists an allowable
projective resolution of M , i.e. an allowable acyclic complex (P•, ∂) of projective
left A-modules Pk, k ≥ 0 together with a quasi-isomorphism ε : P• → M• in the
category of left A-modules, where M• denotes the complex which is concentrated in
degree 0 and coincides there with the A-module A. These conditions are equivalent
to the requirement that ε is a split bounded A-linear surjection ε : P0 →M which
satisfies

ε ◦ ∂1 = 0

and that there exists an A-linear splitting h : M → P0 and a family (hk)k∈N of
bounded linear maps hk : Pk → Pk+1 such that

∂1h0 = idP0 −hε and ∂k+1hk − hk−1∂k = idPk
for all k ≥ 1.

The proof of the following result is standard in (relative) homological algebra.

Theorem A.5 (Comparison Theorem). (cf. [Me99, Thm. A.9]) Assume that M
and N are two left A-modules over a bornological algebra A. Let P• → M• and
Q• → N• be allowable resolutions of M resp. N . If P• is projective, then there
exists for every morphism f : M → N of left A-modules a lifting of f , i.e. a chain
map F : P• → Q• in the category of left A-modules such that the diagram

P• //

F

��

M•

f

��
Q• // N•

commutes. Any two such liftings of f are homotopic. In particular, any two allow-
able projective resolutions of M are homotopy equivalent.

The comparison theorem allows the construction of derived functors in the cate-
gory of A-modules. In particular, the functors Ext and Tor can now be defined for
A-modules as usual.
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A.4. Hochschild homology and Bar resolution. Given a bornological algebra
A and an A-bimodule M , the Hochschild homology H•(A,M) and cohomology
H•(A,M) are defined as derived functors in the category Mod

(
Ae

)
of A-bimodules

as follows:

H•(A,M) := TorA
e

• (A,M), H•(A,M) := Ext•Ae(A,M). (A.2)

A particularly useful resolution of the A-bimodule A is given by the Bar complex
(Bar•(A), b′) together with the multiplication map inducing the quasi-isomorphism
Bar•(A)→ A. Hereby,

Bark(A) = A⊗̂A⊗̂k⊗̂A,

and b′ is the standard boundary map on the Bar complex:

b′0(a0 ⊗ a1) = 0,

b′k(a0 ⊗ a1 . . . ak ⊗ ak+1) =
k∑

i=0

(−1)i a0 ⊗ . . .⊗ ai ai+1 ⊗ . . .⊗ ak+1.

Obviously, if A is quasi-unital, then the Bar complex of A provides an allowable
projective resolution of A in the category of A-bimodules. In other words, this
means that a quasi-unital bornological algebraA is H-unital in the sense of Wodzicki
(see [Wo, Lo]). Thus, for quasi-unital A, the Hochschild homology and cohomology
groups H•(A,M), H•(A,M) are computed as the homology resp. cohomology of
the Hochschild complexes

(C•(A,M), b′∗) with C•(A,M) := Bar•(A)⊗̂AeM, and

(C•(A,M), b′
∗
) with C•(A,M) := HomAe(Bar•(A),M).

(A.3)

For some applications, in particular to define the cup product on the Hochschild
cochain complex of a quasi-unital bornological algebra which does not have a unit,
the left and right reduced Bar complexes

(
Barl-red• (A), b′

)
and

(
Barr-red• (A), b′

)
are

quite useful. They carry the same boundary as the Bar complex, and have compo-
nents

Barl-redk (A) := Au⊗̂A⊗̂k⊗̂A and Barr-redk (A) := A⊗̂A⊗̂k⊗̂Au.

Obviously, under the assumption that A is quasi-unital, the left and right reduced
Bar complexes are both allowable projective resolutions of A. Moreover, the canon-
ical embeddings Bar•(A) ↪→ Barl-red• (A) and Bar•(A) ↪→ Barr-red• (A) have the fol-
lowing quasi-inverses:

rk : Barl-redk (A)→ Bark(A), a0 ⊗ . . .⊗ ak+1 7→ a0r(a1) · . . . · r(ak+1),

lk : Barr-redk (A)→ Bark(A), a0 ⊗ . . .⊗ ak+1 7→ l(a0) · . . . · l(ak)ak+1,
(A.4)

where l : A → A⊗̂A resp. r : A → A⊗̂A is an A-left resp. A-right linear section of
the multiplication map on A.

