
The software invention cube

Jan Bergstra

ASICT/IvI/FNWI/UvA
janb@science.uva.nl

HOSC: June 15, 2006

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 1 / 11

janb@science.uva.nl


INPUT: SWIC Joint work with Paul Klint CWI/UvA

Context: EU project: "Study of the effects of computer implemented
inventions". Plus some remarks that I am responsible for myself.

Software patents: the phrase survives whether we like it or not.

HOSC 2005: (Jan Bergstra &) PAUL KLINT: patents in the context
of the software engineering life-cycle/trivial patents.

HOSC 2006: JAN BERGSTRA (& Paul Klint): Software invention
cube.
IPR for software stands on FOUR feet:

law
economics
international legislation, conventions and treaties
software engineering

IPR on software UNITES everyone from GPL to closed source
writers: IPR on software is important !!
We only disagree on how and when it should be done.

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 2 / 11



focus: PATENTS

Conceptual problems are massive:

what kind of inventions/discoveries require protection

what can be protected

what should not be protected

what is the boundary between copyright and patenting

In software:

inventions are published and/or patented

products are copyrighted (e.g. sources, executables, formal
specifcations, requirements documents, textbooks)

Already this assumption is controversial. Some define ’invention’ via
patents: hopeless and needless circularity!

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 3 / 11



software inventionism (SI)

(software) INVENTIONISM = the COMBINATION of these viewpoints:

’software inventions’ as a concept are prior to patents and
patenting systems of all forms.

software inventions require systematic analysis (e.g. SWIC)

software INVENTION = software DISCOVERY.

copyrights » IPR for software products in (almost) physical form.

publication and patenting » IPR for software inventions.

constraints on SI:

Neutral on the economic and ethical aspects of IPR for software.

assumes a flexible boundary between copyrighting and patenting.

No claims that software is special, prefix software only removes
constraints for compatibility with inventions in other areas.

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 4 / 11



practical use of the phrase SI

It is implausible to write or say: I am a software inventionist.

But it works to write or say: assuming software inventionism.
This kind of language is not un-common in analytical philosophy.

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 5 / 11



techno-political software inventionism (TPSI)

= (software) INVENTIONISM plus a number of TP decisions.

Various options for TPSI, from anti-patent to anti-copyright etc.

TPSI’s are designed and mature through political process,
experience and discussion (TPSI life-cycle)

EU is working on its own TPSI.

Lawyers and economists: which TPSI to choose.

Software engineering experts: details and concepts of software
inventionism (e.g. the definition of prior art)

Research on SI and on specific TPSI’s to be encouraged.

Software engineering research agenda: free from political
pressures, be it from commercial interests or from open source
communities!

Freedom of thought is somewhat at risk in our circles!

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 6 / 11



Basic research on software inventions

what inventions are we talking about?

what is the distinction between invention and product?

how to classify inventions?

software invention classification proposal
We propose SWIC. Details in our conference paper
- on the HOSC 2006 CD,
- or on PK’s homepage www.cwi.nl/ paulk/patents)

inventions: much larger scope than products

most inventions cannot be copyrighted by definition

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 7 / 11



SWIC: Software Invention Cube

3 dimensional space of inventions: Cube with 4× 5× 5 = 100 cells.
technical aspect

capabilities
process
tools
deliverables

engineering phase
requirements engineering
design
implementation
testing
maintenance

legal assessment
state of the art
technical content
inventive step
skilled in the art
infringement

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 8 / 11



described invention versus embodied invention

SWIC classifies described inventions. Patent infringements always
arise from embodied inventions.

Novelty considered optional (and temporary)
Inventions need not be new! Like a mathematical theorem:
a theorem remains a theorem for centuries.
Example: automatic garbage collection (AGC) is an invention. A
particular description of AGC can be projected on the 100 cells of the
SWIC, many results will be empty or irrelevant. Decomposition into a
number of inventions, leading to a potential IPR strategy.

Exclusion of mathematics (from invention) considered futile
Scientific publication, patenting or secrecy are alternatives. No useful
selection possible of ’scientific results’ (on software engineering) that
cannot or should not be considered for patenting. No sound criteria.
The distinction between algorithms and programs is artificial and
useless (for excluding described inventions from patenting).

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 9 / 11



described invention versus embodied invention

SWIC classifies described inventions. Patent infringements always
arise from embodied inventions.

Novelty considered optional (and temporary)
Inventions need not be new! Like a mathematical theorem:
a theorem remains a theorem for centuries.
Example: automatic garbage collection (AGC) is an invention. A
particular description of AGC can be projected on the 100 cells of the
SWIC, many results will be empty or irrelevant. Decomposition into a
number of inventions, leading to a potential IPR strategy.

Exclusion of mathematics (from invention) considered futile
Scientific publication, patenting or secrecy are alternatives. No useful
selection possible of ’scientific results’ (on software engineering) that
cannot or should not be considered for patenting. No sound criteria.
The distinction between algorithms and programs is artificial and
useless (for excluding described inventions from patenting).

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 9 / 11



described invention versus embodied invention

SWIC classifies described inventions. Patent infringements always
arise from embodied inventions.

Novelty considered optional (and temporary)
Inventions need not be new! Like a mathematical theorem:
a theorem remains a theorem for centuries.
Example: automatic garbage collection (AGC) is an invention. A
particular description of AGC can be projected on the 100 cells of the
SWIC, many results will be empty or irrelevant. Decomposition into a
number of inventions, leading to a potential IPR strategy.

Exclusion of mathematics (from invention) considered futile
Scientific publication, patenting or secrecy are alternatives. No useful
selection possible of ’scientific results’ (on software engineering) that
cannot or should not be considered for patenting. No sound criteria.
The distinction between algorithms and programs is artificial and
useless (for excluding described inventions from patenting).

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 9 / 11



What will we do next? (PK & JAB)

Once we know what can be protected with IPR, the next question is:
what should be protected? Impact analysis in principle: impact models
as a foundation.

Software technology life-cycle needed: impact of inventions

Craig A. James ’The care and feeding of FOSS’

Rogers describes technology life-cycles in general, much work
has been done.

Instantiation for software engineering required.

Is software innovation life-cycle a useful phrase?

from invention to innovation
A TPSI regulates the process from invention to innovation. TPSI’s can
only be compared or assessed if that process is known.

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 10 / 11



What will we do next? (PK & JAB)

Once we know what can be protected with IPR, the next question is:
what should be protected? Impact analysis in principle: impact models
as a foundation.

Software technology life-cycle needed: impact of inventions

Craig A. James ’The care and feeding of FOSS’

Rogers describes technology life-cycles in general, much work
has been done.

Instantiation for software engineering required.

Is software innovation life-cycle a useful phrase?

from invention to innovation
A TPSI regulates the process from invention to innovation. TPSI’s can
only be compared or assessed if that process is known.

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 10 / 11



some radical thoughts

People from law and economy may FAIL to see that software is a
revolutionary business:

slow communcation→ internet
documents lost→ search engines
library overflow→ digital library
software expensive→ FOSS

Software IPR cannot be based on flawed and ill-understood
concepts.

It will NOT be left to legal and economic specialists.

Extreme investments will be made if necessary to develop a
PROPER IPR system for software.

People in SE are not lazy.

If patenting must be reorganized for software that will HAPPEN!

Software is stronger than both TRIPS and EU. It cannot be
regulated by irrational means.

Jan Bergstra (ASICT) The Software Invention Cube HOSC: June 15, 2006 11 / 11


