
LECTURE 5: CONNECTIONS

1. INTRODUCTION: THE MATHEMATICAL FRAMEWORK OF GAUGE THEORIES

Gauge theories such are extremely important in physics. Examples are given by
Maxwell’s theory of electromagnetism but also the Yang–Mills theories describing the
strong and weak forces in the standard model. Central ingredient in this is the choice
of a compact Lie group G that physicist call the gauge group. For Maxwell theory this
group is abelian, namely G = U(1), but for other important examples this group must
be chosen to be nonabelian, e.g. G = SU(N). Mathematically, the framework for such
gauge theories is given by the theory of principal bundles. Each ingredient of the phys-
ical theory has a solid mathematical meaning in the theory of principal bundles. The
table below gives a “dictionary” to translate from physics to mathematics, and back:

Physics Mathematics

Gauge group Structure group G of a principal bundle P→ M
Gauge field Connection A on P

Field strength Curvature F(A)

Gauge transformation Bundle isomorphism ϕ : P→ P
Matter fields in a representation V of G Sections of the associated vector bundle (P×V)/G

The most important ingredient of gauge theories is of course the gauge field itself,
which, mathematically, corresponds to connections on a principal bundle. The goal of
this lecture is to explain what a connection precisely is. We explain this concept on a
principal bundle, as well as on a vector bundle, in view of the last item when we want
to introduce matter fields.

2. CONNECTIONS

In the previous lecture we have discussed the fundamental dichotomy

Principal bundles
Associated bundle //

Vector bundles
Frame bundle

oo

Let us briefly recall the associated bundle construction: suppose π : P → M is a prin-
cipal G-bundle, and let V be a representation of G. (This means that G acts linearly
on V, i.e., we are given a homomorphism G → GL(V).) The associated vector bundle
is defined as the quotient of P × V under the diagonal action of G: (P × V)/G. This

Date: March 6, 2019.
1



2 LECTURE 5: CONNECTIONS

construction of the associated bundle may seem abstract, but its (local) sections have a
very concrete description: they are given by maps s : P→ V that are G-equivariant:

s(pg) = g · s(p), for all g ∈ G,

where G acts on the right via the homomorphism to GL(V). If we think of P as being
defined by an open covering {Uα}α∈I together with transition functions ϕαβ : Uα ∩
Uβ → G, then the transition functions of the associated bundle are given by ϕ̃αβ : Uα ∩
Uβ → GL(V) by composing with the homomorphism G → GL(V). In the following we
shall need this construction for the adjoint representation of G on its Lie algebra g: this is
a vector bundle with typical fiber g that we denote by ad(P)→ M.

2.1. Connections on principal bundles. Let π : P → M be a principal G-bundle. We
denote the right action of g ∈ G on P by Rg : P → P. Since G is a Lie group, elements
in a neighborhood of the identity element can be written as g = eξ with ξ ∈ g, the Lie
algebra of G. Therefore the action on P has generators

(1) ξP(p) :=
d
dt

∣∣∣∣
t=0

Retξ (p), for all ξ ∈ g.

This defines a vector field for any Lie algebra element ξ ∈ g. This correspondence
defines a map ρ : g→ X(M) called the infinitesimal action.1

Definition 2.1. A connection on a principal G-bundle P → M is a g-valued 1-form A ∈
Ω1(P, g) satisfying

ιξP A = ξ, for all ξ ∈ g,(2a)

R∗g A = Adg−1(A), for all g ∈ G.(2b)

At first sight, this definition looks pretty artificial, so let us find out what a connection
does. Consider a point p ∈ P. The correspondence (1) defines an injective map g ⊂ TpP
consisting of vectors that point in the direction of the G-action. Because the projection
π : P→ M is the map that mods out this action, we see that

Tpπ(ξp) = 0, for all ξ ∈ g.

It is then not difficult to see that because G acts transitively along the fibers of π : P →
M, that this defines an isomorphism

g ∼= ker(Tpπ).

We can summarize this little discussion by the statement that the sequence of linear
maps

(3) 0 −→ g −→ TpP
Tpπ
−→ Tπ(p)M −→ 0,

is exact. Indeed:
1This map is in fact a morphism of Lie algebras: [ξ, η]P = [ξP, ηP], for all ξ, η ∈ g.
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1) it is exact at the first node g because the map g → TpP defined in (1) is injective
as remarked above (the action of G on P is free).

2) it is exact at the second node TpP because ker(Tpπ) = g because the G-action is
transitive along the fibers of π : P→ M.

3) it is exact at the third node Tπ(p)M because the surjectivity of π implies that
Tpπ : TpP→ Tπ(p)M is surjective.

We know from linear algebra that there is an isomorphism of vector spaces

TpP ∼= ker(Tpπ)⊕ Im(Tpπ) = g⊕ Tπ(p)M,

but there is no canonical choice for such an isomorphism: we are working with abstract
vector spaces, the injection g ⊂ TpP is given, but to get the desired isomorphism, we
have to make additional choices.