Finally in this section we consider the reduced Hochschild chain and reduced
Hochschild cochain complexes. These are defined by

Cred
k (A,M) :=

{
A⊗̂AM⊗̂AA, if k = 0,

M⊗̂
(
Au/k

)⊗̂k
if k ≥ 1,

Ckred(A,N) :=

{
HomAe

(
A⊗̂A,N

)
, if k = 0,

Homk

((
Au/k

)⊗̂k
, N

)
, if k ≥ 1,

(A.5)
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and carry the same boundary resp. coboundary maps as the unreduced complexes.
By construction the canonical maps

C•(A,M)→ Cred
• (A,M) and C•red(A,N)→ C•(A,N)

are then chain maps. IfM is an essential A-bimodule (resp.N a rough A-bimodule),
then the first (resp. the second) of these chain maps is a quasi-isomorphism. Since
A is assumed to be quasi-unital, the first chain map is always a quasi-isomorphism
for M = A. In many applications, and in particular those appearing in this article,
the second chain map is also a quasi-isomorphism for N = A. In case A is unital,
both chain maps are always quasi-isomorphisms.

A.5. The cup product on Hochschild cohomology. Under the general as-
sumption from above that A is a (possibly nonunital) bornological algebra, we will
now explain the construction of the cup product

∪ : H•(A,A) ×H•(A,A)→ H•(A,A).

One way to define ∪ is via the Yoneda product on (bounded) extensions

0→ A→ E1 → · · · → Ek → A→ 0

and the interpretation of ExtkAe(A,A) as the space of equivalence classes of such
extensions. Alternatively, and that is the approach we will follow here, one can
use the quasi-isomorphisms from Eq. (A.4) to directly define a cup product ∪ :
C•(A,A) × C•(A,A) → C•(A,A) on the Hochschild cochain complex, which on
cohomology coincides with the Yoneda product. More precisely, we define for f ∈
Ck(A,A) and g ∈ C l(A,A) the product f ∪ g ∈ Ck+l(A,A) by

f∪g(a0⊗· · ·⊗ak+l+1) := f
(
lk(a0⊗· · ·⊗ak⊗1)

)
g
(
rl(1⊗ak+1⊗· · ·⊗ak+l+1)

)
, (A.6)

where a0, · · · , ak+l+1 ∈ A. It is straightforward to check that the thus defined map
∪ is a chain map and associative up to homotopy. The cup-product induced on the
reduced Hochschild cochain complex by the embedding C•red(A,A) → C•(A,A) is
given by

f ∪ g(a1 ⊗ · · · ⊗ ak+l) := f(a1 ⊗ · · · ⊗ ak) g(ak+1 ⊗ · · · ⊗ ak+l) (A.7)

for f ∈ Ckred(A,A), g ∈ C lred(A,A) and a1, · · · , ak+l ∈ A.

A.6. Bornological structures on convolution algebras and their modules.

Consider a proper étale Lie groupoid G and let AoG denote its convolution algebra
(see Sec. 2). A subset S ⊂ AoG is said to be bounded, if there is a compact subset
in K ⊂ G1 such that supp a ⊂ K for every a ∈ S, and if for each differential
operator D on G1 one has

sup
a∈S
‖Da‖K <∞.

The bounded subset of Ao G form a bornology which coincides both with the von
Neumann and the precompact bornology defined in Example A.2. In this article,
we always assume that AoG carries this bornology. By an immediate argument one
checks that the convolution product is bounded and that the bornology on A o G

is complete. Thus A o G becomes a bornological algebra. Let us check that it is
quasi-unital. To this end choose a sequence of smooth maps ϕk : G0 → [0, 1] such
that the support of each ϕk is compact and such that

(
ϕ2
k

)
k∈N

is a locally finite

partition of unity on G0. Obviously, one can even achieve that

(suppϕk)◦ = suppϕk (A.8)
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holds for every k ∈ N; this is a property we will need later. Now extend each ϕk by
zero to a smooth function on G1 and denote the resulting element of Ao G again
by ϕk. Then put uk :=

∑
l≤k ϕl ∗ ϕk and check that

(
uk

)
k∈N

is an approximate

identity. Moreover, the maps

l : Ao G→ Ao G ⊗̂Ao G, a 7→ a ∗ ϕk ⊗ ϕk and

r : Ao G→ Ao G ⊗̂Ao G, a 7→
∑

k∈N

ϕk ⊗ ϕk ∗ a

are both sections of the convolution product. This proves

Proposition A.6. The convolution algebra A o G of a proper étale Lie groupoid
G together with the von Neumann bornology is a quasi-unital bornological algebra.

