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Preface

The present contribution to the Proceedings of the SIAG OP-SF summer school
2000 on Orthogonal Polynomials and Special Functions gives a detailed account of
my lectures at the summer school. It treats a very general family of classical, basic
hypergeometric orthogonal polynomials in several variables, known as the Koorn-
winder polynomials. The basic properties of the Koornwinder polynomials are
derived using recent powerful techniques of Cherednik, Macdonald, Koornwinder,
Noumi, Sahi and others, in which the affine Hecke algebra plays an important role.

These lecture notes are accompagnied by a second, independent article in this
volume which is written jointly with Masatoshi Noumi. In this second contribution
we discuss the Hecke algebra techniques for the Askey-Wilson polynomials, which
are the Koornwinder polynomials in one variable. The one variable set-up allows
us to go beyond the derivation of the basic properties of the associated orthogo-
nal polynomials, without putting to much effort in the necessary preparations; we
are therefore able to derive more properties of the orthogonal polynomials than is
achieved in the lecture notes for the multivariable set-up. Especially the readers
who are not familiar to the affine Hecke algebra techniques, or who are well ac-
quinted with the classical theory on basic hypergeometric orthogonal polynomials
in one variable, are advised to read the second contribution first. The technicalities
are less involved, and the connection with the familiar notations and results from
basic hypergeometric series theory is made explicit.

1. Introduction

1.1. Classical hypergeometric orthogonal polynomials. If µ is a positive
Borel measure on R with finite moments, then the corresponding orthogonal poly-
nomials {pn(·)}n∈Z+

satisfy a three term recurrence relation of the form

xpk(x) = akpk+1(x) + bkpk(x) + ckpk−1(x), k ≥ 1,

xp0(x) = a0p1(x) + b0p0(x)
(1.1)

with ai, bi, ci ∈ R and aici+1 > 0.
In many applications of orthogonal polynomials in mathematics and physics, the

orthogonal polynomials are in addition joint eigenfunctions of a second order dif-
ferential operator. For instance, in one-dimensional quantum physical systems, the
Hamiltonian is an (essentially self-adjoint) linear operator with respect to a positive
Borel measure µ which is usually given explicitly by a second order differential oper-
ator. Its eigenvalues describe the discrete energy spectrum of the physical system,
while the eigenfunctions represent the corresponding physical states. Sometimes
the discrete states (which are automatically pair-wise orthogonal with respect to
µ) can be represented by the corresponding orthogonal polynomials.
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In this way, the Laguerre polynomials enter in the description of the energy
spectrum of the hydrogen atom, the Hermite polynomials enter in the description
of the energy spectrum of the harmonic oscillator, and the Jacobi polynomials enter
in the description of the energy spectrum of the physical system of two particles on
a closed wire with respect to certain square inverse potentials.

Mathematically, orthogonal polynomials which are in addition eigenfunctions of
a second order differential operator occur for instance in representation theory and
harmonic analysis. The basic example is Fourier analysis on the unit sphere (the
theory of spherical harmonics), which is described in terms of a degenerate family
of Jacobi polynomials (the so called Legendre polynomials). The corresponding
second order differential operator then relates to the Laplace-Beltrami operator on
the unit sphere.

Altogether, orthogonal polynomials which are joint eigenfunctions of a second
order differential operator form an important sub-class of orthogonal polynomials,
which nowadays are considered to be classical, see [1]. A classification of these
families of orthogonal polynomials follows from Bochner’s [3] paper: it consists
(up to an affine linear transformation of the geometric variable) of the Hermite,
Laguerre and Jacobi polynomials. These families are all expressible in terms of
hypergeometric series.

1.2. Classical orthogonal polynomials. A richer class of orthogonal polynomi-
als is obtained by requiring the orthogonal polynomials {pn}n∈Z+

to satisfy a three
term recurrence relation of the form

(Lpn)(x) = γnpn, n ∈ Z+,
(Lf)(x) := a(x)(f(qx)− f(x)) + b(x)(f(x/q)− f(x)),

(1.2)

where γn ∈ C, and q ∈ C\{0} is an additional deformation parameter which we will
assume to be generic. Orthogonal polynomials which in addition satisfy a second
order q-difference equation of the form (1.2), can be expressed in terms of basic
hypergeometric series.

In the terminology of Andrews and Askey [1], families of orthogonal polynomials
satisfying a second order q-difference operator of the form (1.2) are also consid-
ered to be classical. The most general family of such classical basic hypergeomet-
ric orthogonal polynomials is the celebrated family of Askey-Wilson polynomials,
which were introduced by Askey and Wilson in the famous memoir [2] in 1985.
All other families of classical basic hypergeometric orthogonal polynomials are ob-
tained from the Askey-Wilson polynomials by limit transitions or specializations.
The corresponding hierarchy of classical basic hypergeometric orthogonal polyno-
mials (known as the q-Askey scheme) is of a considerable size, see [18]. The classical
hypergeometric orthogonal polynomials are obtained from the basic hypergeometric
ones by sending the base q to one.

Classical basic hypergeometric orthogonal polynomials have been used exten-
sively in mathematical physics and in representation theory. The physical back-
ground of the setting usually provides natural interpretations of the deformation
parameter q, as well as of the “canonical” limit q → 1. For instance, in problems
related to quantization (i.e. the transition from classical to quantum mechanics),
q is related to e~, where ~ is the Planck constant, so that q → 1 corresponds with
~→ 0. In the transition from non-relativistic to relativistic models, q is related to
e1/c, where c is the speed of light, so that q → 1 corresponds with c→∞.
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1.3. Self-dual orthogonal polynomials. The Askey-Wilson polynomials pn (n ∈
Z+), which are the most general classical basic hypergeometric orthogonal polyno-
mials, see [12], satisfy a remarkable symmetry property, which is usually referred
to as “duality”. It roughly states that the spectral and geometric parameter of the
Askey-Wilson polynomial are interchangeable. To be a little bit more precise at
this stage: we take the Askey-Wilson polynomial pn(x) to be a Laurent polynomial
in x, invariant under x ↔ x−1, so that pn(x) (n ∈ Z+) is actually a set of orthog-
onal polynomials with respect to the variable x + x−1 (With this convention one
has to replace multiplication by x in (1.1) by multiplication by x + x−1). Then
for a suitable normalization of the Askey-Wilson polynomials, there exist complex
numbers x, γ ∈ C \ {0} such that pn(xq

m) = p̃m(γqn) for all m,n ∈ Z+, where p̃m
is the Askey-Wilson polynomial of degree m with respect to a different (“dual”)
choice of parameters.

Observe that a family of orthogonal polynomials satisfying such a duality prop-
erty is classical and of basic hypergeometric type, since application of duality to its
three term recurrence relation (1.1) yields a second order q-difference equation of
the form (1.2) for the “dual” orthogonal polynomials {p̃m}m∈Z+

! Hence families of
“self-dual” orthogonal polynomials form a distinguished sub-class of the classical
basic hypergeometric orthogonal polynomials.

