LECTURE 1: COHOMOLOGY OF MANIFOLDS

1. MANIFOLDS AND TOPOLOGY

Many of the spaces we encounter in physics are very nice: they are manifolds, mean-
ing that we know how to do differential calculus on them in accordance with the fact
that typically physics is described by means of (partial) differential equations. However,
we sometimes encounter objects or quantities that depend on a much coarser structure,
namely the underlying topology of the manifold. For example, consider the electric and
magnetic fields E and B satisfying the Maxwell equation on a domain in R3. For any
embedding surface %, the electric and magnetic flux through ¥ are defined as
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We then have:

e Both fluxes remain constant if we deform the surface X a little bit: for two sur-
faces ¥ and a nearby ¥’ there is a three-dimensional domain N with boundary
oON = X 11X/ and by the divergence theorem
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by the Maxwell equations, if we assume that N does not contain any charges.
(For the magnetic flux this does not matter.)

e The electric flux depends on the charge distribution via Maxwell’s equations,
but the magnetic flux doesn’t: it is an integer, which depends only on the topol-
ogy of the configuration! We can’t understand this yet, but we will identify the
magnetic flux later as a Chern number.

In the next lecture we shall rephrase Maxwell theory in the language of differential
forms and understand the first item in terms of de Rham cohomology. For now we take
from this little discussion the idea that topological invariants are rigid under deformations.

Mathematically, what is going on is that we can always “forget” that a manifold has
a smooth structure so that we have an “inclusion”

{Manifolds} C {Topological spaces} .

The idea that we can deform spaces in topology is captured in the notion of homotopy:
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Definition 1.1. Let fy, fi : M — N be two continuous (resp. smooth) maps between
topological spaces (resp. manifolds). We see that fp and f; are (smoothly) homotopic if
there exists a (smooth) map F : M x [0,1] — N such that F(x,0) = fo(x) and F(x,1) =
f1(x) forall x € M.

Remark 1.2. From now on, when dealing with manifolds, we shall always use smooth
homotopies without saying explicitly so, and write fo ~j f1 for two such homotopic
maps. There are approximation theorem stating that any two smooth maps that are
continuously homotopic, are also smoothly homotopic, so the distinction does not mat-
ter.

We can now say what it means for two manifolds M and N to be homotopic: it
means that there are maps f : M — N and g : N — M such that f o g ~}, idy and
gof ~yp idy. Intuitively it means that we can deform M into N “without creating
or destroying holes”. It defines an equivalence relation between manifolds, written
M ~ N and a topological invariant is a gadget that is invariant under homotopy.

As an example, consider the homotopy groups of a space M with a base point xy € M:

m(M,x0) = {7 0,1 = M, 7@[0,11%) =0} / ~ .

For k = 1 these are just homotopy classes of loops starting and ending in xo. There
is a group structure on 71 (M, x¢), for k = 1 given by concatenation of loops. It is not
difficult to see that a map f : M — N mapping f(x9) = yo € N induces a map f, :
(M, x0) — (N, o) and because we are taking homotopy classes in the definition
of rty, we have that for f,g: M — N,

f ~n &8 — f* =9« 7Tk<M,X()) — ﬂk(N,yo).

It then follows that the homotopy groups are indeed a topological invariant. However,
they are notoriously difficult to compute! This is partly so because in its definition, we
have not used the fact that M is a smooth manifold! The basic idea of differential topology
is to use the smooth structure on a manifold to study its underlying topology. A prime
example of a differential topological invariant are the de Rham cohomology groups.

2. THE DE RHAM COMPLEX

As before, we let M be a manifold. We now consider the system of differential forms
(of arbitrary degree) together with the exterior differential:

(1) c(M) -L al(M) -5 Q2(M) L .