Next let us consider the case where G0 carries a G-invariant symplectic form ω
and where a G-invariant local star product ? on G0 has been chosen. Under these
assumptions consider the crossed product algebra A~ o G, where A~ denotes the
sheaf C∞

G0
[[~]] with product ?. A subset B ⊂ A~ o G is said to be bounded, if there

is a compact subset in K ⊂ G1 such that supp a ⊂ K for every a ∈ B, and such
that for each differential operator on G1 and k ∈ N one has

sup
a∈B
‖Da‖k,K <∞.

Hereby, ‖ · ‖k,K is the seminorm on A~ o G defined by

‖a‖k,K := sup
g∈K
|ak(g)|, a ∈ A~ o G,

where the al ∈ C
∞
cpt(G1), l ∈ N are the unique coefficients in the formal power

series expansion a =
∑

l∈N
al ~

l. The bounded subsets of A~ o G define a complete

bornology which we call the canonical bornology on A~ o G. One immediately
checks that the convolution product ?c defined by Eq. (2.2) is bounded, hence
A~ o G is a bornological algebra. Obviously, the family

(
uk

)
k∈N

from above forms

an approximate unit also for A~ o G. By the assumption (A.8) it is clear that each
of the functions ϕk has only zeros of infinite order. Now check the following lemma
by using standard arguments from the theory of deformation quantization.

Lemma A.7. Let ϕ : G0 → [0, 1] be a smooth function which has only zeros of
infinite order, and put u = ϕ2. Then u has a star product root, that means there
exists an element Φ =

∑
l∈N Φl~

l ∈ C∞[[~]] such that

Φ ? Φ = u, Φ0 = ϕ, and supp Φ ⊂ suppϕ.

Using this result choose Φk ∈ A
~ oG with support in G0 such that Φk ?c Φk = ϕ2

k

and Φk − ϕk ∈ ~A~ o G. The maps

l : A~ o G→ A~ o G ⊗̂A~ o G, a 7→
∑

k∈N

a ?c Φk ⊗ Φk and

r : A~ o G→ A~ o G ⊗̂A~ o G, a 7→
∑

k∈N

Φk ⊗ Φk ?c a

then are both sections of the convolution product. Hence we obtain

Proposition A.8. The crossed product algebra A~ o G associated to an invariant
local deformation quantization on the space of objects of a proper étale Lie groupoid
G with an invariant symplectic form is a quasi-unital bornological algebra.
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A.7. Morita equivalence for bornological algebras. Assume that A and B
are two bornological algebras. Recall that by an A-B-bimodule one understands an
element of the category Mod

(
Au⊗̂(Bu)op

)
. Under the condition that the bornolog-

ical algebras A and B are both quasi-unital, one calls A and B Morita equivalent,
if there exist bimodules P ∈ Mod

(
Au⊗̂(Bu)op

)
and Q ∈ Mod

(
Bu⊗̂(Au)op

)
such

that the following axioms hold true:

(MOR1) P is essential both as an A-left module and as a B-right module.
(MOR2) Q is essential both as a B-left module and as an A-right module.
(MOR3) There exist bounded bimodule isomorphisms

u : P ⊗̂BQ→ A and v : Q⊗̂AP → B.

(MOR4) P is projective as a B-right module, and Q is projective as an A-right
module.

We sometimes say in this situation that (A,B, P,Q, u, v) is a Morita context. The
following result follows easily from the definition of a Morita context.

Proposition A.9. Let (A,B, P,Q, u, v) be a Morita context. Then the functors

Mod(A)→ Mod(B), M 7→ Q⊗̂AM

Mod(B)→ Mod(A), N 7→ P ⊗̂BN

are both exact and quasi-inverse to each other. In particular this means that Mod(A)
and Mod(B) are equivalent categories.