Given a connection A ∈ Ω1(P, g), define the map

TpP→ g⊕ Tπ(p)M, by X 7→ (Ap(X), Tpπ(X)).

Condition (2a) guarantees that this is an isomorphism, so we see that a connection is
exactly the additional data needed to define the isomorphism! It splits the tangent
space TpP into a vertical subspace g and a horizontal subspace Tπ(p)M.

Example 2.2. Consider the Lie group G itself as a principal G-bundle over a point. (The
point is considered as a 0-dimensional manifold: its tangent space is just the trivial
vector space.) The Lie group G acts on itself by the right action

Rg : h 7→ hg,

with inverse R−1
g = Rg−1 . We can then define the so-called right Maurer–Cartan form

θ ∈ Ω1(G, g) by
θg(X) := TgRg−1(X), for all X ∈ TgG.

Indeed TgRg−1 : TgG → TeG = g, so this is a g-valued 1-form. By definition, the
generating vector field on G is given by

ξg :=
d
dt

∣∣∣∣
t=0

getξ , for all ξ ∈ g.

We now check that

θg(ξg) = TgRg−1(ξg) =
d
dt

∣∣∣∣
t=0

(etξ) = ξ, for all ξ ∈ g,

so θ defines a connection on G! (The second condition (2b) is trivial because the base-
manifold is a point.)

For matrix groups (such as G = SU(N)), we can simply write θ = dgg−1. Let us use
this notation to verify that θ satisfies the so-called Maurer–Cartan equation:

(4) dθ +
1
2
[θ, θ] = 0.
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We start by deriving the following useful relation:

0 = d(1) = d(gg−1) = dgg−1 + gd(g−1),

which gives d(g−1) = −g−1dgg−1 (Remark that G may be non-abelian, so we should
be careful in distinguishing the left and right action on itself!) With this relation we see
that

d(dgg−1) = −dgg−1 ∧ dgg−1,

which shows that (4) holds true. We will see in the next section that the Maurer–Cartan
equation can be interpreted as saying that θ has zero curvature.

Choosing local trivializations sα : Uα → P, see Lemma ??, we can pull-back the
connection form to M: Aα := s∗α A ∈ Ω1(Uα, g). These 1-forms are called the local
connection 1-forms. These are only defined locally. On the overlaps we now have

Lemma 2.3. On Uα ∩Uβ the two local connection 1-forms are related by

Aα = ϕαβ Aβ ϕ−1
αβ + dϕαβ ϕ−1

αβ ,

where ϕαβ : Uαβ → G is the transition function.

Proof. First recall the following method from differential geometry to compute the de-
rivative of a smooth map f : M → N. For a tangent vector X ∈ Tx M, we can find a
smooth curve γ : (−ε, ε) → M with γ(0) = x and γ̇(0) = X. Then the tangent to f is
given by

Tx f (X) =
d
dt
( f (γ(t))

∣∣∣∣
t=0

.

This is very useful to compute the pull-back of a 1-form ω ∈ Ω1(N) since

( f ∗ω)x(X) = ω f (x)(Tx f (X)).

Now, on the overlap Uα ∩Uβ the two local trivializations are related by the cocycle
ϕαβ, i.e., sα = sβ · ϕαβ. We are going to apply the above method to compute Txsα :
Tx M → Tsα(x)P. For the following computation we assume that we are working with a
matrix group such as G = SU(N).

Txsα(X) =
d
dt

∣∣∣∣
t=0

sα(γ(t))

=
d
dt

∣∣∣∣
t=0

(
sβ(γ(t))ϕαβ(γ(t))

)
=

d
dt

∣∣∣∣
t=0

(
sβ(γ(t))

)
ϕαβ(x) +

d
dt

∣∣∣∣
t=0

sβ(x)ϕαβ(γ(t))

= Txsβ(X)ϕαβ(x) + sα(x)ϕ−1
αβ dϕαβ(X).
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If we now evaluate the connection on this expression we find

Aα,x(X) = Asα(x)(Txsα(X))

= Asα(x)(Txsβ(X)ϕαβ(x)) + Asα(x)(sα(x)ϕ−1
αβ dϕαβ(X))

= ϕαβ(x)Asβ(x)(Txsβ(X))ϕ−1
αβ (x) + ϕ−1

αβ dϕαβ(X),

where we have used that ϕ−1
αβ dϕαβ(X) ∈ g and used the two properties (2a) and (2b).

This proves the statement. �

Remark 2.4. This Lemma explains how the physicists usually work with gauge fields:
they are local, Lie algebra valued 1-forms Aα defined on open patches Uα ⊂ M, subject
to the funny transformation rule stated in the Lemma for some ϕαβ : Uα ∩ Uβ → G,
called a gauge transformation.

For the following consequence of this Lemma, define the adjoint bundle ad(P) → M
as the vector bundle associated to the adjoint representation Adg : g → g. This is a
vector bundle with typical fiber g.

Corollary 2.5. Given two connections A and B, their difference A− B ∈ Ω1(M, ad(P).