A differential form a € QF(M) for which da = 0, is called closed. If there exists a form
B € OF1(M) such that dB = a, « is called exact. We have seen that d o d = 0, so being
exact implies being closed. With this property, the system (1) is an example of a cochain
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complex: we have Im{d: QF"1(M) — QF(M)} C ker{d: QF(M) — QF1(M)}. The de
Rham cohomology groups measure to what extend closedness fails to imply exactness:

H5 (M) := ker{d: OF(M) — QF1(M)}/Im{d: Q"1 (M) — QF(M)}.

The main point of de Rham’s theorem (see Theorem 4.2 below) is that these groups are
topological invariants of the underlying topological space. For now, let us collect a few
properties of these groups.

e The assignment M — Hj (M) associates a (graded) vector space to a manifold.
e The wedge product of differential forms induces a product

A: HEL (M) x Hig (M) — HRZ'(M),

because d(a A B) = da A B+ (—1)1*la A dB.

e A smooth map f: M — N induces a map f*: H{zx(N) — H3z (M), because of
the fact that the pull-back of differential forms is compatible with the exterior
differential: f*da = df*a for all « € OF(N). This map is compatible with the
wedge product.

The following property is less straightforward, but all the more important:

Theorem 2.1 (Homotopy invariance of de Rham cohomology). Let fo, fi: M — N be
two smooth maps that are smoothly homotopic. Then they induce the same map on the level of
de Rham cohomology groups:

[fo] = [fi]: Hir(N) = Hir(M).

Proof. The fact that fp and f; are smoothly homotopic means that there exists a smooth
map F: M x [0,1] — N with F(x,0) = fo(x) and F(x,1) = f1(x) for all x € M. With
this homotopy F we shall construct a map H: Qf(M) — QF1(N) satisfying®

(x) fia— fia=(doH+Hod)a, foralla e QF(N).

This property implies that indeed [f] = [f].
To construct H, observe that a k-form on M x [0, 1] decomposes as

B=p"+dtnB!, BeOf(MxI01]),

where ¢ is the coordinate on [0,1], B° = ¥ ﬁ(i)b.--,ik(x’ t)dxt A ... A dx™ (in local coordi-

nates) a k-form which does not contain df and ! = Y ﬁlll/---rik—l (x,)dxt A ... A dxi

IFor the mathematically minded: These three properties can be rephrased by saying that de Rham co-
homology defines a contravariant functor from the category of smooth manifolds (with morphisms given
by smooth maps) to the category of graded algebras.

%In homological algebra, H is called a chain homotopy between [f;] and [f;'].
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a k —1 form. We can define the fiber integral along the projection M x [0,1] — M by
integrating the dt-component over [0, 1]:

/Ol(la/atﬁ)df = /01 pldt.

This defines a map f[0,1]: OF(M x [0,1]) — QF (M) and Stokes’ theorem gives the
property
d / 4 [ 4B = Blaerty — Blaseror.
[011}5 o1 B = Blmxq1y — Blmx{o}

(This is easily seen using the fact that the exterior derivative on M X [0, 1] is given by
d: + d, where d; is the derivative in the t variable and d the exterior derivative on M.)
With the fiber integral, we now define H by
H(x) = Fra, ac QF(N).
(0]
The property (x) now follows from the the above version of Stokes” theorem together
with the fact that the exterior derivative is compatible with the pull-back along F. [

An important Corollary of this theorem is the Poincaré Lemma: recall that a domain
U € R" is called star-shaped if there is a point xg € U such that for any other point
x € U, the straight line fx + (1 — t)xo connecting xo and x is in U. For example R" itself
is star-shaped.

Corollary 2.2 (Poincaré Lemma). Let U C R" be a star-shaped domain. Then:

R e=0

Hin(U) = {O L

In the end this is a statement about solutions to certain systems of PDE’s: Given a
k-form « € OF(M) on a manifold M, a necessary condition for the equation & = df to
have a solution B € Qf"1(M), is that a is closed: da = 0. The Poincaré Lemma says
that for M a star-shaped domain in R”, this condition is also sufficient: any closed form
is always exact. Since any point x € M in a manifold has a neighborhood that is star-
shaped, this means that locally any closed form on a manifold is also exact. The answer
to the question whether this is globally true however depends on the global topology of
M.

