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Lie groupoids are natural generalisations of manifolds, Lie groups, actions of Lie
groups on manifolds and foliations. As such, they are models for singular spaces
and there are several connections to the theory of stratified spaces. Here we are
concerned with the index theory of longitudinally elliptic operator on such Lie
groupoids, generalizing the Atiyah–Singer families index theorem.

Let G be a Lie groupoid over the unit space M , and we denote the source and
target map by s, t : G → M . The composition g1g2 of two elements g1, g2 ∈ G is
defined only if t(g1) = s(g2). A longitudinal pseudodifferential operator [3, 4] on
G is a family of pseudodifferential operators on the t-fibers t−1(x), x ∈ M that
is smooth in x and invariant under the action of G. With the right conditions on
the support of such pseudodifferential operators, they form an algebra denoted by
Ψ∞(G). For us, two facts of this pseudodifferential calculus are important:

i) The universal enveloping algebra U(A), where A is the Lie algebroid associ-
ated to G embeds into Ψ∞(G) as families of invariant differential operators
on the t-fibers.

ii) The ideal of smoothing operators Ψ−∞(G) ⊂ Ψ∞(G) is isomorphic to the
convolution algebra A of G. Recall that the convolution algebra is given
by A = Γ∞c (G; s∗

∧top
A∗) equipped with the product

(a1 ∗ a2)(g) :=
∫
h∈Gt(g)

a1(gh−1)a2(h),

where Gx is the submanifold of all arrows g ∈ G having target x ∈M .
All this is easily extended to the case of operators acting on sections on a vector
bundle pulled back from M . Therefore, for E → M a vector bundle, we write
U(A;E) for the tensor product U(A)⊗ End(E). We say an element D ∈ U(A;E)
is elliptic if it defines an elliptic differential operator Dx on t−1(x) for each x ∈M .

Standard arguments using this pseudodifferential calculus construct an index
class

[Ind(D)] ∈ K0(A)
of such an elliptic operator. Unfortunately, the K-theory of A is still very poorly
understood in general, with the exception of so-called foliation groupoids where the
Connes–Skandalis index theorem gives a topological construction of the index class
above out of the symbol of D. To go beyond the case of foliations, we therefore
apply the Chern-Connes character to cyclic homology and study the class

Ch([Ind(D)]) ∈ HC•(A).

In general, the cyclic homology of A is (again) not understood beyond the foliation
case where there is a complete computation due to Brylinski–Nistor and Crainic.

To circumvent this lack of understanding, we shall construct certain cyclic
cohomology classes, and compute the pairing with the homology class above. The
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result is an index theorem valid for all Lie groupoids, not just the foliation ones,
cf. [5].

First of all, we construct the line bundle L =
∧top

T ∗M ⊗
∧top

A of “transver-
sal densities”. It was first noticed by Evens–Lu–Weinstein that the groupoid G
naturally acts on this line bundle and therefore we can consider its differentiable
groupoid cohomology H•diff(G;L). This is a straightforward generalization of dif-
ferentiable group cohomology with values in a representation of a Lie group, viz.
the case when M is a point. This cohomology is the domain of a canonical map

χ :
⊕
i≥0

H•+2i
diff (G;L)→ HC•(A).

This map can be thought of as the characteristic map associated to an action of a
Hopf algebroid on A. It enables us to pair elements in K0(A), such as the index
class, with differentiable groupoid cohomology classes.

Second, we construct the index class inK0(A) is such a way that it is represented
by idempotents in A with support arbitrarily close to the unit. In fact, one can
construct a “localized K-theory” K loc

0 (A) build from idempotents with exactly
this property, equipped with a canonical forgetful map K loc

0 (A) → K0(A). The
remark above then boils down to the statement that there is a natural refinement

[Ind(D)]loc ∈ K loc
0 (A)

of the index class. The crucial feature of the localized K-theory is that it naturally
pairs with Lie algebroid cohomology:

〈 , 〉 : K loc
0 (A)×Hev

Lie(A;L)→ C.