1.4. Macdonald polynomials. Due to work of Cherednik and Macdonald, the
class of self-dual orthogonal polynomials can be extended in a natural way to fami-
lies of multivariable self-dual orthogonal polynomials (known nowadays as the Mac-
donald polynomials). The rich symmetry structure of the polynomials, which can
be incorporated in an algebraic object called the double affine Hecke algebra, is a
crucial tool for understanding the basic properties of these families of multivari-
able orthogonal polynomials. In fact, the existence of a large class of mutually
commuting difference operators for which the Macdonald polynomials are joint
eigenfunctions is the reason that the symmetry techniques are very powerful tools
in unraveling the structure of the Macdonald polynomials.

The theory of Macdonald polynomials plays a fundamental role in several differ-
ent branches of mathematics and mathematical physics, such as algebraic combina-
torics, representation theory of quantum groups and affine Hecke algebras, quantum
Khnizhnik-Zamolodohikov equations, conformal field theory, relativistic quantum
integrable systems (Calogero-Moser systems), etc.

As an example, I will be a little bit more concrete here on the connection
with Calogero-Moser systems. The Macdonald polynomials are q-analogs of the
Heckman-Opdam polynomials, which are families of multivariable “classical” or-
thogonal polynomials generalizing the Jacobi polynomials. The Heckman-Opdam
polynomials solve the (completely integrable) quantum physical system of a bosonic
gas on a closed wire with pair-wise inverse quadratic potentials (the so-called quan-
tum Calogero-Moser system); the second order differential operator for which the
Heckman-Opdam polynomials are joint eigenfunctions is (up to a conjugation with
the ground state) the Hamiltonian of the system. The Macdonald polynomials then
have a similar interpretation, now in terms of a relativistic version of the quantum
Calogero-Moser system, see e.g. Ruijsenaars & Schneider [28]. As in §1.2, the de-
formation parameter q is related to the speed of light c, in such a way that the
classical limit q → 1 corresponds with the non-relativistic limit c→∞.
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1.5. Koornwinder polynomials. The main goal of these lectures is to explain
Cherednik’s and Macdonald’s theory for Koornwinder’s [17] multivariable gener-
alization of the Askey-Wilson polynomials, known nowadays as the Koornwinder
polynomials. Just as in the one-variable case, the family of Koornwinder polyno-
mials may be seen as the “grand-father” who provided a considerable off-spring
of degenerate families of multivariable analogs of classical (basic) hypergeometric
orthogonal polynomials, see e.g. [33] and [11] (these form part of a multivariable
generalization of the (q-)Askey scheme). In particular, most families of the Mac-
donald polynomials are special cases or limit cases of the family of Koornwinder
polynomials.

So restricting our attention to the special class of Koornwinder polynomials
does not provide a major loss of generality. On the other hand, it simplifies certain
technical aspects of the theory, which hopefully helps the reader to get quicker
acquainted with the theory.

1.6. Literature. The material treated in these lecture notes follow closely the
papers of Noumi [26], Sahi [29], [30] and Stokman [32] (see also Noumi & Stokman
[27] for the Askey-Wilson polynomials). The precise references of the material in
the main body of the text will be postponed to the end of the lecture notes, see
§10.

The only prerequisites for these lecture notes are some basic facts on Coxeter
groups and Hecke algebras, which I will recall as soon as they are needed. I give
precise reference to the literature for the further details on these results (I will
mainly use Humphreys’ book [14] as reference).

After a detailed introduction in §2 of the root data related to the theory of
Koornwinder polynomials, I have added a long section §3 in which I give the main
definitions, and state the main theorems. In order to justify definitions, some
elementary proofs are already given at this stage. I hope that this section helps
the reader to get acquainted with the main aims of the lecture notes, without
being distracted by detailed proofs. The subsequent sections §4–§9 then provide
the necessary details for a full understanding of the proofs.

Finally I would like to remark already at this point that various techniques in
these lecture notes are similar to Cherednik’s [5]–[9] and Macdonald’s [22] treatment
of Macdonald polynomials and affine Hecke algebras. Several excellent surveys on
this theory are available now, see for instance Macdonald [23] and Kirillov Jr. [16].
Again, for further precise references to the literature, see §10.
Acknowledgements: These lecture notes are based on a mini-course which I gave

at the SIAG OP-SF summer school 2000 on orthogonal polymomials and special
functions, organized by R. Álvarez-Nodarse, F. Marcellán, W. Van Assche and R.
Yáñez. I thank the organizers for inviting me to give the lectures and for their kind
hospitality. The author is supported by a fellowship from the Royal Netherlands
Academy of Arts and Sciences (KNAW).

2. The root data

In this section we introduce the root systems and the corresponding Weyl groups
which naturally arise in the theory of Koornwinder polynomials. Some relevant
basic results about these root systems are discussed briefly and in a rather ad hoc
fashion. As a basic reference for more details on root systems we use the book [14]
of Humphreys.
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2.1. The root system Σ. Let
(
V = Rn,

(
·, ·
))

be Euclidean n-space with fixed

orthonormal basis {εi}ni=1 with respect to the scalar product
(
·, ·
)
on V . We assume

that n ≥ 2 throughout the lecture notes. We write |v| =
√(

v, v
)
for the norm of

v ∈ V .
Consider the following finite sub-set Σ ⊂ V ,

Σ = {±2εi}ni=1 ∪ {±εi ± εj | 1 ≤ i < j ≤ n}, (2.1)

where all sign combinations occur. For any v ∈ Σ, let Hv = {w ∈ V |
(
v, w

)
= 0} be

the hyperplane in V orthogonal to v, and denote sv ∈ GLR(V ) for the orthogonal
reflection in Hv. Then

sv(w) = w −
(
w, v∨

)
v, w ∈ V (2.2)

where v∨ = 2v/|v|2 is the co-root of v. Observe that sv is an involution, i.e. s2v = 1
(v ∈ Σ), and that sv is orthogonal with respect to

(
·, ·
)
, i.e.

(
sv(w), sv(w

′)
)
=(

w,w′
)
for all w,w′ ∈ V .

Let W =W (Σ) ⊂ GLR(V ) be the sub-group generated by the orthogonal reflec-
tions sv (v ∈ Σ). The following lemma can be checked by direct computations.

Lemma 2.1. Σ ⊂ V is a so called root system, i.e.

– Σ is a finite set which spans V ,
–
(
α, β∨

)
∈ Z for all α, β ∈ Σ,

– w(Σ) = Σ for all w ∈W .
Elements α ∈ Σ are called roots, and the group W = W (Σ) is called the Weyl

group of Σ. In the standard terminology on root systems (see for instance [14]), Σ
is the root system of type Cn.

