EXERCISESET 1, TOPOLOGY IN PHYSICS

The hand-in exercise is the exercise 1.

Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)
Deadline is Wednesday February 13, 23.59.
Please make sure your name and the week number are present in the file name.

Exercise 1: Computing Hj,(S").

Definition 0.1 (Homotopy Equivalence).
A (smooth) homotopy equivalence between two manifolds M and N is given by a pair
of smooth maps

ftM— N and g: N — M

such that f o g is smoothly homotopic to Idy and g o f is smoothly homotopic to Id .

Note that homotopy equivalence defines an equivalence relation on smooth mani-
folds, which we denote ~,.
i): Show that N ~;, M implies that Hj, (N) ~ H3z (M).
ii): How do we use the result of i) in the Poincaré lemma?
iii): Using the definition of Hjj in terms of differential forms show that Hj, (M N) ~
Hip (M) & Hig(N).
iv): You will now compute the cohomology of the n-sphere by decomposing it into
two opens sets and applying the Mayer—Vietoris sequence.
a): Use the description of HJ (or the definition) to show that we have H3, (S%) =
R? and HJx(S") = R for n > 0.
b): Find two open subsets U and V of S” such that U NV ~, $"1 (also show
why they are homotopy equivalent).
c): Apply the Mayer—Vietoris sequence to find that H}, (5") = R,
d): Apply the Mayer-Vietoris sequence and the result of c) to compute the
comohology of S" for any n > 0 as

(1) HER(8") = Ro%o+n,

Exercise 2: Computing H$, (T?). In this exercise we will compute the cohomology of
the 2-torus T2. We consider the flat model of the 2-torus as the space R2/72, ie. we
consider the plane and identify points (x1, y1) and (x2,y2) if x; — xp and y; — y» are both

integers.
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i): Show that T? is given by considering the square [0,1] x [0,1] C R? and iden-
tifying the points (0, f) with (1,¢) for t € [0,1] as well as identifying the points
(s,0) with (s,1) for s € [0,1].

ii) [Bonus]: What does this model of T? have to do with snake?

iii): Compute the cohomology of T? by decomposing it into two open subsets
Uouter and Uyyigqr such that you already know the cohomology of U,idie, Uouter
and U,,ig41e N Uouter and applying the Mayer—Vietoris sequence.

Exercise 3: The Hopf invariant. If we consider the n-sphere S" as embedded in R"*!

as the submanifold defined by
n+1

Z(xi)Z — 1’

i=1
we can write its volume form w € ()*(S") as
n+1 —
w:=Y (=1 xldx Ao adx AL A dxH
i=1
This is a closed form generating the cohomology of S” in degree n as in (1). We now
consider a smooth map f : $*"~1 — S,
i) Show that f*w is exact: f*w = da for some a € Q"~1(S?1~1).
ii) Show that the integral

H(f) := /Szmtx/\dtx

is independent of the choice of “potential” a: it only depends on the map f.

iii) Show that the integral above is zero for odd n.

iv) Now you will show that the Hopf invariant H(f) is a homotopy invariant. So
consider two maps f;: $?*! — S" fori = 0,1 and a homotopy F: $?"~! x
[0,1] — S" between them. Note that this means that if 1;: $>*~1 — §2*~1 x [0,1]
denotes the inclusion at an endpoint for i = 0, 1 respectively, then F o 1; = f;.

a) Show that F*w = da for some a € Q" 1(S?"~1 x [0,1]).

b) Show that fw = da; for a; = i}« the restriction of & to the endpoint §2n—1
{i} for i = 0,1. Conclude that we may use &; to compute H(f;).

¢) Show thatda Ada = 0.

d) Show that H(fo) = H(f1). (hint: Stokes’ theorem)
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