Similar to differentiable groupoid cohomology, Lie algebroid cohomology general-
izes the cohomology theory of Lie algebras and the representation of A on L is
just the infinitesimal part of the representation of G. As for Lie groups, there is a
natural “van Est” map for Lie groupoids

E : H•diff(G;L)→ H•Lie(A;L).

The first result relates the global pairing with the localized one via this van Est
map:

Theorem 1. Let G be a Lie groupoid, E →M a vector bundle over the unit space,
and D ∈ U(A,E) an elliptic element. Then, for α ∈ H2k

diff(G;L),

〈χ(α),Ch([Ind(D)])〉 = 〈E(α), [Ind(D)]loc〉 .

This reduces the computation of the index to a local computation near the unit
space. We perform this computation using the fact that the pseudodifferential
calculus on G is a quantization of the Lie–Poisson structure on A∗, and reduce it
to the algebraic index theorem for this Poisson manifold. The final result is given
as follows:
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Theorem 2. Let A → M be an integrable Lie algebroid, E a vector bundle over
M and D ∈ U(A,E) an elliptic element. For c ∈ H2k

Lie(A;L) we have

〈c, [Ind(D)]loc〉 =
1

(2π
√
−1)k

∫
A∗
π∗c ∧ Â(π!A) ∧ ρ∗π!Ach(σ(D)).

Here, the right hand side is a topological expression using the usual character-
istic classes, only now given in Lie algebroid cohomology rather than de Rham
cohomology. The notation π!A denotes the pull-back (in the category of Lie alge-
broids) of A along the projection π : A∗ → M . This is a Lie algebroid over A∗

with anchor map ρ∗π!A : π!A→ TA∗, which has the same Lie algebroid cohomology
as A.

Together, these two theorems give a complete understanding of the pairing
between the index class and Lie groupoid cohomology classes for any Lie groupoid.
Possibly, the localized index Theorem 0.2 is much more powerful and has more
applications. We can consider some special cases to get some more insight:

i) The pair groupoid M×M of any manifold is proper, and there is therefore
only one nonzero differentiable groupoid cohomology class which lives in
degree zero. In this case, we find the Atiyah–Singer index theorem for
elliptic operators on M . On the other hand, the associated Lie algebroid is
simply TM and its Lie algebroid cohomology is given by H•dR(M). With
this, Theorem 0.2 recovers Connes–Moscovici’s localized index theorem
[2]. The covering index theorem of Connes–Moscovici is a very natural
statement in the present framework about two Lie groupoid that induce
the same Lie algebroid.

ii) For a foliation F ⊂ TM , we can apply this theory to the holonomy
groupoid GF of F . In this case we find Connes’ index theorem [1, §III.7.γ]
for the pairing between the index class and elements in H•(BGF ), but
only for those classes that come from differentiable groupoid cohomology
of the holonomy groupoid. This restriction is the price we have to pay
for being able to extend the index theorem from foliation groupoids to
arbitrary Lie groupoids.

References

[1] A. Connes. Noncommutative Geometry. Academic Press, (1994).

[2] A. Connes, H. Moscovici. Cyclic cohomology, the Novikov conjecture and hyperbolic groups,
Topology 29, no. 3, 345-388 (1990)

[3] B. Monthubert and F. Pierrot. Indice analytique et groupoides de Lie, C. R. Acad. Sci. Paris
Sér. I Math. 325 (1997), no. 2, 193-198.

[4] V. Nistor, A. Weinstein, and P. Xu. Pseudodifferential operators on differential groupoids,

Pacific J. Math. 189 (1999), no. 1, 117-152.
[5] M. Pflaum, H. Posthuma and X. Tang. The localized longitudinal index theorem for Lie

groupoids and the van Est map arXiv:1112.4857 (2011)

3