Let Π0 = {a1, . . . , an} ⊂ Σ be the sub-set of roots

ai := εi − εi+1 (i = 1, . . . , n− 1), an := 2εn. (2.3)

Lemma 2.2. (i) Any α ∈ Σ can be uniquely written as a Z+-linear or a Z−-linear
combination of the roots ai ∈ Π0 (i = 1, . . . , n).

(ii) The Weyl group W is generated (as a group) by the reflections si := sai
(i = 1, . . . , n).

Proof. (i) Direct verification.
(ii) This is a standard property of root systems, see [14, Thm. 1.5]. We sketch

here an ad hoc proof for the root system Σ.
Observe that the simple reflection si (i = 1, . . . , n−1) acts on V by interchanging

εi and εi+1 and keeping εj (j 6= i, i + 1) fixed. In particular, the sub-group of W
generated by the simple reflections s1, . . . , sn−1 act as the permutation group Sn in
n letters on the standard basis {εi}ni=1. On the other hand, sn maps εn to −εn and
keeps εj fixed (j = 1, . . . , n − 1). Hence the sub-group W ′ ⊂ W generated by the
reflections si (i = 1, . . . , n) is naturally isomorphic to Sn n (±1)n, where Sn acts
on (±1)n by permuting its entries.

From this description of W ′ it is now easy to check that sα ∈ W ′ for all α ∈ Σ,
henceW ⊂W ′. The other inclusion being obvious, we obtain the desired result. ¤

The set Π0 ⊂ Σ is called a basis of the root system Σ, and the elements ai ∈
Π0 are called the simple roots of Σ. The choice of basis Π0 induces a natural
decomposition of Σ in positive roots Σ+ and negative roots Σ− := −Σ+, where Σ+
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is the set of roots α ∈ Σ which can be written as a Z+-linear combination of the
simple roots. The reflections si (i = 1, . . . , n) are called the simple reflections in W
with respect to Π0.

Lemma 2.3. Σ decomposes into two W -orbits, namely Σ = Σl ∪ Σm, where

Σl =Wan = {±2εi | i = 1, . . . , n},
Σm =Wak = {±εi ± εj | 1 ≤ i < j ≤ n}, (k ∈ {1, . . . , n− 1} arbitrary),

where all sign combinations occur.

Proof. An ad hoc proof can be easily given using the description of W as the semi-
direct product Sn n (±1)n, see the proof of lemma 2.2.

The lemma is also a direct consequence of a general fact from the theory of irre-
ducible root systems, which says that the decomposition of Σ in W -orbits coincides
with the decomposition of Σ according to the norm of the roots, see [15, Lem.
10.4C]. The lemma follows from this, since Σl (respectively Σm) is the set of roots
in Σ of squared length 4 (respectively 2). ¤

2.2. The reduced affine root system R. Let V̂ be the set of affine linear map-

pings from V to R. As a vector-space over R, V̂ is isomorphic to V
⊕
Rδ, where

δ : V → R is the affine linear function defined by δ(v) := 1 for all v ∈ V . This

follows from the fact that any affine linear transformation f ∈ V̂ can be written as

f(w) =
(
v, w

)
+ λδ(w), w ∈ V

for some v ∈ V and some λ ∈ R.
We extend the scalar product

(
·, ·
)
on V to a positive semi-definite bilinear form

on V̂ by setting
(
v + λδ,w + µδ

)
=
(
v, w

)
, v, w ∈ V, λ, µ ∈ R. (2.4)

In particular, the norm |f | =
√(

f, f
)
of f ∈ V̂ is zero if and only if f is a constant

function.
Fix a non-constant function f ∈ V̂ \ Rδ. We define an involution sf ∈ GLR(V̂ )

by

sf (g) = g −
(
g, f∨

)
f, g ∈ V̂ , (2.5)

where f∨ = 2f/|f |2 is the co-root of f . It can be easily checked that sf (g) = g ◦ s̃f ,
where s̃f : V → V is the orthogonal reflection in the affine hyperplane f−1({0}) ⊂
V . Let R ⊂ V̂ be the sub-set

R = Σ+ Zδ, (2.6)

and let W = W(R) ⊂ GLR(V̂ ) be the sub-group generated by the reflections
sf (f ∈ R). Alternatively, we may think of W as the sub-group of affine linear
transformations of V generated by the orthogonal affine reflections s̃f (f ∈ R).
Observe that W ⊂ W is a sub-group in a natural way: it acts on V as in the
previous subsection, and it fixes the constant functions.

For v ∈ V , we let τ(v) ∈ GLR(V̂ ) be given by

τ(v)f = f +
(
f, v
)
δ, f ∈ V̂ .
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Observe that τ(v)f = f ◦ τ̃(v), where τ̃(v) : V → V is the affine linear mapping
given by τ̃(v)(w) = w − v for all w ∈ V . We write

Λ0 =

n⊕

i=1

Zεi ⊂ V,

which is a W -stable Z-lattice in V .

Lemma 2.4. W 'W n τ(Λ0).

Proof. Observe that wτ(λ) = τ(wλ)w for w ∈ W and λ ∈ Λ0, and that W has
trivial intersection with τ(Λ0) since W fixes the constant functions. Hence the

sub-group of GLR(V̂ ) generated by W and τ(Λ0) is naturally isomorphic to the
semi-direct product W n τ(Λ0).

Let f = α+ cδ ∈ R \ Rδ with α ∈ Σ and c ∈ Z. Then
sf (g) = g −

(
g, f
)
f∨ = g −

(
g, α

)
α∨ − c

(
g, α∨

)
δ = sα

(
τ(−cα∨)(g)

)
. (2.7)

Since α∨ ∈ Λ0 for all α ∈ Σ, we see that W ⊂Wτ(Λ0).
On the other hand, for any α ∈ Σ it follows from (2.7) that τ(−α∨) = sαsα+δ ∈

W. Since the co-roots α∨ (α ∈ Σ) span Λ0 (indeed, εj = (2εj)
∨ for j = 1, . . . , n

already span Λ0), we conclude that τ(Λ0) ⊂ W. Since also W ⊂ W, we conclude
that Wτ(Λ0) ⊂ W. Hence W 'W n τ(Λ0), as desired. ¤

Remark 2.5. We have used in the proof of lemma 2.4 that Λ0 is the so-called co-root
lattice of Σ, i.e.

Λ0 = Z− span{α∨ |α ∈ Σ}.
It is also easily verified that Λ0 is the so-called weight lattice of Σ, i.e.

Λ0 = {λ ∈ V | 〈λ, α∨〉 ∈ Z, ∀α ∈ Σ}.

Lemma 2.6. R ⊂ V̂ is an affine root system, i.e.

– R does not contain constant functions and spans V̂ ,
–
(
f, g∨

)
∈ Z for all f, g ∈ R,

– w(R) = R for all w ∈ W,
– W acts properly on V . In other words, for all K1,K2 ⊂ V compact, there
are only finitely many w ∈ W for which w(K1) has non-empty intersection
with K2.