Example A.10. Let ϕ : H → G be a weak equivalence of proper étale Lie
groupoids. By [Mr, Cor. 3.2] it follows that the convolution algebrasA := AoG and
B := AoH are Morita equivalent. A Morita context is given by the bimodules P =
C∞cpt(〈ϕ〉) and Q = C∞cpt(〈ϕ〉

−
), where 〈ϕ〉 := G1 ×(s,ϕ) H0 and 〈ϕ〉

−
:= H0 ×(ϕ,t) G1.

Let us provide the details for the case, where ϕ is even an open embedding. Then,
〈ϕ〉 is the open subset s−1(ϕ(H0)) ⊂ G1, and 〈ϕ〉

−
= t−1(ϕ(H0)) ⊂ G1. Moreover,

the A-B-bimodule structure on P is given by

a ∗ p ∗ b(g) =
∑

g1 g2 ϕ(h)=g

g1∈G1,g2∈〈ϕ〉,h∈H1

a(g1) p(g2) b(h),

where a ∈ C∞cpt(G1), b ∈ C
∞
cpt(H1) and p ∈ C∞cpt(s

−1(ϕ(H1)). The bimodule structure
for Q is defined analogously.

Theorem A.11. Under the assumption that the weak equivalence ϕ : H ↪→ G is an
open embedding, the following holds true:

(1) The bimodules P = C∞cpt(s
−1(ϕ(H0)) and Q = C∞cpt(t

−1(ϕ(H0)) satisfy axioms
(MOR1) and (MOR2).

(2) P resp. Q is projective both as an A- as a B-module.
(3) The maps

u : C∞cpt(s
−1(ϕ(H0))⊗̂C∞cpt(H1)C

∞
cpt(t

−1(ϕ(H0))→ C
∞
cpt(G1), a⊗ ã 7→ a ∗ ã,

v : C∞cpt(t
−1(ϕ(H0))⊗̂C∞cpt(G1)C

∞
cpt(s

−1(ϕ(H0))→ C
∞
cpt(H1), ã⊗ a 7→ ϕ∗(ã ∗ a).

are bounded bimodule isomorphisms.

This means in particular that the tuple (AoG,AoH, P,Q, u, v) is a Morita context
between bornological algebras.
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Proof. Consider the family (ϕk)k∈N of elements of A = A o G from above. Then
the map

lP : P → A⊗̂P, p 7→
∑

k

p ∗ ϕk ⊗ ϕk resp.

rQ :Q→ Q⊗̂A, q 7→
∑

k

ϕk ⊗ ϕk ∗ q

is a section of the left (resp. right) A-action on P (resp. Q). Since A is quasi-unital,
this implies that P (resp. Q) is essential and projective as a left (resp. right) A-
module. Likewise, one proves the existence of a section lQ (resp. rP ) of the left
(resp. right) B-action on Q (resp. P ). Hence, Q (resp. P ) is essential and projective
as a left (resp. right) B-module. Thus, we have proved (1) and (2).

Next we show that there exists a bounded section of the map

v̂ : C∞cpt(t
−1(ϕ(H0))⊗̂C

∞
cpt(s

−1(ϕ(H0))→ C
∞
cpt(H1), ã⊗ a 7→ ϕ∗(ã ∗ a).

To this end choose a family (ψk)k∈N in B = A o H which has support in H0, and
such that (ψ2

k)k∈N is a locally finite partition of unity on H0. For each element
b ∈ B define elements ϕ∗b in P and Q by extension by zero. Then the map

ν̂ : C∞cpt(H1)→ C
∞
cpt(t

−1(ϕ(H0))⊗̂C
∞
cpt(s

−1(ϕ(H0)), b 7→
∑

k∈N

ϕ∗b ∗ ψk ⊗ ϕ∗ψk

is a bounded section of v̂ and a morphism of left B-modules. Hence ν := πν̂, where
π : Q⊗̂P → Q⊗̂AP denotes the canonical projection, is a bounded section of v.
Note that by construction the image of ν lies in the algebraic tensor product Q⊗AP ,
and that the image of ν is a complete bornological subspace of Q⊗AP which has to
be isomorphic to B. Since by [Mr, Thm. 4] the restriction to the algebraic tensor
product v|Q⊗AP : Q⊗A P → B is an (algebraic) isomorphism of B-bimodules, one

then concludes that Q⊗A P = Q⊗̂AP and that v is a (bornological) isomorphism
of B-bimodules.

