
LECTURE 1: COHOMOLOGY OF MANIFOLDS

1. MANIFOLDS AND TOPOLOGY

Many of the spaces we encounter in physics are very nice: they are manifolds, mean-
ing that we know how to do differential calculus on them in accordance with the fact
that typically physics is described by means of (partial) differential equations. However,
we sometimes encounter objects or quantities that depend on a much coarser structure,
namely the underlying topology of the manifold. For example, consider the electric and
magnetic fields E and B satisfying the Maxwell equation on a domain in R3. For any
embedding surface Σ, the electric and magnetic flux through Σ are defined as

1
2π

∫
Σ

E · dn,
1

2π

∫
Σ

B · dn.

We then have:

• Both fluxes remain constant if we deform the surface Σ a little bit: for two sur-
faces Σ and a nearby Σ′ there is a three-dimensional domain N with boundary
∂N = Σq Σ′ and by the divergence theorem

1
2π

∫
Σ

E · dn− 1
2π

∫
Σ′

E · dn =
1

2π

∫
N
∇ · EdV = 0,

by the Maxwell equations, if we assume that N does not contain any charges.
(For the magnetic flux this does not matter.)
• The electric flux depends on the charge distribution via Maxwell’s equations,

but the magnetic flux doesn’t: it is an integer, which depends only on the topol-
ogy of the configuration! We can’t understand this yet, but we will identify the
magnetic flux later as a Chern number.

In the next lecture we shall rephrase Maxwell theory in the language of differential
forms and understand the first item in terms of de Rham cohomology. For now we take
from this little discussion the idea that topological invariants are rigid under deformations.

Mathematically, what is going on is that we can always “forget” that a manifold has
a smooth structure so that we have an “inclusion”

{Manifolds} ⊂ {Topological spaces} .

The idea that we can deform spaces in topology is captured in the notion of homotopy:
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2 LECTURE 1: COHOMOLOGY OF MANIFOLDS

Definition 1.1. Let f0, f1 : M → N be two continuous (resp. smooth) maps between
topological spaces (resp. manifolds). We see that f0 and f1 are (smoothly) homotopic if
there exists a (smooth) map F : M× [0, 1] → N such that F(x, 0) = f0(x) and F(x, 1) =
f1(x) for all x ∈ M.

Remark 1.2. From now on, when dealing with manifolds, we shall always use smooth
homotopies without saying explicitly so, and write f0 ∼h f1 for two such homotopic
maps. There are approximation theorem stating that any two smooth maps that are
continuously homotopic, are also smoothly homotopic, so the distinction does not mat-
ter.

We can now say what it means for two manifolds M and N to be homotopic: it
means that there are maps f : M → N and g : N → M such that f ◦ g ∼h idN and
g ◦ f ∼h idM. Intuitively it means that we can deform M into N “without creating
or destroying holes”. It defines an equivalence relation between manifolds, written
M ∼ N and a topological invariant is a gadget that is invariant under homotopy.

As an example, consider the homotopy groups of a space M with a base point x0 ∈ M:

πk(M, x0) :=
{

γ : [0, 1]k → M, γ(∂[0, 1]k) = x0

}
/ ∼h .

For k = 1 these are just homotopy classes of loops starting and ending in x0. There
is a group structure on πk(M, x0), for k = 1 given by concatenation of loops. It is not
difficult to see that a map f : M → N mapping f (x0) = y0 ∈ N induces a map f∗ :
πk(M, x0) → πk(N, y0) and because we are taking homotopy classes in the definition
of πk, we have that for f , g : M→ N,

f ∼h g =⇒ f∗ = g∗ : πk(M, x0)→ πk(N, y0).

It then follows that the homotopy groups are indeed a topological invariant. However,
they are notoriously difficult to compute! This is partly so because in its definition, we
have not used the fact that M is a smooth manifold! The basic idea of differential topology
is to use the smooth structure on a manifold to study its underlying topology. A prime
example of a differential topological invariant are the de Rham cohomology groups.

2. THE DE RHAM COMPLEX

As before, we let M be a manifold. We now consider the system of differential forms
(of arbitrary degree) together with the exterior differential:

(1) C∞(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ . . .

A differential form α ∈ Ωk(M) for which dα = 0, is called closed. If there exists a form
β ∈ Ωk−1(M) such that dβ = α, α is called exact. We have seen that d ◦ d = 0, so being
exact implies being closed. With this property, the system (1) is an example of a cochain
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complex: we have Im{d : Ωk−1(M) → Ωk(M)} ⊂ ker{d : Ωk(M) → Ωk+1(M)}. The de
Rham cohomology groups measure to what extend closedness fails to imply exactness:

Hk
dR(M) := ker{d : Ωk(M)→ Ωk+1(M)}/Im{d : Ωk−1(M)→ Ωk(M)}.