Proof. Only the third property requires proof (the second property is a direct con-
sequence of lemma 2.1). By lemma 2.1, w(Σ) = Σ for all w ∈ W . Since W fixes
constant functions, we obtain w(R) = R for all w ∈ W . Let now λ ∈ Λ0. Then
τ(λ)(R) = R if

(
λ, β

)
∈ Z for all β ∈ Σ. This again follows from lemma 2.1, since

any λ ∈ Λ0 can be written as a Z-linear combination of the co-roots α∨ (α ∈ Σ),
cf. remark 2.5. The structure of W as described in lemma 2.4 now shows that
w(R) = R for all w ∈ W, as desired. ¤

The sub-group W =W(R) ⊂ GLR(V̂ ) is called the affine Weyl group associated
with the affine root system R.

Let Π = {a0, a1, . . . , an} = {a0} ∪Π0 ⊂ R, where

a0 = δ − 2ε1 ∈ R. (2.8)

We have now the following analogue of lemma 2.2.
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Lemma 2.7. (i) Any f ∈ R can be uniquely written as a Z+-linear or a Z−-linear
combination of the roots ai ∈ Π (i = 0, . . . , n).

(ii) The affine Weyl groupW is generated (as a group) by the reflections si := sai
(i = 0, . . . , n).

Proof. (i) Let f ∈ R. If f(0) = 0, then f ∈ Σ, and we can use lemma 2.2. If
f(0) = m ∈ Z>0, then f = α+mδ for some α ∈ Σ. But then f = (α+2mε1)+ma0,
and α + 2mε1 is a Z+-linear combination of the simple roots Π0 of Σ+. Hence if
f(0) > 0, then f can be written as a Z+-linear combination of the roots ai ∈ Π
(i = 0, . . . , n). Finally if f(0) < 0, then −f ∈ R satisfies (−f)(0) > 0, so we can
use the previous result to show that f can be written as a Z−-linear combination
of the roots ai ∈ Π (i = 0, . . . , n).

(ii) This is again a general fact on affine root systems, see [14, Prop. 4.3]. For
convenience, we give here another, ad hoc proof in case of the affine root system R.

Let W ′ ⊂ W be the sub-group generated by the reflections si (i = 0, . . . , n).
ThenW ′ containsW by lemma 2.2. By (2.7), τ(ε1) = sε1s0 ∈ W ′, and consequently

τ(εj) = sj−1 · · · s2s1τ(ε1)s1s2 · · · sj−1 ∈ W ′ (2.9)

for all j = 1, . . . , n. By lemma 2.4, we conclude that W ⊂ W ′. Hence W ′ =W, as
desired. ¤

In analogy with finite root systems, we call the set Π ⊂ R a basis of the affine
root system R, and the elements ai ∈ R the simple roots of R. The choice of basis Π
induces a decomposition of R in positive roots R+ and negative roots R− = −R+,
where R+ is the set of roots f ∈ R which can be written as a Z+-linear combination
of the simple roots ai ∈ Π (i = 0, . . . , n). Observe that by the proof of lemma 2.7(i),

R+ = Σ+ ∪ {f ∈ R | f(0) > 0}. (2.10)

Remark 2.8. The connected components of the complement V \∪{f−1({0}) | f ∈ R}
of the hyperplane configuration ∪{f−1({0}) | f ∈ R} are called chambers. For a
fixed chamber C, we let Π(C) ⊂ R be the set of roots f ∈ R for which the affine
hyperplane f−1({0}) is a wall of C, and which takes positive values in the chamber
C. Then Π(C) is called a basis of the affine root system R. The fixed basis Π which
we have chosen in this section corresponds to the chamber

C = {v =

n∑

i=1

viεi | 0 < vn < vn−1 < · · · < v1 < 1/2}.

It is known that any two choices of basis of R are conjugate to each other under
W, see [14, Chapter 4] for more details.

The W-orbit structure of the affine root system R can now be given explicitly
as follows.

Lemma 2.9. There are three W-orbits in R, namely
Rm =Wak = Σm + Zδ, (k ∈ {1, . . . , n− 1} arbitrary)
R1l =Wa0 = Σl + (1 + 2Z)δ,
R2l =Wan = Σl + 2Zδ.
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Proof. We fix an arbitrary k ∈ {1, . . . , n − 1}. Then τ(mεk)ak = ak +mδ for all
m ∈ Z, hence τ(Λ0)ak = ak + Zδ. By lemma 2.3 and lemma 2.4, it then follows
that

Wak =Wak + Zδ = Σm + Zδ.
For a0 = δ− 2ε1, we have τ(Λ0)a0 = a0+ (1+ 2Z)δ, hence by lemma 2.3 and by

lemma 2.4,

Wa0 =W2ε1 + (1 + 2Z)δ = Σl + (1 + 2Z)δ.
In a similar fashion one can show that Wan = Σl + 2Zδ. The lemma now follows
since the three orbits Wa0,Wak and Wan are pair-wise different and they exhaust
the affine root system R. ¤

Proposition 2.10. The simple reflections si (i = 0, . . . , n) satisfy the braid rela-
tions

sisi+1sisi+1 = si+1sisi+1si, i = 0, n− 1,

sisi+1si = si+1sisi+1, i = 1, . . . , n− 2,

sisj = sjsi, |i− j| > 1.

In fact, the braid relations together with the quadratic relations s2i = 1 (i = 0, . . . , n)
give a presentation of the affine Weyl group W.

Proof. The braid relations for the si (i = 0, . . . , n) are easily checked by hand.
If W ′ is the abstract group with generators si (i = 0, . . . , n) satisfying the braid

relations and the quadratic relations s2i = 1 (i = 0, . . . , n), then W ′ is an example
of a Coxeter group. The canonical, surjective group homomorphism W ′ → W ⊂
GLR(V̂ ) is called the geometric representation of the Coxeter groupW ′ on V̂ . It is a
fundamental result in the theory of Coxeter groups that its geometric representation
is faithful (see for instance [14, Cor 5.4]), which implies the second statement of
the proposition.

¤

Remark 2.11. The information of the affine Weyl group W can be depicted by a
so-called extended Dynkin diagram. The vertices are labeled by the simple roots
Π = {a0, . . . , an}. We draw 0, 1 and 2 edges between the vertices ai and aj if the
braid relation of the corresponding simple roots si and sj are of the form

sisjsi · · · (m(i, j) terms) = sjsisj · · · (m(i, j) terms)

with m(i, j) = 2, 3 and 4, respectively. Thus the extended Dynkin diagram of W
looks like

◦
a0

◦
a1

◦
a2

· · · · · · ◦
an−1

◦
an

2.3. The non-reduced affine root system Rnr. The present choice of affine
root system R is still not sufficient for our purposes. In order to arrive at the
Koornwinder level, we need to add two more W-orbits to R in the following way.