The proof that u is a (bornological) isomorphism of A-bimodules is more compli-
cated. We show this claim under the additional assumption that H0 is connected.
The general case is slightly more involved, but can be proved along the same lines.
Denote by Gα the connected components of G0, and by Gα0 the image ϕ(H0). Let
Gα,β = s−1(Gα) ∩ t−1(Gβ). Then G1 is the disjoint union of the Gα,β . Since ϕ is a
weak equivalence, one derives the following:

(i) The image ϕ(H1) coincides with Gα0,α0 .
(ii) The bibundle 〈ϕ〉 = s−1(ϕ(H0)) coincides with the disjoint union of the com-

ponents Gα0,α, and 〈ϕ〉
−

= t−1(ϕ(H0)) with the disjoint union of the compo-
nents Gα,α0 .

(iii) There exist unique open embeddings σα,β : Gα,β ↪→ Gα,α0 and τα,β : Gα,β ↪→
Gα0,β such that s ◦ σα,β = s|Gα,β

resp. t ◦ τα,β = t|Gα,β
.

Next choose for every β functions ψβ,k ∈ C
∞
cpt(Gβ,β ∩ G0) such that each family

(ψ2
β,k)k∈N is a locally finite partition of unity. Extend ψβ,k by 0 to a smooth function

with compact support in Gβ,β . Define ψ
(1)
β,k ∈ C

∞
cpt(H1) and ψ

(2)
β,k ∈ C

∞
cpt(t

−1ϕ(H0))
by

ψ
(1)
β,k =

{
ϕ∗

(
(τα0 ,βσβ,β)∗(ψβ,k)

)
over H0

0 else.
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and

ψ
(2)
β,k =

{
(τβ,β)∗(ψβ,k) over Gα0,β

0 else.

Now we have the means to construct a bounded section of the map

û : C∞cpt(s
−1(ϕ(H0))⊗̂C

∞
cpt(t

−1(ϕ(H0))→ C
∞
cpt(G1), a⊗ ã 7→ a ∗ ã.

Put

µ̂ : C∞cpt(G1)→ C
∞
cpt(s

−1(ϕ(H0))⊗̂C
∞
cpt(t

−1(ϕ(H0)),

C∞cpt(Gα,β) 3 a 7→
∑

k∈N

(σα,β)∗(a) ∗ ψ
(1)
β,k ⊗ ψ

(2)
β,k.

and check that µ̂ is a bounded section of û indeed. One proceeds now exactly as
for v to show that P ⊗B Q = P ⊗̂BQ and that u is a bornological isomorphism of
A-bimodules. �

Hochschild (co)homology of bornological algebras and their bimodules is invariant
under a Morita context as the following result shows.

Theorem A.12 (cf. [Lo, Thm. 1.2.7]). Assume that A and B are quasi-unital
bornological algebras and assume that there is a Morita context (A,B, P,Q, u, v)
with the additional property that

qu(p⊗ q′) = v(q ⊗ p)q′ and pv(q ⊗ p′) = u(p⊗ q)p′ for all p, p′ ∈ P and q, q′ ∈ Q.
(A.9)

Let M be an essential A-bimodule. Then there are natural isomorphisms

H•(A,M) ∼= H•(B,Q⊗̂AM⊗̂AP ) and H•(A,M) ∼= H•(B,Q⊗̂AM⊗̂AP )
(A.10)

Proof. We only prove the homology case. The cohomology case is proven similarly.
To prove the claim first choose approximate identities (uS,k)S∈B,k∈N for A and
(vT,l)T∈D,l∈N for B, where B and D are the bornologies of A and B respectively.
Since P and Q are essential modules over A and B, there exists a bounded section
µ̂ : A → P ⊗̂Q (resp. ν̂ : B → Q⊗̂P ) of the composition of u : P ⊗̂BQ → A
with the canonical projection P ⊗̂Q → P ⊗̂BQ (resp. of V : Q⊗̂AP → B with
Q⊗̂P → Q⊗̂AP ). The section µ̂ (resp. ν̂) can even be chosen to be a morphism
of left A-modules (resp. of left B-modules). For every bounded S ⊂ A and k ∈ N

(resp. bounded T ⊂ B and l ∈ N) let
∑

i∈N

pS,k,i ⊗ qS,k,i := µ̂(uS,k) and
∑

j∈N

q′T,l,j ⊗ p
′
T,l,j := ν̂(vT,l).