The main point of de Rham’s theorem (see Theorem 4.2 below) is that these groups are
topological invariants of the underlying topological space. For now, let us collect a few
properties of these groups.1

• The assignment M 7→ H•dR(M) associates a (graded) vector space to a manifold.
• The wedge product of differential forms induces a product

∧ : Hp
dR(M)× Hq

dR(M)→ Hp+q
dR (M),

because d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.
• A smooth map f : M → N induces a map f ∗ : H•dR(N) → H•dR(M), because of

the fact that the pull-back of differential forms is compatible with the exterior
differential: f ∗dα = d f ∗α for all α ∈ Ωk(N). This map is compatible with the
wedge product.

The following property is less straightforward, but all the more important:

Theorem 2.1 (Homotopy invariance of de Rham cohomology). Let f0, f1 : M → N be
two smooth maps that are smoothly homotopic. Then they induce the same map on the level of
de Rham cohomology groups:

[ f ∗0 ] = [ f ∗1 ] : H•dR(N)→ H•dR(M).

Proof. The fact that f0 and f1 are smoothly homotopic means that there exists a smooth
map F : M× [0, 1] → N with F(x, 0) = f0(x) and F(x, 1) = f1(x) for all x ∈ M. With
this homotopy F we shall construct a map H : Ωk(M)→ Ωk−1(N) satisfying2

(?) f ∗0 α− f ∗1 α = (d ◦ H + H ◦ d)α, for all α ∈ Ωk(N).

This property implies that indeed [ f ∗0 ] = [ f ∗1 ].
To construct H, observe that a k-form on M× [0, 1] decomposes as

β = β0 + dt ∧ β1, β ∈ Ωk(M× [0, 1]),

where t is the coordinate on [0, 1], β0 = ∑ β0
i1,...,ik

(x, t)dxi1 ∧ . . . ∧ dxik (in local coordi-
nates) a k-form which does not contain dt and β1 = ∑ β1

i1,...,ik−1
(x, t)dxi1 ∧ . . . ∧ dxik−1

1For the mathematically minded: These three properties can be rephrased by saying that de Rham co-
homology defines a contravariant functor from the category of smooth manifolds (with morphisms given
by smooth maps) to the category of graded algebras.

2In homological algebra, H is called a chain homotopy between [ f ∗0 ] and [ f ∗1 ].
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a k − 1 form. We can define the fiber integral along the projection M × [0, 1] → M by
integrating the dt-component over [0, 1]:∫ 1

0
(ι∂/∂tβ)dt =

∫ 1

0
β1dt.

This defines a map
∫
[0,1] : Ωk(M × [0, 1]) → Ωk−1(M) and Stokes’ theorem gives the

property

d
∫
[0,1]

β +
∫
[0,1]

dβ = β|M×{1} − β|M×{0}.

(This is easily seen using the fact that the exterior derivative on M × [0, 1] is given by
dt + d, where dt is the derivative in the t variable and d the exterior derivative on M.)

With the fiber integral, we now define H by

H(α) =
∫
[0,1]

F∗α, α ∈ Ωk(N).

The property (?) now follows from the the above version of Stokes’ theorem together
with the fact that the exterior derivative is compatible with the pull-back along F. �

An important Corollary of this theorem is the Poincaré Lemma: recall that a domain
U ∈ Rn is called star-shaped if there is a point x0 ∈ U such that for any other point
x ∈ U, the straight line tx + (1− t)x0 connecting x0 and x is in U. For example Rn itself
is star-shaped.

Corollary 2.2 (Poincaré Lemma). Let U ⊂ Rn be a star-shaped domain. Then:

H•dR(U) =

R • = 0

0 • > 0.

In the end this is a statement about solutions to certain systems of PDE’s: Given a
k-form α ∈ Ωk(M) on a manifold M, a necessary condition for the equation α = dβ to
have a solution β ∈ Ωk−1(M), is that α is closed: dα = 0. The Poincaré Lemma says
that for M a star-shaped domain in Rn, this condition is also sufficient: any closed form
is always exact. Since any point x ∈ M in a manifold has a neighborhood that is star-
shaped, this means that locally any closed form on a manifold is also exact. The answer
to the question whether this is globally true however depends on the global topology of
M.