3. SINGULAR (CO)HOMOLOGY OF MANIFOLDS
Recall that the standard k-dimensional simplex A¥ C RR**! is defined as the convex

subset satisfying the equation

k
A= {(ty,... .ty) eRF, Y =1, t; > 0.}
i=0
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The boundary of A consists of k + 1 copies of the (k — 1)-dimensional simplex by
putting t; = 0, i = 0,...,k. We write d; : A1 < Ak i = 0,... k for the corre-
sponding inclusion. A smooth singular k-simplex is a smooth map ¢ : A¥ — M, where
smooth means that we can extend ¢ to a small open neighborhood of AF in R*1. We
write 5¢°(M) for the vector space (over R) spanned by all smooth singular k-simplices.
So an element in S;°(M) is given by a finite sum Y ; A;o; with A; € R and ¢; smooth
singular k-simplices. There is an operator d : S°(M) — S;° ; (M) given on simplices by
k .
oo =) (—1)vod,
i=0
i.e. this operator restricts a smooth singular k-simplex ¢, a map from A to M, to its
k + 1 boundary faces equal to A*~!, with a sign. Exactly because of this sign, one checks
that d 0 d = 0, i.e. the system

s s2(M) L se(M) -2 s3(M)
forms a chain complex.? This time, for a chain complex, we should take its homology:
H™(M,R) := ker{9: S7(M) — Sg’1(M)}/Im{9: Sg°; (M) — S (M)}

To get an idea what these groups measure, consider Hging(M, R): a singular 0-simplex
o : A — M is just a point in M, and any such simplex is automatically closed since
5%, (M, R) = 0. If two points x, y € M are in the same path connected component of M,
any path y: [0,1] — M from (0) = x to (1) = y defines a 1-simplex 7: A! — M such
that dy = x — y, showing that they induce the same homology class. In other words:
H(s)jng(M, R) measures the number of path connected components of M.

Example 3.1 (The fundamental class of an oriented manifold). Let M be a smooth n-
dimensional manifold. It was proved by Whitehead in 1940 that M can be triangulated:
we can write M as a finite union of smooth singular n-simplices 0;: A" — M fori =
1,..., psuch that any boundary face of 0; is a boundary face of exactly one other simplex
0j, j # i. Consider the combination

i +0; € S;7(M,R).

i=1
If we can consistently put the £-signs so that each boundary face appears with both a
+ and a — sign when taking d of this expression, we get an n-cycle and therefore a class
in HZing(M, R). This can be done exactly when M is orientable and the resulting class of
an oriented manifold M is called the fundamental class, written [M] € H3"8(M,R).

S5The difference between a chain complex and a cochain complex is that in the former the differential has
degree —1, whereas in the latter it has degree +1.
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If we want to have a cochain complex, we should take the dual:
Sk (M) := Homg (S (M), R).

Now the differential d dualizes to a degree increasing operator d: Sk (M) — SKF1(M)
by
dg(0) = 9(00), ¢ € SL(M), 0 € Sy (M).

Clearly d o d = 0, so that we have a cochain complex, and its cohomology

Hing (M, R) := ker{d: S§,(M) — S& (M)} /Im{d: S& (M) — S (M)}

4. THE DE RHAM THEOREM

Given a k-form on M and a smooth singular k-simplex o: A¥ — M we can integrate:

(2) (a,0) = /Ak cra.

Notice that it is important that we use smooth singular simplices to be able to pull-back
the differential form to A¥. Stokes’ theorem now gives us:

Lemma 4.1. Fora € Q¥"Y(M) and o € S°(M) we have the equality
(da,0) = (&, 90) .
We can therefore reinterpret the pairing (2) as a map
Y:Q* (M) — S5 (M)

satisfying d oY = ¥ od. Such a map is called a morphism of cochain complexes. The fact
that ¥ is compatible with the differentials on both sides implies that it induces a map
on cohomology:

[T] : H(;R(M) — ;ing(MfR)'

Theorem 4.2 (de Rham'’s theorem). The map [¥] is an isomorphism.

