EXERCISESET 1, TOPOLOGY IN PHYSICS

- The hand-in exercise is the exercise 1.
- Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)
- Deadline is Wednesday February 13, 23.59.
- Please make sure your name and the week number are present in the file name.

Exercise 1: Computing $H^{\bullet}_{dR}(S^n)$ **.**

Definition 0.1 (Homotopy Equivalence).

A (smooth) homotopy equivalence between two manifolds *M* and *N* is given by a pair of smooth maps

$$f: M \longrightarrow N$$
 and $g: N \longrightarrow M$

such that $f \circ g$ is smoothly homotopic to Id_N and $g \circ f$ is smoothly homotopic to Id_M.

Note that homotopy equivalence defines an equivalence relation on smooth manifolds, which we denote \sim_h .

- i): Show that $N \sim_h M$ implies that $H^{\bullet}_{dR}(N) \simeq H^{\bullet}_{dR}(M)$.
- **ii):** How do we use the result of i) in the Poincaré lemma?
- iii): Using the definition of H^{\bullet}_{dR} in terms of differential forms show that $H^{\bullet}_{dR}(M \coprod N) \simeq H^{\bullet}_{dR}(M) \oplus H^{\bullet}_{dR}(N)$.

iv): You will now compute the cohomology of the *n*-sphere by decomposing it into two opens sets and applying the Mayer–Vietoris sequence.

- **a):** Use the description of $H^0_{d\mathbb{R}}$ (or the definition) to show that we have $H^0_{d\mathbb{R}}(S^0) = \mathbb{R}^2$ and $H^0_{d\mathbb{R}}(S^n) = \mathbb{R}$ for n > 0.
- **b):** Find two open subsets *U* and *V* of S^n such that $U \cap V \sim_h S^{n-1}$ (also show why they are homotopy equivalent).
- c): Apply the Mayer–Vietoris sequence to find that $H^1_{d\mathbb{R}}(S^n) = \mathbb{R}^{\delta_{1n}}$.
- **d):** Apply the Mayer–Vietoris sequence and the result of c) to compute the comohology of S^n for any $n \ge 0$ as

(1)
$$H^k_{\mathrm{dR}}(S^n) = \mathbb{R}^{\delta_{k0} + \delta_{kn}}.$$

Exercise 2: Computing $H_{dR}^{\bullet}(\mathbb{T}^2)$. In this exercise we will compute the cohomology of the 2-torus \mathbb{T}^2 . We consider the flat model of the 2-torus as the space $\mathbb{R}^2/\mathbb{Z}^2$, i.e. we consider the plane and identify points (x_1, y_1) and (x_2, y_2) if $x_1 - x_2$ and $y_1 - y_2$ are both integers.

- i): Show that \mathbb{T}^2 is given by considering the square $[0,1] \times [0,1] \subset \mathbb{R}^2$ and identifying the points (0,t) with (1,t) for $t \in [0,1]$ as well as identifying the points (s,0) with (s,1) for $s \in [0,1]$.
- **ii) [Bonus]:** What does this model of \mathbb{T}^2 have to do with snake?
- iii): Compute the cohomology of \mathbb{T}^2 by decomposing it into two open subsets U_{outer} and U_{middle} such that you already know the cohomology of U_{middle} , U_{outer} and $U_{middle} \cap U_{outer}$ and applying the Mayer–Vietoris sequence.

Exercise 3: The Hopf invariant. If we consider the *n*-sphere S^n as embedded in \mathbb{R}^{n+1} as the submanifold defined by

$$\sum_{i=1}^{n+1} (x^i)^2 = 1,$$

we can write its volume form $\omega \in \Omega^n(S^n)$ as

$$\omega := \sum_{i=1}^{n+1} (-1)^{i+1} x^i dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^{n+1}$$

This is a closed form generating the cohomology of S^n in degree n as in (1). We now consider a smooth map $f: S^{2n-1} \to S^n$.

- i) Show that $f^*\omega$ is exact: $f^*\omega = d\alpha$ for some $\alpha \in \Omega^{n-1}(S^{2n-1})$.
- ii) Show that the integral

$$H(f):=\int_{S^{2n-1}}\alpha\wedge d\alpha$$

is independent of the choice of "potential" α : it only depends on the map *f*.

- iii) Show that the integral above is zero for odd *n*.
- iv) Now you will show that the Hopf invariant H(f) is a homotopy invariant. So consider two maps $f_i: S^{2n-1} \to S^n$ for i = 0, 1 and a homotopy $F: S^{2n-1} \times [0,1] \to S^n$ between them. Note that this means that if $\iota_i: S^{2n-1} \to S^{2n-1} \times [0,1]$ denotes the inclusion at an endpoint for i = 0, 1 respectively, then $F \circ \iota_i = f_i$.
 - a) Show that $F^*\omega = d\alpha$ for some $\alpha \in \Omega^{n-1}(S^{2n-1} \times [0,1])$.
 - b) Show that $f_i^* \omega = d\alpha_i$ for $\alpha_i = \iota_i^* \alpha$ the restriction of α to the endpoint $S^{2n-1} \times \{i\}$ for i = 0, 1. Conclude that we may use α_i to compute $H(f_i)$.
 - c) Show that $d\alpha \wedge d\alpha = 0$.
 - d) Show that $H(f_0) = H(f_1)$. (*hint: Stokes' theorem*)