3. SINGULAR (CO)HOMOLOGY OF MANIFOLDS

Recall that the standard k-dimensional simplex ∆k ⊂ Rk+1 is defined as the convex
subset satisfying the equation

∆k := {(t0, . . . .tk) ∈ Rk+1,
k

∑
i=0

ti = 1, ti ≥ 0.}
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The boundary of ∆k consists of k + 1 copies of the (k − 1)-dimensional simplex by
putting ti = 0, i = 0, . . . , k. We write di : ∆k−1 ↪→ ∆k, i = 0, . . . , k for the corre-
sponding inclusion. A smooth singular k-simplex is a smooth map σ : ∆k → M, where
smooth means that we can extend σ to a small open neighborhood of ∆k in Rk+1. We
write S∞

k (M) for the vector space (over R) spanned by all smooth singular k-simplices.
So an element in S∞

k (M) is given by a finite sum ∑i λiσi with λi ∈ R and σi smooth
singular k-simplices. There is an operator ∂ : S∞

k (M)→ S∞
k−1(M) given on simplices by

∂σ :=
k

∑
i=0

(−1)iσ ◦ di,

i.e. this operator restricts a smooth singular k-simplex σ, a map from ∆k to M, to its
k + 1 boundary faces equal to ∆k−1, with a sign. Exactly because of this sign, one checks
that ∂ ◦ ∂ = 0, i.e. the system

. . . ∂−→ S∞
2 (M)

∂−→ S∞
1 (M)

∂−→ S∞
0 (M)

forms a chain complex.3 This time, for a chain complex, we should take its homology:

Hsing
k (M, R) := ker{∂ : S∞

k (M)→ S∞
k−1(M)}/Im{∂ : S∞

k+1(M)→ S∞
k (M)}.

To get an idea what these groups measure, consider Hsing
0 (M, R): a singular 0-simplex

σ : ∆0 → M is just a point in M, and any such simplex is automatically closed since
S∞
−1(M, R) = 0. If two points x, y ∈ M are in the same path connected component of M,

any path γ : [0, 1]→ M from γ(0) = x to γ(1) = y defines a 1-simplex γ : ∆1 → M such
that ∂γ = x − y, showing that they induce the same homology class. In other words:
Hsing

0 (M, R) measures the number of path connected components of M.

Example 3.1 (The fundamental class of an oriented manifold). Let M be a smooth n-
dimensional manifold. It was proved by Whitehead in 1940 that M can be triangulated:
we can write M as a finite union of smooth singular n-simplices σi : ∆n → M for i =

1, . . . , p such that any boundary face of σi is a boundary face of exactly one other simplex
σj, j 6= i. Consider the combination

p

∑
i=1
±σi ∈ S∞

n (M, R).

If we can consistently put the ±-signs so that each boundary face appears with both a
+ and a− sign when taking ∂ of this expression, we get an n-cycle and therefore a class
in Hsing

n (M, R). This can be done exactly when M is orientable and the resulting class of
an oriented manifold M is called the fundamental class, written [M] ∈ Hsing

n (M, R).

3The difference between a chain complex and a cochain complex is that in the former the differential has
degree −1, whereas in the latter it has degree +1.



6 LECTURE 1: COHOMOLOGY OF MANIFOLDS

If we want to have a cochain complex, we should take the dual:

Sk
∞(M) := HomR(S∞

k (M), R).

Now the differential ∂ dualizes to a degree increasing operator d : Sk
∞(M) → Sk+1

∞ (M)

by

dϕ(σ) := ϕ(∂σ), ϕ ∈ Sk
∞(M), σ ∈ S∞

k+1(M).

Clearly d ◦ d = 0, so that we have a cochain complex, and its cohomology

Hk
sing(M, R) := ker{d : Sk

∞(M)→ Sk+1
∞ (M)}/Im{d : Sk−1

∞ (M)→ Sk
∞(M)}

4. THE DE RHAM THEOREM

Given a k-form on M and a smooth singular k-simplex σ : ∆k → M we can integrate:

(2) 〈α, σ〉 :=
∫

∆k
σ∗α.

Notice that it is important that we use smooth singular simplices to be able to pull-back
the differential form to ∆k. Stokes’ theorem now gives us:

Lemma 4.1. For α ∈ Ωk−1(M) and σ ∈ S∞
k (M) we have the equality

〈dα, σ〉 = 〈α, ∂σ〉 .

We can therefore reinterpret the pairing (2) as a map

Ψ : Ω•(M) −→ S•∞(M)

satisfying d ◦ Ψ = Ψ ◦ d. Such a map is called a morphism of cochain complexes. The fact
that Ψ is compatible with the differentials on both sides implies that it induces a map
on cohomology:

[Ψ] : H•dR(M) −→ H•sing(M, R).

Theorem 4.2 (de Rham’s theorem). The map [Ψ] is an isomorphism.