We set Ri
s =

1
2R

i
l for i = 1, 2, so

R1s =Wa0/2 = {±εj +
(1
2
+ Z

)
δ | j = 1, . . . , n},

R2s =Wan/2 = {±εj + Zδ | j = 1, . . . , n}.
(2.11)
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The union of R with these two W-orbits is denoted by Rnr, so

Rnr = R1s ∪R2s ∪R ={±εi +
m

2
δ,±2εi +mδ |m ∈ Z, i = 1, . . . , n}

∪ {±εi ± εj +mδ |m ∈ Z, 1 ≤ i < j ≤ n}.
(2.12)

We now have the following extension of lemma 2.6.

Lemma 2.12. The set Rnr ⊂ V̂ is an affine root system.

Proof. By the previous observations, we only need to check that
(
f, g∨

)
∈ Z for

f, g ∈ Rnr. But this is an immediate consequence of the fact that

Σnr =
1

2
Σl ∪ Σm ∪ Σl ⊂ V

is a (finite) root system in V . In fact, since the lattice Λ0 is the co-root lattice of
the root system Σ (see remark 2.5) and 〈Λ0, an〉 = 2Z, we immediately have that
〈α, β∨〉 ∈ Z for all α, β ∈ Σnr. ¤

Remark 2.13. The (finite) root system Σ and the affine root system R are reduced,
in the sense that for any α ∈ Σ (respectively f ∈ R),

Rα ∩ Σ = ±α, (Rf ∩R = ±f, respectively).

The (finite) root system Σnr and the affine root system Rnr do not satisfy this
property, and are therefore called non-reduced. Observe that Σ is the set of unmul-
tiplyable roots in Σnr (i.e. Σ = {α ∈ Σnr | 2α 6∈ Σnr}). Similarly, R is the set of
unmultiplyable roots in Rnr.

3. Statement of the main theorems

3.1. The fundamental action of W. Let x1, . . . , xn be n independent indeter-
minates and write

A = C[x±11 , . . . , x±1n ]

for the corresponding algebra of Laurent polynomials. We occasionally use the
notations p = p(x) = p(x1, . . . , xn) for a Laurent polynomial p ∈ A.

Associated with the lattice element λ =
∑

i λiεi ∈ Λ0 (λi ∈ Z) we have the
monomial

xλ = xλ1
1 x

λ2
2 · · ·xλnn .

The set of monomials {xλ |λ ∈ Λ0} form a linear basis of A.
Let Λ ⊂ V̂ be the lattice

Λ = Λ0 +
1

2
Zδ ⊂ V̂ . (3.1)

Observe that the lattice Λ ⊂ V̂ is stable under the action of W ⊂ GLR(V̂ ), and
that Rnr ⊂ Λ.

We fix now a generic parameter q ∈ C \ {0}, and we write q
1
2 for its square root

with respect to the branch of
√· which is positive on R>0. We now define

xλ+
m
2 δ = q

m
2 xλ ∈ A, λ ∈ Λ0, m ∈ Z.
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Lemma 3.1. The map w(xλ) = xwλ for w ∈ W and λ ∈ Λ0 extends by linearity
to a well defined left action of W on A (so (ww′)p = w(w′p) for all w,w′ ∈ W and

all p ∈ A). For any Laurent polynomial p ∈ A, we have
(
s0p
)
(x) = p(qx−11 , x2, . . . , xn),(

sip
)
(x) = p(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn), (i = 1, . . . , n− 1),

(
snp
)
(x) = p(x1, . . . , xn−1, x

−1
n ).

Furthermore, the elements τ(λ) ∈ W (λ ∈ Λ0) act as q-difference operators:
τ(λ)(xµ) = q(λ,µ)xµ for all µ ∈ Λ0.

Proof. We observe that w(λ+mδ) = wλ+mδ for all w ∈ W, λ ∈ Λ0 and m ∈ 1
2Z.

In particular, the endomorphism φw ∈ EndC(A) (w ∈ W) defined by φw(x
λ) = xwλ

for all λ ∈ Λ0 actually satisfies φw(x
µ) = xwµ for all µ ∈ Λ. Hence for all λ ∈ Λ0

and all w,w′ ∈ W we have

φw
(
φw′(x

λ)
)
= φw(x

w′λ) = xw(w
′λ) = x(ww′)λ = φww′(x

λ),

i.e. φwφw′ = φww′ for all w,w
′ ∈ W. This proves the first statement of the lemma.

The remaining formulas are now direct consequences of the explicit formulas for

the action of W on Λ ⊂ V̂ . In particular, for τ(ε1), we have by (2.7) that τ(ε1) =
sε1s0, so that τ(ε1)x

λ = q(λ,ε1)xλ. Now by (2.9), this leads to τ(εj)x
λ = q(λ,εj)xλ

for all j. ¤

Remark 3.2. Observe that the action of W on A which we defined in the previous
lemma, depends on the deformation parameter q. Since the action of the finite Weyl
group W on A is independent of the deformation parameter q, we may think of the
parameter q as an extra degree of freedom which is associated to the translation
part τ(Λ0) of the affine Weyl group W.

Remark 3.3. Observe that W acts on A by algebra automorphisms. This implies
that the action of W uniquely extends to an action by automorphisms on the
quotient field Q of A. Here the quotient field Q consists of the rational functions
in the n indeterminates x1, . . . , xn.

3.2. Noumi’s difference-reflection operators. We call a complex valued func-
tion t = {tf | f ∈ Rnr} on Rnr a multiplicity function if twf = tf for all w ∈ W
and all f ∈ Rnr. By the W-orbit structure of Rnr (see lemma 2.9 and §2.3), we see
that t is completely determined by the five values

t0 := ta0
, tn := tan

t := tk := tak (k ∈ {1, . . . , n− 1} arbitrary),

t∨0 := ta0/2, t∨n := tan/2.

(3.2)

On the other hand, it is obvious that any choice of parameters (t0, tn, t, t
∨
0 , t

∨
n) ∈ C5

uniquely extends to a multiplicity function t = {tf | f ∈ Rnr}. We assume through-
out the lecture notes that the values tf (f ∈ Rnr) of the multiplicity function t are
generically complex.
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We define now rational functions cf = cf (·; t|q) ∈ Q for f ∈ R by

cf (x) =





(1− tf tf/2x
f/2)(1 + tf t

−1
f/2x

f/2)

(1− xf )
, if f/2 ∈ Rnr,

(1− t2fx
f )

(1− xf )
, if f/2 6∈ Rnr.

