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Symplectic orbifolds are naturally encountered in mathematical physics and Pois-
son geometry, e.g. as the result of symplectic reduction with respect to a locally
free action of a compact Lie group. It is therefore very natural to try to extend
known quantization schemes on symplectic manifolds to this category. The aim of
this talk is to explain how this gives a useful approach to index theory on orbifolds
and as such may serve as an example for dealing with more singular spaces. In all
this we use the the theory of formal deformation quantization.

A symplectic orbifold X is, loosely speaking, a topological Hausdorff space
which locally is homeomorphic to an open neighbourhood of 0 in R2n/Γ, where Γ
is a finite group acting by linear symplectic transformations with respect to the
standard symplectic form on R2n. Besides being an orbifold in the usual sense, the
symplectic structure gives the sheaf of smooth functions on X , i.e., those functions
that locally lift to smooth Γ-invariant functions in a chart as above, the structure
of a sheaf of Poisson algebras. Instead of considering the deformation problem
for this Poisson algebra, denoted AX , we will do the folowing, in the spirit of
noncommutative geometry:

Associated to a symplectic orbifold X is a proper étale groupoid G, with struc-
ture maps s, t : G1 → G0 and G0/G1

∼= X , such that G0 carries an invariant
symplectic form ω, i.e., s∗ω = t∗ω. The convolution algebra of an étale groupoid
is defined as AG := C∞

c (G1) with the product

(f1 ∗ f2)(g) =
∑

g1g2=g

f1(g1)f2(g2),

for g ∈ G1. Notice that the center of AG equals AX := C∞
c (X), and when

X happens to be a manifold, AG is even Morita equivalent to its center. The
symplectic nature of the orbifold amounts to a canonical Hochschild class π ∈
H2(AG, AG) which satisfies [π, π] = 0, cf. [8]. The upshot is that the “classical
phase space” is already a noncommutative geometry!

A formal deformation quantization of the noncommutative Poisson algebra
(AG, π) consists of an associative product ?c on AG[[~]], compatible with the
~-adic filtration, such that in zeroth order one recovers the convolution prod-
uct above, and the Hochschild class of the first order approximation equals π.
Such a deformation, denoted by A~

G, can be constructed as follows: Using Fe-
dosov’s method [1], one can construct a G-invariant deformation quantization of
the sheaf of smooth functions on the symplectic manifold G0, with characteristic
class [Ω] ∈ H2(X, C[[~]]). Using a kind of crossed product construction, one ob-
tains a deformation A~

G of AG, whereas the invariant section of this sheaf give a
deformation quantization A~

X of AX , cf. [6]. In sharp contrast to the classical (i.e.,
undeformed) theory, it turns out that there is a canonical Morita equivalence

(1) A~

G
M
∼ A~

X ,
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when the orbifold X is reduced, so, in a sense, the quantization “resolves the
singularities”.

As a first step towards the index theorem, one computes the cyclic theory of
the algebra A~

G. To state the following theorem, let X̃ be the “inertia orbifold”
associated to X . This orbifold, canonically associated to X , was first considered
in [3], and is referred to in the physics literature as the “twisted sectors” of X .

Theorem 1 ([5]). The Hochschild and cyclic cohomology groups of the deformed

groupoid algebra A~

G are given by

HH•(A~

G) ∼= H•
(

X̃, C((~))
)

HC•(A~

G) ∼=
⊕

k≥0

H•−2k
(

X̃, C((~))
)

.

Similar results hold for Hochschild and cyclic homology [5] in terms of compactly

supported cohomology, so that these are Poincaré dual over X̃ to the cohomology
as stated above. Of special interest is the above result for HC0 since cyclic cocycles
of degree zero are nothing but traces on the algebra A~

G, i.e., linear maps tr : A~

G →
C((~)) satisfying

tr(a ?c b) = tr(b ?c a).

Therefore we find that

dimC((~)){space of traces} = # Components(X̃),

in particular is not one-dimensional when X is a nontrivial orbifold. This is in
sharp contrast with the case of smooth symplectic manifolds where it is well-known
that there is a unique trace up to normalization, cf. [1, 4].

Let K0
orb(X) be the Grothendieck group of formal differences of orbifold vector

bundles, sometimes called “orbifold K-theory”. A trace tr in the sense above
induces an index map

tr∗ : K0
orb(X) → C((~))

as follows. By taking the trace of idempotents in matrix algebras over A~

G, one
gets a map tr∗ : K0(A

~

G) → C((~)). To obtain the index map from this, one uses
the isomorphisms

K0(A
~

G) ∼= K0(AG) ∼= K0
orb(X).

Here the first isomorphism states that K-theory is “rigid” under deformation quan-
tization, whereas the second can be viewed as a kind of Serre–Swan theorem for
orbifolds. The algebraic index theorem for orbifolds gives a topological formula
for the value of an index map associated to a trace on a K-theory class given by a
pair (E, F ) of orbifold vector bundles, isomorphic outside a compact subset of X .

Theorem 2 ([7]). Let trα be a trace corresponding to the connected component

X̃α of X̃α. Let E → X be an orbifold vector bundle. Then, up to a constant,

(trα)∗ ([E] − [F ]) ∝

∫

X̃α

Chθ(RE − RF )

det (1 − θ−1 exp(−R⊥))
Â(RT )eι∗

α
Ω/~.
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In the formula above, the right hand side consists of the usual characteristic
classes which can be explicitly represented by differential forms on X̃ by choosing
a Riemannian metric with curvature R and connections on E and F . The map
ια is the canonical embedding of the connected component X̃α into X , and θ is
the canonical automorphism acting on vector bundles normal to this embedding,
so that one can twist the Chern character of E and F restricted to X̃α and write
down the denominator familiar from the equivariant index theorem.

Notice that the formula in the theorem is only given up to a constant, since
thus far the trace is only determined up to normalization by its support on X̃α.
When X is a manifold, i.e., X̃ = X and there is a unique trace, the normalization
can easily be fixed and the theorem above reduces to the algebraic index theorem
in [1, 4]. For an orbifold, the normalization issue is much more nontrivial because
of the non-uniqueness of the trace, and the actual statement proved in [7] is much
stronger: using the concept of a “twisted trace density”, a canonical trace with
support on X̃α is constructed for which the normalization can explicitly be fixed.
The resulting formula was first conjectured in [2].

Finally, one can obtain the the classical Kawasaki index theorem [3], by con-
sidering the deformation quantization A~

T∗X of of the cotangent bundle T ∗X of
an orbifold X induced by the asymptotic pseudo-differential calculus. Using the
Morita equivalence (1), one can compare the operator trace to the canonical trace
above. As can be suspected from the index theorem, this trace has support on all
connected components of X̃ . Since the index of an elliptic operator on a compact
orbifold is determined by its symbol, considered as a class in the (compactly sup-
ported) orbifold K-theory of T ∗X , one derives the cohomological formula of the
Kawasaki index from the algebraic index theorem, cf. [7].
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