We will not give the full proof of the theorem, but only sketch the main idea. An
important ingredient in the proof is the following crucial property satisfied by de Rham
cohomology:

Theorem 4.3 (Mayer–Vietoris). Suppose that M = U ∪ V is covered by two open subsets.
Then there exists a long exact sequence4

. . . −→ Hk
dR(U ∪V) −→ Hk

dR(U)⊕ Hk
dR(V) −→ Hk

dR(U ∩V) −→ Hk+1
dR (U ∪V) −→ . . .

4A long exact sequence is a complex with zero cohomology. In other words: each composition of maps is
zero and the kernel of each map equals the image of the map preceding it.
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Proof. Given U and V, we have maps on the level of differential forms

Ωk(U ∪V)→ Ωk(U)⊕Ωk(V)→ Ωk(U ∩V)

α 7→ (α|U , α|V)

(βU , βV) 7→ βU |U∩V − βV |U∩V

Remark that the composition of these maps is zero, and that (βU , βV) ∈ Ωk(U)⊕Ωk(V)

mapping to zero in Ωk(U ∩ V) means it comes from a form β ∈ Ωk(U ∪ V). Applying
cohomology, we get

Hk
dR(U ∪V)→ Hk

dR(U)⊕ Hk(V)dR → Hk
dR(U ∩V).

Let us now construct a map Hk(U ∩V)→ Hk+1(U ∪V). For this we choose a function
χU ∈ C∞(U) which is ≤ 1 on U and equal to 1 on U\(U ∩ V). Then χV := 1− χU is
equal to 1 on V\(U ∩ V) and we have χU + χV = 1. Given a closed differential form
ω ∈ Ωk(U ∩V), let

(dχU ∧ω, dχV ∧ω) ∈ Ωk(U)⊕Ωk(V).

Then on U ∩V we have

dχU ∧ω− dχV ∧ω = d(χU − χV) ∧ω

= d(1) ∧ω

= 0,

and therefore these two forms glue together to a closed form of degree k + 1 on U ∪V.
We will skip the proof that the sequence is exact. �

Remark 4.4. Those who know a bit of homological algebra will recognize the snake
Lemma in the proof above: The core of the argument is to show that the sequence

0→ Ω•(U ∪V)→ Ω•(U)⊕Ω•(V)→ Ω•(U ∩V)→ 0

is exact. This short exact sequence of complexes induces the long exact sequence in
cohomology. Remark that the choice of the function χU is irrelevant: choosing another
χ′U results in a closed differential form which differs from the one constructed above by
an exact form. (Try to prove this!)

The proof of de Rham’s Theorem now amounts to proving first that singular coho-
mology H•sing(M, R) satisfies the same properties as the properties of de Rham coho-
mology we have just outlined: functoriality, homotopy invariance and the existence
of Mayer–Vietoris sequences. With that, by choosing an open cover of the manifold
by open sets that are homeomorphic to a star-shaped domain, the proof is reduced to
proving the de Rham isomorphism for such domains, which is done by the Poincaré
Lemma. For the full details, see [2, §V.9].
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Example 4.5. The Mayer–Vietoris property, together with homotopy invariance is ex-
tremely useful in computations. As an example let us compute the cohomology of Pn.
The inclusion Cn ↪→ Cn+1 given by (z0, . . . , zn−1) 7→ (z0, . . . , zn−1, 0) induces an inclu-
sion Pn−1 ⊂ Pn. The complement U := Pn\Pn−1 is isomorphic to Cn via the map

(z0, . . . , zn) 7→ (
z0

zn , . . . ,
zn−1

zn ).

On the other hand, define V := Pn\{[0, . . . , 0, 1]}. Then U ∩V ∼= Cn\{0} ∼ S2n−1, and
the map F : V × [0, 1]→ V defined by

F([z0, . . . , zn], t) = [z0, . . . , zn−1, tzn],

defines a contraction V ∼ Pn−1. The Mayer–Vietoris sequence, together with the ho-
motopy invariance of de Rham cohomology leads to the exact sequence

. . . −→ Hk
dR(P

n) −→ Hk
dR(P

n−1) −→ Hk
dR(S

2n−1) −→ Hk+1
dR (Pn) −→ . . .

Because

Hk
dR(S

2n−1) =

R k = 2n− 1

0 k 6= 2n− 1
,

and H2n−1
dR (Pn−1) = 0 (recall that Pn−1 is 2n − 2-dimensional), the sequence above

breaks up into

0→ Hk
dR(P

n)→ Hk
dR(P

n−1)→ 0, for k < 2n− 1

0→ H2n−1
dR (Pn−1)→ 0

0→ R→ H2n
dR(P

n)→ 0

From this we see, by induction that for 0 ≤ k ≤ 2n:

Hk
dR(P

n) =

R k = even

0 k = odd.