We will not give the full proof of the theorem, but only sketch the main idea. An
important ingredient in the proof is the following crucial property satisfied by de Rham
cohomology:

Theorem 4.3 (Mayer—Vietoris). Suppose that M = U U V is covered by two open subsets.

Then there exists a long exact sequence*

o — Hig(UUV) — HR(U) @ HSR (V) — Hig(UNV) — HEH(UUV) — ...

4a long exact sequence is a complex with zero cohomology. In other words: each composition of maps is
zero and the kernel of each map equals the image of the map preceding it.
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Proof. Given U and V, we have maps on the level of differential forms
of(uuvVv) - ofUu)eaf(v) - afunv)
o~ (afu aly)
(Bu,Bv) = Bulunv — Bvlunv

Remark that the composition of these maps is zero, and that (B, Bv) € QF(U) ® QX (V)
mapping to zero in QF(U N V) means it comes from a form g € QX(U U V). Applying
cohomology, we get

HL(UUV) — HE(U) @ HY (V) gr — Hip(UNV).

Let us now construct a map H*(U N V) — H*1(U U V). For this we choose a function
Xxu € C*®(U) which is < 1on U and equal to 1 on U\(UN V). Then xv :=1— xu is
equal to 1 on V\(U N V) and we have xy + xv = 1. Given a closed differential form
weQfUNV),let

(dxu A w,dxy Aw) € OFU) @ OF(V).
Then on U NV we have

dxuNw —dxy Aw =d(xu—xv) \w
=d(1) ANw
—0,

and therefore these two forms glue together to a closed form of degreek +1on U U V.
We will skip the proof that the sequence is exact. U

Remark 4.4. Those who know a bit of homological algebra will recognize the snake
Lemma in the proof above: The core of the argument is to show that the sequence

0-Q*(UUV)-Q*(U)aQ*(V) - Q*(UNV)—0

is exact. This short exact sequence of complexes induces the long exact sequence in
cohomology. Remark that the choice of the function xy; is irrelevant: choosing another
Xy results in a closed differential form which differs from the one constructed above by
an exact form. (Try to prove this!)

The proof of de Rham’s Theorem now amounts to proving first that singular coho-
mOIOgy Hsting
mology we have just outlined: functoriality, homotopy invariance and the existence
of Mayer-Vietoris sequences. With that, by choosing an open cover of the manifold

by open sets that are homeomorphic to a star-shaped domain, the proof is reduced to

(M, R) satisfies the same properties as the properties of de Rham coho-

proving the de Rham isomorphism for such domains, which is done by the Poincaré
Lemma. For the full details, see [2, §V.9].
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Example 4.5. The Mayer—Vietoris property, together with homotopy invariance is ex-

tremely useful in computations. As an example let us compute the cohomology of IP".

The inclusion C" < C"*! given by (2°,...,z" 1) — (2°,...,2"71,0) induces an inclu-

sion P"~! C IP". The complement U := IP"\IP"~! is isomorphic to C" via the map
(zo,...,z”) = (S5

z z" )
On the other hand, define V := P"\{[0,...,0,1]}. Then UNV = C"\{0} ~ $**~!, and
the map F : V x [0,1] — V defined by

F([zo,. L2 = [zo,...,z”’l,tz"],

defines a contraction V ~ P"~!. The Mayer-Vietoris sequence, together with the ho-
motopy invariance of de Rham cohomology leads to the exact sequence

... — Hig(P") — Hig(P" 1) — HiR(S*1) — HIF (P") — ...
Because
R k=2n-1
H§R<S2n71) = ’
0 k#2n—-1

and H; '(IP""1) = 0 (recall that P"~! is 2n — 2-dimensional), the sequence above
breaks up into
0 — HiR(P") — Hix(P"1) — 0, fork <2n—1
0 — Hip '(P"1) =0
0 — R — HIR(P") =0