Then define for every n ∈ N a bounded map %n : M⊗̂A⊗̂n → (Q⊗̂AM⊗̂AP )⊗̂B⊗̂k

by

%n (m⊗ a1 ⊗ . . .⊗ an) =

lim
(S,k)∈B×N

∑

i0,i1,··· ,in

(qS,k,i0 ⊗m⊗ pS,k,i1)⊗ v(qS,k,i1 ⊗ a1pS,k,i2)⊗ . . .

. . .⊗ v(qS,k,in ⊗ anpS,k,i0).
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Note that this map is well-defined since (uS,k) is an approximate identity, µ̂ is a
bounded morphism of left A-modules, and since M is essential. Analogously we

define maps θn : (Q⊗̂AM⊗̂AP )⊗̂B⊗̂k →M⊗̂A⊗̂n by

θn (q ⊗m⊗ p⊗ b1 ⊗ . . .⊗ bn) =

lim
(T,l)∈D×N

∑

j0,j1,··· ,jn

u(p′T,l,j0 ⊗ q)mu(p⊗ q′T,l,j1 )⊗ u(p
′
T,l,j1 ⊗ b1q

′
T,l,j2)⊗ . . .

. . .⊗ u(p′T,l,jn ⊗ bnq
′
T,l,j0).

Again, convergence is guaranteed by the fact that A and B are quasi-unital and
that M is essential. By assumption (A.9) on u and v the maps % and θ are both
chain maps. The composites θ ◦ ψ and % ◦ θ are homotopic to the identity. A
simplicial homotopy between θ ◦ % and the identity is given by

hi (m⊗ a1 ⊗ . . .⊗ an) =

lim
(S,k)∈B×N

(T,l)∈D×N

∑

i0,i1,··· ,ii
j0,j1,...,ji

mu(pS,k,i0 ⊗ q
′
T,l,j0)⊗ u(p

′
T,l,j0 ⊗ qS,k,i0) a1 u(pS,k,i1 ⊗ q

′
T,l,j1 )⊗

. . .⊗ u(p′T,l,ji−2
⊗ qS,k,ii−2) ai−1 u(pS,k,ii−1 ⊗ q

′
T,l,ji−1

)⊗

⊗ u(p′T,l,ji−1
⊗ qS,k,ii−1)⊗ ai ⊗ ai+1 ⊗ . . .⊗ an.

By a straightforward though somewhat lengthy argument (cf. [Ha, Chap. 5]) one
checks that the thus defined hi are well-defined and form a bounded simplicial
homotopy indeed. Similarly, one constructs a bounded homotopy between ψ ◦ θ
and the identity.

Since [%] = [θ]−1, where [%] and [θ] denote the induced maps on the Hochschild
homology of A o G resp. A o H, and since θ neither depends on the particular
choice of an approximate identity on Ao G nor on the choice of the elements pS,k,i
and qS,k,i, one concludes that [%] is independent of the particular choice of these
data. Likewise on shows that [θ] does not depend on the choice of an approximate
identity on A o H and of the elements p′T,l,j and q′T,l,j . One concludes from this

that [θ] and [%] are natural isomorphisms. This finishes the proof of the claim. �

Remark A.13. If one represents the Hochschild cohomology groups Hn(A,A) as
equivalence classes of bounded extensions

0→ A→ E1 → · · · → Ek → A→ 0, (A.11)

the isomorphism H•(A,A) → H•(B,B) between the Hochschild cohomologies of
two Morita equivalent bounded algebras is given by tensoring (A.11) with P and
Q, i.e. by mapping it to the bounded extension

0→ B → Q⊗̂AE1⊗̂AP → · · · → Q⊗̂AEk⊗̂AP → B → 0,

Let us now apply the preceding theorem to the situation of Example A.10. Then
we can prove the following result.

