TEST EXAM RIEMANN SURFACES

Exercise 1. Let X be a Riemann surface.
a) Prove that a holomorphic differential is closed.
b) Prove that for X compact, the $\operatorname{map} \Omega^{1}(X) \rightarrow R h^{1}(X)$ is injective.

Exercise 2. Let X be a compact Riemann surface of genus g. Recall that we have proved that there exists a meromorphic function f on X with a single pole of order $\leq g+1$. Let $\varphi: X \rightarrow X$ be an automorphism, i.e., an invertible holomorphic map. By considering the function $f-f \circ \varphi$, show that φ can have at most $2 g+2$ fixed points.

Exercise 3. Consider the compact Riemann surface X determined by the equation

$$
w^{3}=\left(z-\alpha_{1}\right)^{2}\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{k}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{k}$ are distinct points in \mathbb{C}. Assume that $k=2 \bmod (3)$.
a) X is a branched cover of \mathbb{P}^{1} via the projection onto the z-coordinate. What is the degree of this covering?
b) Determine the branch points of this covering together with their branching number.
c) What is the genus of X ?
d) Find a basis for $\Omega^{1}(X)$.
e) What changes if $k \neq 2 \bmod (3)$?

Exercise 4. Let X be a compact Riemann surface.
a) Show that the sequence of sheaves

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}^{*} \longrightarrow 0
$$

where the third map is given by $f \mapsto e^{2 \pi i f}$, is exact.
b) Use the long exact sequence in cohomology to construct the exact sequence

$$
0 \longrightarrow H^{1}(X, \mathcal{O}) / H^{1}(X, \mathbb{Z}) \longrightarrow H^{1}\left(X, \mathcal{O}^{*}\right) \xrightarrow{\delta} H^{2}(X, \mathbb{Z})
$$

c) Use Serre duality to prove that

$$
H^{1}(X, \mathcal{O}) / H_{1}^{1}(X, \mathbb{Z}) \cong \operatorname{Jac}(X)
$$

where $\operatorname{Jac}(X)$ is the Jacobian of X defined in the course as the quotient

$$
\operatorname{Jac}(X) \cong \Omega^{1}(X) / \operatorname{Per}\left(\alpha_{1}, \ldots, \alpha_{g}\right)
$$

where $\left\{\alpha_{i}\right\}_{i=1}^{g}$ is a basis of $\Omega^{1}(X)$ and $\operatorname{Per}\left(\alpha_{1}, \ldots, \alpha_{g}\right)$ the associated period lattice.
d) Show that the sequence

$$
0 \longrightarrow \mathcal{O}^{*} \longrightarrow \mathcal{M}^{*} \longrightarrow \operatorname{Div} \longrightarrow 0
$$

is exact. Write down the beginning of the long exact sequence in cohomology and show that this leads to the sequence

$$
0 \longrightarrow \operatorname{Div}_{P}(X) \longrightarrow \operatorname{Div}(X) \xrightarrow{\phi} H^{1}\left(X, \mathcal{O}^{*}\right)
$$

e) We now use the following fact: $H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}$, in such a way that $\delta \circ \phi$ equals taking the degree of a divisor. Collect all the information gathered so far in the diagram

Argue that the red arrow exists, and use this to give a proof of Abel's theorem.