From this we see, by induction that for 0 < k < 2n:

R k =even

Hag(P") = 0 k=odd

5. CECH COHOMOLOGY

As is clear from Example 4.5, the Mayer—Vietoris principle, together with homotopy
invariance, makes cohomology very computable. However, after a few examples, one
gets the feeling many of the steps in the computations are very similar, and it should
be possible to formalize these. This is done by giving an alternative, very small cochain
complex, called the Cech complex associated to an open cover, which computes the co-
homology. We shall explain this now. Consider the following;:

Definition 5.1. Given an n-dimensional manifold M, a good covering of M is given by a
collection U := {U, }c; of open subsets satisfying

i) M= Uier Ui,
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ii) each finite intersection U;,,_ ; = U;, N...N U, is diffeomorphic with R".

For such a good covering, we define the following cochain complex:
C"UR):= J] R
Ui 70

(So for each nonempty k-fold intersection, we add a copy of R.) Let us write 1 =
(7’]1'1“.1')( € ]R)il,...,ike 1 for the elements in this complex associated to such an intersection.
The combinatorics of the covering defines a differential 6 : C*(U/,R) — C**1(U, R) by

N
(517)i]...ik+1 = E(_l)] nil...i}...ik+1’

i=1
where”“means omission from the argument. One easily checks that § o § = 0, so that we
have a cochain complex of which we can take the cohomology.

Theorem 5.2. For a good covering, the cohomology of the complex (C*(U,R), d) is isomorphic
to the de Rham cohomology (and by de Rham’s theorem, singular cohomology).

The proof is basically given by applying the Mayer-Vietoris principle together with
homotopy invariance, see e.g. [1, Chapter II].
Concluding, we now have three ways to compute the cohomology of a manifold:

i) using the de Rham complex,
ii) using the singular cohomology cochain complex
iii) using the Cech complex of a good open cover.

As an example, let us consider the cohomology of the circle S*.

i) First, the de Rham complex looks like
0 — C®(sh) -4 Ql(s!) —s 0.

Fix a coordinate s € IR/Z so that a one-form looks like g(s)ds. Clearly, the
exterior differential  : C*(S) — Q!(S!) is given by

ﬁ:%@

and is not surjective: for a given one-form g(s)ds with ¢ € C®(S!), we have to
find an anti-derivative of g(s). But the formula

£ = [ sy,

is only well-defined on S' if [ g(¢)dt = 0. We therefore see that we can extend
the de Rham complex to the left and right to the sequence

0 R — (81 -4 al(s!) BL R — 0,
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ii)

iii)
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which can be checked to be exact. We therefore find that
Hor(S') =R, Hijg(S") =R.

A generator for H}, (S!) is given by the one-form ds. Remark that s is not really a
function, since it is multi-valued. However ds is a well-defined one-form. Since
fol ds = 1, it represents a nontrivial cohomology class.
To illustrate the singular approach, let us compute the singular homology, not
cohomology. The singular chain complex looks like

L se(sh) L sp(sh) 2 sp(st)
A singular 0-chain is just a finite number of points, since A = 1 € R. For a
singular O-chain consisting of two points xq, x; € S!, one can clearly find a map
o : A' — M which connects the two points. We therefore have that Hgmg(Sl) =
R, generated by a single point xy € S'. For a singular 1-chain ¢ : A! — S! to
satisfy dc = 0, o should map the beginning and end point of A! to the same
point. If o wraps around the circle once, there can never be a 2-chain T € S5°(S?)
such that 9t = o, if it doesn’t there is. We therefore find that Hiing(s 1) = R with
generator the cycle that wraps around the circle once.
For the Cech complex, we need a good cover of S'. For this we choose the open
cover consisting U of 3 intervals overlapping near the end-points. The Cech
complex associated to this cover is then given by

C%(U,R)=R?>, CYU,R)=R3 C*UR)=0.
The differential § : R® — R3 is given by
o(x,y,2z) = (x—yy—2z2z—x).
From this we recover the result (3).
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