5. ČECH COHOMOLOGY

As is clear from Example 4.5, the Mayer–Vietoris principle, together with homotopy
invariance, makes cohomology very computable. However, after a few examples, one
gets the feeling many of the steps in the computations are very similar, and it should
be possible to formalize these. This is done by giving an alternative, very small cochain
complex, called the Čech complex associated to an open cover, which computes the co-
homology. We shall explain this now. Consider the following:

Definition 5.1. Given an n-dimensional manifold M, a good covering of M is given by a
collection U := {Ui}i∈I of open subsets satisfying

i) M =
⋃

i∈I Ui,
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ii) each finite intersection Ui1,...,ik := Ui1 ∩ . . . ∩Uik is diffeomorphic with Rn.

For such a good covering, we define the following cochain complex:

Ck(U , R) := ∏
Ui1,...,ik

6=∅
R.

(So for each nonempty k-fold intersection, we add a copy of R.) Let us write η =

(ηi1 ...ik ∈ R)i1,...,ik∈I for the elements in this complex associated to such an intersection.
The combinatorics of the covering defines a differential δ : Ck(U , R)→ Ck+1(U , R) by

(δη)i1 ...ik+1 :=
k+1

∑
i=1

(−1)j+1ηi1 ...îj ...ik+1
,

whereˆmeans omission from the argument. One easily checks that δ ◦ δ = 0, so that we
have a cochain complex of which we can take the cohomology.

Theorem 5.2. For a good covering, the cohomology of the complex (C•(U , R), δ) is isomorphic
to the de Rham cohomology (and by de Rham’s theorem, singular cohomology).

The proof is basically given by applying the Mayer–Vietoris principle together with
homotopy invariance, see e.g. [1, Chapter II].

Concluding, we now have three ways to compute the cohomology of a manifold:

i) using the de Rham complex,
ii) using the singular cohomology cochain complex

iii) using the Čech complex of a good open cover.

As an example, let us consider the cohomology of the circle S1.

i) First, the de Rham complex looks like

0 −→ C∞(S1)
d−→ Ω1(S1) −→ 0.

Fix a coordinate s ∈ R/Z so that a one-form looks like g(s)ds. Clearly, the
exterior differential d : C∞(S)→ Ω1(S1) is given by

d f =
d f
ds

ds,

and is not surjective: for a given one-form g(s)ds with g ∈ C∞(S1), we have to
find an anti-derivative of g(s). But the formula

f (s) :=
∫ s

0
g(t)dt,

is only well-defined on S1 if
∫ 1

0 g(t)dt = 0. We therefore see that we can extend
the de Rham complex to the left and right to the sequence

0 −→ R −→ C∞(S1)
d−→ Ω1(S1)

∫
S1−→ R −→ 0,
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which can be checked to be exact. We therefore find that

(3) H0
dR(S

1) = R, H1
dR(S

1) = R.

A generator for H1
dR(S

1) is given by the one-form ds. Remark that s is not really a
function, since it is multi-valued. However ds is a well-defined one-form. Since∫ 1

0 ds = 1, it represents a nontrivial cohomology class.
ii) To illustrate the singular approach, let us compute the singular homology, not

cohomology. The singular chain complex looks like

. . . ∂−→ S∞
2 (S1)

∂−→ S∞
1 (S1)

∂−→ S∞
0 (S1)

A singular 0-chain is just a finite number of points, since ∆0 = 1 ∈ R. For a
singular 0-chain consisting of two points x0, x1 ∈ S1, one can clearly find a map
σ : ∆1 → M which connects the two points. We therefore have that Hsing

0 (S1) =

R, generated by a single point x0 ∈ S1. For a singular 1-chain σ : ∆1 → S1 to
satisfy ∂σ = 0, σ should map the beginning and end point of ∆1 to the same
point. If σ wraps around the circle once, there can never be a 2-chain τ ∈ S∞

2 (S1)

such that ∂τ = σ, if it doesn’t there is. We therefore find that Hsing
1 (S1) = R with

generator the cycle that wraps around the circle once.
iii) For the Čech complex, we need a good cover of S1. For this we choose the open

cover consisting U of 3 intervals overlapping near the end-points. The Čech
complex associated to this cover is then given by

C0(U , R) = R3, C1(U , R) = R3, C2(U , R) = 0.

The differential δ : R3 → R3 is given by

δ(x, y, z) = (x− y, y− z, z− x).

From this we recover the result (3).
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