
TEST EXAM RIEMANN SURFACES

Exercise 1. Let X be a Riemann surface.

a) Prove that a holomorphic differential is closed.
b) Prove that for X compact, the map Ω1(X)→ Rh1(X) is injective.

Exercise 2. Let X be a compact Riemann surface of genus g. Recall that we have
proved that there exists a meromorphic function f on X with a single pole of
order ≤ g + 1. Let ϕ : X → X be an automorphism, i.e., an invertible holomor-
phic map. By considering the function f − f ◦ ϕ, show that ϕ can have at most
2g + 2 fixed points.

Exercise 3. Consider the compact Riemann surface X determined by the equa-
tion

w3 = (z− α1)
2(z− α2) · · · (z− αk),

where α1, . . . , αk are distinct points in C. Assume that k = 2 mod(3).

a) X is a branched cover of P1 via the projection onto the z-coordinate.
What is the degree of this covering?

b) Determine the branch points of this covering together with their branch-
ing number.

c) What is the genus of X?
d) Find a basis for Ω1(X).
e) What changes if k 6= 2 mod(3)?

Exercise 4. Let X be a compact Riemann surface.

a) Show that the sequence of sheaves

0 −→ Z −→ O −→ O∗ −→ 0,

where the third map is given by f 7→ e2πi f , is exact.
b) Use the long exact sequence in cohomology to construct the exact se-

quence

0 −→ H1(X,O)/H1(X, Z) −→ H1(X,O∗) δ−→ H2(X, Z).

c) Use Serre duality to prove that

H1(X,O)/H1(X, Z) ∼= Jac(X),
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where Jac(X) is the Jacobian of X defined in the course as the quotient

Jac(X) ∼= Ω1(X)/Per(α1, . . . , αg),

where {αi}
g
i=1 is a basis of Ω1(X) and Per(α1, . . . , αg) the associated pe-

riod lattice.
d) Show that the sequence

0 −→ O∗ −→M∗ −→ Div −→ 0

is exact. Write down the beginning of the long exact sequence in coho-
mology and show that this leads to the sequence

0 −→ DivP(X) −→ Div(X)
φ−→ H1(X,O∗).

e) We now use the following fact: H2(X, Z) ∼= Z, in such a way that δ ◦ φ

equals taking the degree of a divisor. Collect all the information gathered so
far in the diagram

0 // H1(X,O)/H1(X, Z) // H1(X,O∗) // H2(X, Z)

0 // Div0(X) //

OO

// Div(X)

OO

// Z

DivP(X)

OO

DivP(X)

OO

0

OO

0

OO

Argue that the red arrow exists, and use this to give a proof of Abel’s
theorem.


