
Exam Topology in Physics 2018

This is the exam for the course topology in physics academic year 2017/2018.
Some remarks beforehand:

• the problem marked with a ? should not be made by those
students opting for the 6 EC version of the course;

• those students doing the 8 EC version of the course have 3 hours to
complete the exam, those students doing the 6 EC version have 2,5
hours to complete the exam;

• the homework grade based on either your best 11 (for 8 EC) or your
best 9 (for 6 EC) will count towards 30% of the final grade;

• note that the amount of points that can be obtained is indicated next
to each (sub)problem;

• the exam will be graded on a scale from 1-10 so that your grade equals
1 + 9 × points

100 for the 8 EC version and 1 + 9 × points
85 for the 6 EC

version.

Good Luck!
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Quickfire Questions 15 pts

We will start the exam off with a lightning round. This means you do not
need to motivate your answers for these quickfire questions.

5 pt i) Ind
(
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
=?

5 pt ii) Suppose E → M is a vector bundle and ∇i for i = 1, 2, 3 are con-
nections on E. Which of the following defines a connection (only one
answer is correct):

a) −∇1,

b) ∇1 +∇2,

c) ∇1 −∇2,

d) ∇1 −∇2 +∇3.

5 pt iii) Which of the following differential operators is elliptic (only one answer
is correct):

a) The Dirac operator on R3,1,

b) The Dirac operator on R4,

c) The operator ∂
∂x −

∂
∂y on R2.
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Problem 1: The Aharonov-Bohm Effect 25 pts

We parameterize R3 with three coordinates x, y and z. Instead of x and y,
we will also use cylindrical coordinates r and θ in this exercise, where

x = r cos θ, y = r sin θ. (1)

We study an infinitely long cylindrical solenoid along the z-axis, with radius
R in the (x, y)-plane. For r ≤ R, the solenoid contains a one-form gauge
field

A =
1

2
r2dθ for r ≤ R (2)

4 pts a. Write A in terms of x- and y-coordinates.

3 pts b. Show that the field strength two-form equals F = dx ∧ dy.

3 pts c. Argue that the previous result proves that A is not an exact form.

For r ≥ R, we assume that the size of the gauge field becomes constant:

A =
1

2
R2dθ for r ≥ R (3)

3 pts d. For both the region inside and outside the solenoid, explain whether
there are electric and/or magnetic fields present (and if so, which of
the two), and whether those fields point in the x-, y- or z-direction.
You don’t have to worry about signs, so you don’t need to mention
whether a field points in the positive or negative direction.

Quantum mechanics tells us that when an electron travels around a closed
loop γ in space, its wave function picks up a phase

φ =
e

~

∫
γ
A (4)

Here, e is the electron charge and ~ is Planck’s constant.

4 pts e. Use Stokes’ theorem to compute the phase shift of an electron that
moves around the solenoid once and returns to its original location.
Again, you do not need to worry about the sign of the answer.

We now want to remove the solenoid (“shrink it to zero size”) while keeping
a nonzero gauge field

A =
1

2
Cdθ, (5)

everywhere, with C some fixed constant.

4 pts f. Explain why we cannot do this in R3, but can do this if we take our
space to be M = R3 \ {z-axis}.
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In the lectures, we have seen that if the second cohomology group H2
dR(M)

vanishes (as is the case here), one has the identity

Ω2
cl(M) ∼=

Ω1(M)/dΩ0(M)

H1
dR(M)

(6)

4 pts g. Using this identity, explain why the field strength F , in the setup of
exercise (f), can not be used to describe all physically inequivalent field
configurations.
Note: you do not need to compute anything; an explanation in words
(and/or symbols) suffices.
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Problem 2: BF Theory 20 pts

In this exercise, we study a quantum field theory in 4 Euclidean dimensions
known as BF theory. Its action is

SBF =

∫
M

Tr (B ∧ F +
Λ

12
B ∧B), (7)

Here, M is a 4-dimensional manifold, which for now we assume to have
no boundary. F is the field strength of a connection that in this exercise
you can assume to be represented by a Lie algebra valued 1-form A, so
F = dA + A ∧ A. The field B is a Lie algebra valued 2-form field. Λ is a
(real) numerical constant.

