
EXERCISESET 1, TOPOLOGY IN PHYSICS

• The hand-in exercise is the exercise 1.
• Please hand it in electronically at topologyinphysics2019@gmail.com (1 pdf!)
• Deadline is Wednesday February 13, 23.59.
• Please make sure your name and the week number are present in the file name.

Exercise 1: Computing H•dR(S
n).

Definition 0.1 (Homotopy Equivalence).
A (smooth) homotopy equivalence between two manifolds M and N is given by a pair
of smooth maps

f : M −→ N and g : N −→ M

such that f ◦ g is smoothly homotopic to IdN and g ◦ f is smoothly homotopic to IdM.

Note that homotopy equivalence defines an equivalence relation on smooth mani-
folds, which we denote ∼h.

i): Show that N ∼h M implies that H•dR(N) ' H•dR(M).
ii): How do we use the result of i) in the Poincaré lemma?
iii): Using the definition of H•dR in terms of differential forms show that H•dR(M ä N) '

H•dR(M)⊕ H•dR(N).
iv): You will now compute the cohomology of the n-sphere by decomposing it into

two opens sets and applying the Mayer–Vietoris sequence.
a): Use the description of H0

dR (or the definition) to show that we have H0
dR(S

0) =

R2 and H0
dR(S

n) = R for n > 0.
b): Find two open subsets U and V of Sn such that U ∩V ∼h Sn−1 (also show

why they are homotopy equivalent).
c): Apply the Mayer–Vietoris sequence to find that H1

dR(S
n) = Rδ1n .

d): Apply the Mayer–Vietoris sequence and the result of c) to compute the
comohology of Sn for any n ≥ 0 as

(1) Hk
dR(S

n) = Rδk0+δkn .

Exercise 2: Computing H•dR(T
2). In this exercise we will compute the cohomology of

the 2-torus T2. We consider the flat model of the 2-torus as the space R2/Z2, i.e. we
consider the plane and identify points (x1, y1) and (x2, y2) if x1− x2 and y1− y2 are both
integers.
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i): Show that T2 is given by considering the square [0, 1]× [0, 1] ⊂ R2 and iden-
tifying the points (0, t) with (1, t) for t ∈ [0, 1] as well as identifying the points
(s, 0) with (s, 1) for s ∈ [0, 1].

ii) [Bonus]: What does this model of T2 have to do with snake?
iii): Compute the cohomology of T2 by decomposing it into two open subsets

Uouter and Umiddle such that you already know the cohomology of Umiddle, Uouter

and Umiddle ∩Uouter and applying the Mayer–Vietoris sequence.

Exercise 3: The Hopf invariant. If we consider the n-sphere Sn as embedded in Rn+1

as the submanifold defined by
n+1

∑
i=1

(xi)2 = 1,

we can write its volume form ω ∈ Ωn(Sn) as

ω :=
n+1

∑
i=1

(−1)i+1xidx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+1

This is a closed form generating the cohomology of Sn in degree n as in (1). We now
consider a smooth map f : S2n−1 → Sn.

i) Show that f ∗ω is exact: f ∗ω = dα for some α ∈ Ωn−1(S2n−1).
ii) Show that the integral

H( f ) :=
∫

S2n−1
α ∧ dα

is independent of the choice of “potential” α: it only depends on the map f .
iii) Show that the integral above is zero for odd n.
iv) Now you will show that the Hopf invariant H( f ) is a homotopy invariant. So

consider two maps fi : S2n−1 → Sn for i = 0, 1 and a homotopy F : S2n−1 ×
[0, 1]→ Sn between them. Note that this means that if ιi : S2n−1 → S2n−1 × [0, 1]
denotes the inclusion at an endpoint for i = 0, 1 respectively, then F ◦ ιi = fi.

a) Show that F∗ω = dα for some α ∈ Ωn−1(S2n−1 × [0, 1]).
b) Show that f ∗i ω = dαi for αi = ι∗i α the restriction of α to the endpoint S2n−1×
{i} for i = 0, 1. Conclude that we may use αi to compute H( fi).

c) Show that dα ∧ dα = 0.
d) Show that H( f0) = H( f1). (hint: Stokes’ theorem)
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