(3.3)

It is convenient to have a uniform formula for cf . For this purpose we extend the

multiplicity function t to a complex valued function on V̂ by declaring tf := 1 if

f ∈ V̂ \Rnr. Then we can formally write

cf (x) =

(
1− tf tf/2x

f/2
)(
1 + tf t

−1
f/2x

f/2
)

(
1− xf

) , ∀f ∈ R. (3.4)

In order to give a completely rigorous meaning to the right hand side of (3.4) for

f ∈ R with f/2 6∈ Rnr, one should consider it as element in the algebra Q 1
2 of

rational functions in x
1
2
i (i = 1, . . . , n), where x

1
2
i is the formal square root of the

indeterminate xi (which contains Q as a sub-field in a natural way).
As we shall see in §4 and §5, the rational functions cf (f ∈ R) naturally appear

in the description of the algebra of symmetries associated with the Koornwinder
polynomials. This interpretation of the rational functions cf (f ∈ R) will imply
various special identities in Q, some of which can also be easily verified directly.
We give here two examples of such identities.

Lemma 3.4. (i) For all f ∈ R and w ∈ W, we have wcf = cwf .

(ii) For all f ∈ R, we have cf + c−f = t2f + 1 in Q.

Proof. (i) This follows from the definition of the action ofW on A (see lemma 3.1),
and from the fact that tf = twf for all f ∈ R and w ∈ W.

(ii) This follows by a direct computation, using that tf = tsff = t−f for all
f ∈ R. ¤

For f ∈ R, Noumi’s difference-reflection operator Tf = Tf (t|q) ∈ EndC(Q) is
defined by

(
Tfp

)
(x) = tfp(x) + t−1f cf (x)

(
(sfp)(x)− p(x)

)
, p ∈ Q. (3.5)

We observe at this stage the following three elementary properties for the diffe-
rence-reflection operators Tf .

Lemma 3.5. Let f ∈ R.
(i) The restriction of Tf to A maps into A (i.e. Tf |A ∈ EndC(A) ).
(ii) The difference-reflection operator Tf satisfies the quadratic relation

(
Tf − tf

)(
Tf + t−1f

)
= 0.

In particular, Tf is invertible, with inverse T
−1
f = Tf − tf + t−1f .

(iii) For all w ∈ W and f ∈ R, we have wTfw−1 = Twf in EndC(Q).
Proof. (i) Let f ∈ R. We define a linear operator Df ∈ EndC(Q) by

(
Dfp

)
(x) =

p(x)−
(
sfp
)
(x)

1− xf
, p ∈ Q. (3.6)

In order to show that Tf |A ∈ EndC(A), it suffices to prove that Df |A ∈ EndC(A).
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Fix an arbitrary λ ∈ Λ0. Then sf (λ) = λ−mf with m =
(
λ, f∨

)
∈ Z, hence

xλ − sf (x
λ) = xλ

(
1− x−mf

)
.

Dividing the right hand side by 1− xf then shows that

Df (x
λ) =





−xλ−f − xλ−2f − · · · − xλ−(λ,f
∨)f if m =

(
λ, f∨

)
> 0,

0 if m =
(
λ, f∨

)
= 0,

xλ + xλ+f + · · ·+ xλ−(1+(λ,f
∨))f if m =

(
λ, f∨

)
< 0.

(3.7)

In particular, Df |A ∈ EndC(A), as desired.
(ii) This follows from a direct computation using lemma 3.4.
(iii) Use that twf = tf and wsfw

−1 = swf for all w ∈ W and f ∈ R. ¤

Observe that the quadratic relations (Tf − tf )(Tf + t−1f ) = 0 for f ∈ R can

be seen as deformations of s2f = 1 for the reflection sf ∈ W since Tf (1|q) = sf ,

where 1 = {1f}f∈Rnr is the multiplicity function identically equal to one. The
other crucial property of the difference-reflection operators to which we return to
at a later stage (see §4.4), is that Ti := Tai (i = 0, . . . , n) satisfy the same braid
relations as the simple reflections si (i = 0, . . . , n), see proposition 2.10. The
powerful implications of these relations for the Ti’s will become apparent in §4 and
§5.

3.3. Cherednik-Dunkl type Y -operators. The quadratic relations and braid
relations for Noumi’s difference reflection operators Ti (i = 0, . . . , n) imply that
they behave in a similar way as the simple reflections si (i = 0, . . . , n).

For instance the simple reflections si (i = 0, . . . , n) generate the affine Weyl
group W, which contains the large abelian sub-group τ(Λ0) of translations over
the Z-lattice Λ0 generated by the standard basis {εi}ni=1. In a similar fashion,
the operators Ti (i = 0, . . . , n) give rise to n algebraically independent, invertible,
pair-wise commuting operators Yi ∈ EndC(A) (i = 1, . . . , n) in the following way.

For i = 1, . . . , n, we can express the translation operator τ(εi) in terms of simple
reflections sj (j = 0, . . . , n) by

τ(εi) = si · · · sn−1snsn−1 · · · s1s0s1 · · · si−1. (3.8)

We will see in §4 that this is in fact a reduced expression, which means that τ(εi)
cannot be written as a product of simple reflections sj (j = 0, . . . , n) in less than
2n terms.

The Cherednik-Dunkl type Y -operator Yi (i = 1, . . . , n) is now defined in terms
of difference-reflection operators Tj (j = 0, . . . , n) by the expression

Yi = Ti · · ·Tn−1TnTn−1 · · ·T1T0T−11 T−12 · · ·T−1i−1 (3.9)

(observe the close resemblance with the reduced expression for τ(εi) as given in
(3.8)!). The result to which we were already referring to, is the following theorem.

Theorem 3.6. The operators Yi ∈ EndC(A) (i = 1, . . . , n) pair-wise commute.
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3.4. Non-symmetric Koornwinder polynomials. The non-symmetric Koorn-
winder polynomials can be defined as the common eigenfunctions of the commuting
Cherednik-Dunkl Y -operators Yi (i = 1, . . . , n) in the following way. Let Σ+m (re-
spectively Σ+l ) be the positive roots in Σ of squared length 2 (respectively 4). For
any λ ∈ Λ0, we define ρm(λ), ρl(λ) ∈ Λ0 by

ρm(λ) =
∑

α∈Σ+
m

sgn
((
λ, α

))
α∨, ρl(λ) =

∑

α∈Σ+
l

sgn
((
λ, α

))
α∨, (3.10)

where sgn : Z → {±1} maps a positive integer to 1 and a strictly negative integer
to −1. Let γλ = γλ(t|q) ∈ Cn (λ ∈ Λ0) be the vector with ith coordinate given by

γλ,i =
(
t0tn

)(ρl(λ),εi)t(ρm(λ),εi)q(λ,εi), i = 1, . . . , n. (3.11)

Theorem 3.7. There exists a unique basis {Pλ = Pλ(·; t|q) |λ ∈ Λ0} of A for
which the basis element Pλ (λ ∈ Λ0) satisfies the following two properties:

– YiPλ = γλ,i Pλ for all i = 1, . . . , n.
– The coefficient of the monomial xλ in the expansion of Pλ as linear combi-

nation of monomials xµ (µ ∈ Λ0), is equal to one.