4 pts a. Find the equation of motion that results from the variation of the field
B. Show that plugging the solution to this equation of motion into
the action leads to

SEOM = − 3

Λ

∫
M

Tr (F ∧ F ) (8)

The path integral for BF theory can be written as

Z =

∫
DA

∫
DB eiSBF (9)

4 pts b. Argue that after doing the B-integral, the resulting path integral
equals

Z =

∫
DA eiSEOM . (10)

That is: in this example the path integral over B can be carried out by
simply inserting the solution to its equation of motion in the action.
Hint: since a path integral is not well-defined mathematically, we do
not expect a rigorous proof here. Therefore, you are allowed to use any
argument that would hold for an ordinary integral and assume without
further proof that it holds for path integrals as well.

3 pts c. Describe over which space the resulting A-integral should be per-
formed.

4 pts d. Show that the expression Tr (F ∧F ) appearing in the action is a total
derivative, and explain why this implies that on a manifold M without
boundary, BF theory is not a very interesting theory.

5 pts e. Using characteristic classes, explain how you could also have arrived
at the conclusion of part (d) without a lengthy computation.
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Problem 3: The Euler Characteristic 25 pts

Recall the definition of the Hodge star operator ? : Ωp(M) → Ωn−p(M) on
a Riemannian manifold (M, g) of dimension n = 2m. It is given by

? (dxµ1 ∧ · · · ∧ dxµp) =

√
|g|

(n− p)!
εµ1···µpν1···νn−pdx

ν1 ∧ · · · ∧ dxνn−p

on the basis p-forms. Recall in particular that ?2α = (−1)np+pα for a p-form
α. Then set

d∗α = (−1)np+n+1 ? d ? α

and recall that this is the adjoint of the exterior derivative d for the usual
non-degenerate (positive definite) bilinear pairing induced on Ω•(M) by g.
In this problem we are considering Ω•(M) as sections of the exterior algebra
of the complexified cotangent bundle, i.e. Ω•(M) = Γ (M ;∧• T ∗MC). In
other words we are considering complex-valued differential forms.

3 pts a. Show that Ker d + d∗ = Ker d ∩ Ker d∗ if we view all these operators
as acting on Ω•(M).
HINT: you do not need the explicit formula for the Hodge star.

It can be shown that the map f : Ker d+ d∗ →
⊕n

p=0H
p
dR(M) that maps a

form α ∈ Ker d+ d∗ to its cohomology class is an isomorphism.

Recall the definition of the Euler characteristic

χ(M) :=
n∑
i=0

(−1)iβi(M)

where βi(M) = Dim H i
dR(M) are called the Betti numbers of M . From now

on we set X : E → F to be the operator d + d∗ acting between the vector
bundles

E = ∧even T ∗MC =

m⊕
i=0

∧2i T ∗MC and F = ∧odd T ∗MC =

m−1⊕
i=0

∧2i+1 T ∗MC.

3 pts b. Show that Ind X = χ(M).

Since the operator X is elliptic we may use the result from (b) and the
Atiyah–Singer index theorem to express χ(M) as the integral of a charac-
teristic class. Recall the Atiyah–Singer index theorem for X

Ind X = (−1)
n(n+1)

2

∫
M

Ch (E − F )
Td (TMC)

e (TM)
.
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Recall that the classes in the integrand can be given in terms of their cor-
responding invariant polynomials of the curvature F of a connection on the
vector bundle V :

Ch (V ) = Tr e
iF
2π and Td (V ) = Det

iF

2π(1− e−
iF
2π )

.

To determine the Euler class we first recall the splitting principle which
essentially says that we may consider V = L1 ⊕ L2 ⊕ . . . ⊕ Lk a sum of
line bundles Li. For the complexified tangent bundle we find in particular
TMC = L1⊕L1⊕. . .⊕Lm⊕Lm with first chern classes xi = c1(Li) = −c1(Li);
we have

e (TM) =

m∏
i=1

xi.