Theorem A.14. Assume that ϕ : H ↪→ G is a weak equivalence of proper étale
Lie groupoids which also is an open embedding, and let (A o G,A o H, P,Q, u, v)
denote the Morita context from Theorem A.11. The resulting natural isomorphisms
in Hochschild homology and cohomology are implemented by the following natural
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chain maps

ϕ∗ : C•(Ao H,Ao H)→ C•(Ao G,Ao G),

a0 ⊗ a1 ⊗ . . .⊗ an 7→ ϕ∗(a0)⊗ ϕ∗(a1)⊗ . . .⊗ ϕ∗(an)

and

ϕ∗ : C•(A o G,Ao G)→ C•(Ao H,Ao H),

F 7→
(
(Ao H)⊗̂n 3 a1 ⊗ . . .⊗ an 7→ F

(
ϕ∗(a1)⊗ . . .⊗ ϕ∗(an)

)
◦ ϕ

)
.

Proof. We only show the claim in the homology case. The claim for Hochschild
cohomology can be proved by a dual argument.

As above let A = AoG and B = AoH. Choose a locally finite family (ψk)k∈N ∈
C∞cpt(H1) of smooth functions ψk : H1 → [0, 1] with compact and connected support

on H0 such that (ψ2
k) is a partition of unity on H0. Put for m ∈ N:

ψ[m],k :=

{√∑m
l=0 ψ

2
l for k = 0,

ψk+m for k ≥ 1.
(A.12)

and

u[m],k =

k∑

l=0

(
ψ[m],l

)2
. (A.13)

Then (u[m],k)k∈N is an approximate unit in A o H for every m ∈ N. Denote by

K[m] the compact set
(
u−1

[m],0(1)
)◦

, i.e. the closure of the set of all points x ∈ H0 on

a neighborhood of which u[m],0 (and thus ψ[m],0 also) has value 1. Then for every
compact K ⊂ H0 there exists an mK ∈ N such that K ⊂ K◦[m] for all m ≥ mK .

Hence one has
ψ[m],0|K

= u[m],0|K
= 1 for all m ≥ mK . (A.14)

Let K[m] =
⋃im
i=0 K[m],i be the decomposition of K[m] in connected components,

i.e. each K[m],i is compact and connected and K[m],i 6= K[m],i′ for i 6= i′. By the
proof of Theorem A.11 one can construct for every fixed m ∈ N a section

ν̂[m] : C∞cpt(H1)→ C
∞
cpt(t

−1(ϕ(H0))⊗̂C
∞
cpt(s

−1(ϕ(H0))

and elements p′[m],0,j ∈ C
∞
cpt(s

−1(ϕ(H0)), q
′
[m],0,j ∈ C

∞
cpt(t

−1(ϕ(H0)), j = 0, . . . , jm
such that every p′[m],0,j and every q′[m],0,j has connected support in ϕ(H0), such that

ν̂[m](u[m],0) =

jm∑

j=0

q′[m],0,j ⊗ p
′
[m],0,j (A.15)

and finally such that

(
p′[m],0,j

)
|ϕ(K[m],j′ )

=

{
1 if j = j′,

0 else,

(
q′[m],0,i

)
|ϕ(K[m],j′ )

=

{
1 if j = j′,

0 else.

(A.16)

Put p′[m],0,j = 0 and q′[m],0,j = 0 for j > jm and let
∑

j∈N

q′[m],k,j ⊗ p
′
[m],k,j := ν̂[m](u[m],k) for k ≥ 1. (A.17)
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For every fixed m ∈ N we now have the data to construct the quasi-isomorphism
θ[m] : C•(A o H,A o H) → C•(A o G,A o G) as in the proof of the preceding
theorem. Note that the induced maps [θ[m]] between the Hochschild homology
groups all coincide.

Now let K ⊂ H0 be compact and consider

a0, a1, . . . , an ∈ C
∞
cpt(s

−1(K) ∩ t−1(K)) ⊂ Ao H.

Then one for m ≥ mk by construction:

θ[m] (a0 ⊗ a1 ⊗ . . .⊗ an) =

=
∑

j0,...,jn

u(p′[m],0,j0
⊗ a0q

′
[m],0,j1

)⊗ u(p′[m],0,j1
⊗ a1q

′
[m],0,j2

)⊗ . . .

. . .⊗ u(p′[m],0,jn
⊗ anq

′
[m],0,j0

)

= ϕ∗(a0)⊗ ϕ∗(a1)⊗ . . .⊗ ϕ∗(an).

Since AoH is the inductive limit of the subspaces C∞cpt(s
−1(K)∩ t−1(K)) the claim

follows. �
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