Definition 3.8. The Laurent polynomial Pλ = Pλ(·; t|q) is called the monic, non-
symmetric Koornwinder polynomial of degree λ ∈ Λ0.

Remark 3.9. The Koornwinder polynomial Pλ is a deformation of the monomial xλ

(λ ∈ Λ0). Indeed, recall that for the multiplicity function t = 1 identically equal
to one, we have Ti(1|q) = si for i = 0, . . . , n, and hence Yi = τ(εi) for i = 1, . . . , n.
Furthermore, γλ,i(1|q) = q(λ,εi). By lemma 3.1, we conclude that Pλ(x;1|q) = xλ

for all λ ∈ Λ0.

3.5. Duality. We associate a dual multiplicity function t̃ to the multiplicity func-
tion t by interchanging the value of t at the W-orbit Wa0 with its value at the
W-orbit Wa∨n . In other words, t̃ is the unique multiplicity function such that

t̃0 = t∨n , t̃∨0 = t∨0 , t̃ = t, t̃∨n = t0, t̃n = tn. (3.12)

We use the short-hand notation xλ = γλ(t̃|q) ∈ Cn (λ ∈ Λ0) for the spectrum of
the Y -operators with respect to dual parameters. Since Pλ(·; t|q) depends mero-
morphically on the parameters t, and Pλ(γ0(1|q)−1;1| q) 6= 0 in view of remark 3.9,
we see that Pλ(x

−1
0 ) = Pλ(x

−1
0 ; t|q) 6= 0 for generic parameters t. This justifies the

following definition.

Definition 3.10. Let λ ∈ Λ0. The renormalized non-symmetric Koornwinder
polynomial E(γλ; ·) = E(γλ; ·; t| q) ∈ A of degree λ is defined by

E
(
γλ;x

)
=

Pλ(x)

Pλ(x
−1
0 )

. (3.13)

In other words, E(γλ; ·) is the constant multiple of the monic, non-symmetric
Koornwinder polynomial Pλ(·) which takes the value one at x = x−10 .

We use the short-hand notation Ẽ(xλ; ·) for the renormalized non-symmetric
Koornwinder polynomial E

(
γλ(t̃|q); ·; t̃| q) = E

(
xλ; ·; t̃| q) with respect to dual pa-

rameters.
The renormalized non-symmetric Koornwinder polynomials satisfy the following

crucial symmetry property.
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Theorem 3.11 (Duality). The renormalized non-symmetric Koornwinder polyno-
mials satisfy

E
(
γλ;x

−1
µ

)
= Ẽ

(
xµ; γ

−1
λ

)
, ∀λ, µ ∈ Λ0.

As we shall see in §6, the duality for non-symmetric Koornwinder polynomials
stems from an important algebraic property of the so-called double affine Hecke
algebra H, which is the sub-algebra of EndC(A) generated by Noumi’s difference-
reflection operators Tj (j = 0, . . . , n) and A itself, considered as multiplication op-
erators in EndC(A). The relevant algebraic property is encoded by an isomorphism

of H to the double affine Hecke algebra H̃ with respect to dual parameters which
interchanges the Y -operators with the multiplication operators A ⊂ EndC(A).
3.6. Bi-orthogonality relations. The bi-orthogonality relations for the non-sym-
metric Koornwinder polynomials are defined with respect to an explicit complex
valued weight function ∆(·) = ∆(·; t| q) on a compact n-torus. This weight function
can be naturally expressed in terms of an infinite product of the coefficients cf
occurring in Noumi’s difference-reflection operators Tf (f ∈ R). In order to ensure
convergence of this infinite product, we need to restrict our attention to the case
that the deformation parameter q has modulus strictly less than one. The weight
function ∆(·) = ∆(·; t| q) is then defined as

∆(x) = ∆(x; t| q) =
∏

f∈R+

1

cf (x; t| q)
. (3.14)

Using the fact that

R+ = Σ+ ∪ {f ∈ R | f(0) > 0} = {f ∈ R | f(0) ≥ 0} \ Σ−,
we can decompose the weight function ∆(·) accordingly as

∆(x) = C(x)∆+(x), (3.15)

where the function C(x) = C(x; t|q) and ∆+(x) = ∆+(x; t|q) are given by

C(x) =
∏

α∈Σ−

cα(x), ∆+(x) =
∏

f∈R: f(0)≥0

1

cf (x)
. (3.16)

The upshot of this decomposition of ∆(x) is that the factor ∆+(x) is W -invariant
in a natural way. To be more precise, if we extend the action ofW on Q (see lemma
3.1) to an action on sufficiently nice functions h in the n variables x1, . . . , xn by the
formulas

(s0h)(x) = h(qx−11 , x2, . . . , xn),

(sih)(x) = h(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn), i = 1, . . . , n− 1,

(snh)(x) = h(x1, . . . , xn−1, x
−1
n ),

(3.17)

then it follows from theW -invariance of the set {f ∈ R | f(0) ≥ 0} and from lemma
3.4(i) that the weight ∆+ is invariant under the action of W .

To get a better understanding of the explicit form of ∆(x) and ∆+(x), and to
convince ourselves that they are well defined, we rewrite ∆+(x) now in terms of
q-shifted factorials, which are defined by

(
a; q
)
k
= (1− a)(1− aq) · · · (1− aqk−1), k ∈ Z+ ∪ {∞},

where we use the convention that empty products are equal to one. Observe here
that the infinite product

(
a; q
)
∞

=
∏∞

i=0(1−aqi) is well defined by the assumption
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that |q| < 1. We also use the following short-hand notations for product of q-shifted
factorials:

(
a1, . . . , ar; q

)
k
=
(
a1; q

)
k

(
a2; q

)
k
· · ·
(
ar; q

)
k
, k ∈ Z+ ∪ {∞}.

Furthermore, it will be convenient to use the following reparametrization of the
multiplicity function t,

{a, b, c, d} = {t0t∨0 q1/2,−t0t∨0 −1q1/2, tnt∨n ,−tnt∨n−1}, (3.18)

which allows us to rewrite the coefficient cf of Noumi’s difference-reflection operator
Tf (f ∈ R) in the following explicit way:

cf (x) =





(1− axα/2qm)(1− bxα/2qm)

(1− xαq2m+1)
, if f = α+ (2m+ 1)δ ∈ Wa0,

(1− t2xαqm)

(1− xαqm)
, if f = α+mδ ∈ Wak,

(1− cxα/2qm)(1− dxα/2qm)

(1− xαq2m)
, if f = α+ 2mδ ∈ Wan,

(3.19)
where k ∈ {1, . . . , n− 1} is arbitrary, m ∈ Z and α ∈ Σ (to be more precise: α ∈ Σl

in case that f ∈ Wa0 and f ∈ Wan, and α ∈ Σm in case that f ∈ Wak).