For the following subproblem it will also be useful to consider the facts that
for vector bundles L and L′ we have

• c1(L) = Tr iF
2π for F the curvature of a connection on L. Note in

particular that this means that c1(L) = iF
2π if L is a line bundle.

• c1(L) = −c1(L∗),

• Ch (L⊗ L′) = Ch (L)Ch (L′),

• Ch (L⊕ L′) = Ch (L) + Ch (L′) and

• ∧• (L⊕ L′) = (∧• L)⊗ (∧• L′).

5 pts c. Show that

Ind X =

∫
M

e (TM).

Consider the torus T2 given by S1×S1 with coordinates (θ, φ) ranging from
0 to 2π. We equip it with the metric g obtained by restricting the Euclidean
metric to the embedding ι : T2 ↪→ R3 given by

ι(θ, φ) = ((2 + cos θ) cosφ, (2 + cos θ) sinφ, sin θ).

Note that this differs greatly from the metric induced by viewing T2 as the
unit square with opposite sides identified, even though the topology remains
unchanged.

Recall that the Christoffel symbols Γkij corresponding to a local frame {e1, e2}
are defined by

∇eiej =

2∑
k=1

Γkijek
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where ∇ is the Levi-Civita connection on TT2. In the following you may
use that the non-zero Christoffel symbols with respect to the frame { ∂∂θ ,

∂
∂φ}

are given by

Γφθφ = Γφφθ =
− sin θ

2 + cos θ
and Γθφφ = sin θ(2 + cos θ).

4 pts d. Determine the function F (θ, φ) such that

e (TM) = F (θ, φ)dθ ∧ dφ,

when we use the curvature of the Levi-Civita connection to find e (TM).
HINT: to obtain the correct normal form of the curvature you will have
to change to the orthonormal frame { ∂∂θ ,

1
2+cos θ

∂
∂φ}.

6 pts e. How could you have determined the value of∫ 2π

0

∫ 2π

0
F (θ, φ)dθdφ

without the computation at (d)?

4 pts f. Use arguments and the previous results rather than complicated com-
putations to determine the Betti numbers of the 2-torus.
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? Problem 4: The Clifford algebra and the rotation
Lie algebra 15 pts

We consider the Clifford algebra Cliff3 generated by ψi, i = 1, 2, 3 satisfying

ψiψj = −ψjψi, i 6= j,

ψ2
i = −1.

4 pts a. Show that the elements Ji ∈ Cliff3(R), i = 1, 2, 3, defined as

J1 :=
1

2
ψ2ψ3, and cyclic permutations,

satisfy the commutation relations of the Lie algebra so(3):

[J1, J2] = J3, , and cyclic permutations.

5 pts b. For any element c ∈ Cliff3(R) define its exponential by the formal
power series

exp(c) :=
∞∑
k=0

ck

k!
∈ Cliff3(R).

Show that
exp(θψiψj) = cos(θ) + sin(θ)ψiψj ,

for all i, j = 1, 2, 3, i 6= j and θ ∈ R.

As usual we use ψ(v) to denote xψ1 + yψ2 + zψ3 for (x, y, z) = v ∈ R3.
Recall the definition of the group Spin(3):

Spin (3) := {ψ(v1)ψ(v2) . . . ψ(v2k) | ||vi|| = 1, k ∈ N},

where the || · || denotes the Euclidean norm.

3 pts c. Show that exp(θψiψj) ∈ Spin (3) for all for all i, j = 1, 2, 3, i 6= j and
θ ∈ R.

3 pts d. Denote by G the Lie group given by the exponents of elements of the
Lie algebra in (a), i.e. the Lie algebra generated by the Ji. Consider
the group homomorphism ρ : G→ SO(3) given on the generators by

ρ(exp(θJ1)) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , ρ(exp(θJ2)) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


and

ρ(exp(θJ3)) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

Argue that this map is 2 : 1 (two to one).
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