Proof. Use local trivializations sα : Uα → P as in the previous Lemma. Define θα :=
Aα − Bα, a g-valued 1-form on Uα. Then we find that on the overlaps

θα = ϕ−1
αβ θβ ϕαβ.

This means that the θα glue together to form a 1-form with values in ad(P). �

This Corollary shows that the space of all connections on a principal bundle P → M
is an affine space modeled on Ω1(M, ad(P). A typical example of an affine space is given
by considering a line L in R2 that does not pass through the origin: L is not a vector
space under addition, but it is true that the difference between any two of its points lie
in a fixed vector space, namely the line L′ parallel to L that does pass through the origin.

2.2. Connections on vector bundles. Let M be a smooth manifold, and E → M a
smooth vector bundle. We denote by Ωk(M; E) the space of differential k-forms on
M with values in E:

Ωk(M; E) := Γ∞(M, E⊗
k∧

T∗M)

The following definition is fundamental:

Definition 2.6. A connection on E is a linear map

∇ : Γ∞(M; E)→ Ω1(M; E),

satisfying the Leibniz rule
∇( f s) = f∇(s) + d f ⊗ s,

with f ∈ C∞(M) and s ∈ Γ∞(M; E).
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In short: a connection on a vector bundle E → M is a gadget which allows us to
take “directional derivatives” of smooth sections of E along vector fields on M. For a
vector field X ∈ X(M), we shall write ∇X : Γ∞(M; E) → Γ∞(M; E) for this directional
derivative: ∇X(s) := ιX(∇s). If we want to stipulate for which bundle exactly ∇ is a
connection, we shall write ∇E.

Lemma 2.7. The space of connections on a vector bundle E is an affine space modeled on
Ω1(M, End(E)).

Proof. Let ∇ and ∇′ be two connections on E. It follows form the Leibniz rule that

(∇−∇′) f s = f (∇−∇′)s, for all f ∈ C∞(X), s ∈ Γ(M; E).

The operator ∇−∇′ : Γ∞(M; E)→ Ω1(M; E) is therefore C∞(M)-linear, and it follows
that ∇−∇′ ∈ Ω1(M; End(E)) �

Remark 2.8.

i) For a trivial vector bundle E = M × Cr we always have the trivial connection
given by the de Rham operator d extended to vector valued functions. By the
Lemma above, any other connection can be written as ∇ = d + A with A ∈
Ω1(M, Mr(C)) a matrix-valued one-form. (Mr(C) denotes the r × r matrices
with coefficients in C.)

ii) For a general vector bundle, we can write ∇ = d + Aα in a local trivialization
over Uα. On the overlap Uα ∩Uβ of two local trivializations the two one forms
Aα and Aβ are related by (check!)

(5) Aα = ϕαβ Aβ ϕ−1
αβ + dϕαβ ϕ−1

αβ ,

with ϕαβ : Uαβ → GL(r, C) the transition function. If we adopt the “cocy-
cle point of view” on vector bundles, c.f. Remark ??, we can therefore think
of a connection on a vector bundle as a collection {Aα ∈ Ω1(Uα, Mr(C))}α∈I

of matrix-valued 1-forms, which transform according to (5) under local gauge
transformations.

iii) It can be shown by a standard partition of unity argument that a connection
always exist on a vector bundle.

Remark 2.9. Connections behave well with respect to the standard constructions with
vector bundles: Let E and F be vector bundles over X, with connections ∇E, ∇F.

i) On the direct sum, we have the obvious connection

∇E⊕F =

(
∇E 0
0 ∇F

)
,

ii) On the tensor product we have the connection ∇E⊗F = ∇E ⊗ 1 + 1⊗∇F,
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iii) On the dual E∗, we have the connection defined by the following equation

d 〈α, s〉 = 〈∇E∗(α), s〉+ 〈α,∇E(s)〉 , α ∈ Γ∞(M; E∗), s ∈ Γ∞(M; E),

using the dual pairing 〈 , 〉 : Γ∞(M; E∗)× Γ∞(M; E)→ C∞(M) between sections
of E and E∗

iv) As a special case of iii), we obtain a connection on End(E) = E⊗ E∗, defined by

(6) ∇End(E)(A)(s) := ∇E(A(s))− A(∇E(s)) for A ∈ Γ∞(X, End(E), s ∈ Γ(X; E).

v) On the pull-back bundle f ∗E for a smooth map f : N → M, there is a natural
pull-back connection f ∗∇E.

Finally, we shall give the precise relation between connections on principal bundles
and vector bundles. For this it is important to realize that a connection A on a principal
bundle gives a map Tπ(p)M → TpP for every p ∈ P, and with this we can lift vector
fields X on M to vector fields X̃ on P: X̃ is the unique vector field on P satisfying

A(X̃) = 0, Tπ(X̃) = X.

Proposition 2.10. Let P → M be a principal G-bundle and let E(V) := (P× V)/G be the
vector bundle associated to a representation of G. Let A be a connection on P. Then the formula

(∇Xs) = ds(X̃),

where s : P→ V is a G-equivariant map, defines a connection on E(V).
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