Lemma 3.12. The W -invariant part ∆+(x) of the function ∆(x) can be rewritten
as

∆+(x) =

n∏

i=1

(
x2i , x

−2
i ; q

)
∞(

axi, ax
−1
i , bxi, bx

−1
i , cxi, cx

−1
i , dxi, dx

−1
i ; q

)
∞

×
∏

1≤i<j≤n

(
xixj , xix

−1
j , x−1i xi, x

−1
i x−1j ; q

)
∞(

t2xixj , t2xix
−1
j , t2x−1i xj , t2x

−1
i x−1j ; q

)
∞

.

Proof. By (3.19) and by the explicit W-orbit structure of R, see lemma 2.9, we
have for arbitrary k ∈ {1, . . . , n− 1}:

∏

f∈Wa0: f(0)≥0

1

cf (x)
=

n∏

i=1

(
qx2i , qx

−2
i ; q2

)
∞(

axi, ax
−1
i , bx−1i , bx−1i ; q

)
∞

,

∏

f∈Wak: f(0)≥0

1

cf (x)
=

∏

1≤i<j≤n

(
xixj , xix

−1
j , x−1i xj , x

−1
i x−1j ; q

)
∞(

t2xixj , t2xix
−1
j , t2x−1i xj , t2x

−1
i x−1j ; q

)
∞

,

∏

f∈Wan: f(0)≥0

1

cf (x)
=

n∏

i=1

(
x2i , x

−2
i ; q2

)
∞(

cxi, cx
−1
i , dx−1i , dx−1i ; q

)
∞

.

The lemma now follows from the obvious identity
(
y; q2

)
∞

(
qy; q2

)
∞

=
(
y; q
)
∞

for
q-shifted factorials. ¤

Remark 3.13. The function

w(y) =

(
y2, y−2; q

)
∞(

ay, ay−1, by, by−1, cy, cy−1, dy, dy−1; q
)
∞

which occurs as a factor of the W -invariant weight function ∆+(x) for every co-
ordinate y = xi (i = 1, . . . , n) is exactly the weight function of the one variable
Askey-Wilson polynomials. In particular, it is the t-dependent factor of ∆+(x)
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which provides the non-trivial multivariable extension of the one variable Askey-
Wilson weight function (for t = 1, we are simply left with the coordinate-wise
product of the Askey-Wilson weight function).

In order to keep the exposition as simple as possible, we now assume that all
parameters a, b, c, d and t have moduli less than one. More flexible conditions can
be allowed here, which causes though additional technical complications. Under
these conditions on the parameters, we can check without difficulty that ∆+(x)
and ∆(x) depend analytically on x ∈ Tn, where T = {y ∈ C | |y| = 1} is the unit
circle in the complex plane.

We can thus define a bilinear form 〈·, ·〉 = 〈·, ·〉t,q on A by

〈p1, p2〉 =
1

(2πi)n

∫∫

x∈Tn
p1(x)p2(x

−1)∆(x)
dx

x
, p1, p2 ∈ A, (3.20)

where x−1 = (x−11 , . . . , x−1n ), dx
x = dx1

x1
· · · dxnxn

and T is positively oriented.
In the following theorem we use the short-hand notation

E′
(
γ−1λ ; ·

)
:= E

(
γ−1λ ; ·; t−1| q−1

)
, λ ∈ Λ0 (3.21)

for the renormalized non-symmetric Koornwinder polynomials with respect to in-
verse parameters, where t−1 = {t−1f | f ∈ Rnr} (observe that (3.21) makes sense

since γλ(t
−1| q−1) = γ−1λ for all λ ∈ Λ0).

Theorem 3.14 (Bi-orthogonality). For λ, µ ∈ Λ0 with λ 6= µ, we have

〈E(γλ; ·), E′(γ−1µ ; ·)〉 = 0.

The main ingredient of the proof is to show that the Y -operators are (in a suit-
able sense) self-adjoint with respect to the bilinear form 〈·, ·〉. The bi-orthogonality
relations follow then from the fact that the non-symmetric Koornwinder polyno-
mials diagonalize the Y -operators, and that the spectrum of the Y -operators is
simple.

3.7. Diagonal terms. In view of the bi-orthogonality relations for the non-sym-
metric Koornwinder polynomials (see theorem 3.14), it is natural to study the
diagonal terms 〈E(γλ; ·), E′(γ−1λ ; ·)〉 for all λ ∈ Λ0. These diagonal terms can be
expressed in terms of multiple residues of the weight function ∆(·) in the following
way.

Recall that the lattice Λ0 can be interpreted as the weight lattice of the root
system Σ, see remark 2.5. From this interpretation of the lattice Λ0, we can define
the cone Λ+0 of dominant weight by

Λ+0 = {λ ∈ Λ0 |
(
λ, α∨

)
∈ Z+ ∀α ∈ Σ+}. (3.22)

The cone Λ+0 exactly corresponds with the partitions of length ≤ n, i.e.

Λ+0 = {
n∑

i=1

λiεi ∈ Λ0 |λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}.

Since W ' Sn n (±1)n via the restriction of the canonical action of W on V (see
the proof of lemma 2.2), we have that the W -orbit of any λ ∈ Λ0 intersects the
cone of dominant weights Λ+0 in exactly one element λ+ ∈ Λ+0 :

Λ+0 ∩Wλ = {λ+}, λ ∈ Λ0. (3.23)
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This fact holds true for general finite root systems, see [14, Thm. 1.12]. The
element γλ ∈ Cn (see (3.11)) of the spectrum of the Y -operators simplify for λ ∈ Λ+0
dominant since then sgn

((
λ, α

))
= 1 for all α ∈ Σ+. In particular, ρm(λ) and ρl(λ)

respectively are equal to ρm and ρl for all dominant weights λ ∈ Λ+0 , where ρm and
ρl are given by

ρm = 2

n∑

i=1

(n− i)εi, ρl =

n∑

i=1

εi. (3.24)

We obtain

γλ =
(
t0tnt

2(n−1)qλ1 , t0tnt
2(n−2)qλ2 , . . . , t0tnq

λn
)
, λ ∈ Λ+0 , (3.25)

where we write λi =
(
λ, εi

)
∈ Z+ for all i = 1, . . . , n. Going over to dual parameters,

we get

xλ =
(
t∨ntnt

2(n−1)qλ1 , t∨ntnt
2(n−2)qλ2 , . . . , t∨ntnq

λn
)
, λ ∈ Λ+0 . (3.26)

We can now define the multiple residue w+(x
−1
λ ) = w+(x

−1
λ ; t| q) for λ ∈ Λ+0 by

w+(x
−1
λ ) = Res

x1=x−1
λ,1

(
Res

x2=x−1
λ,2

(
· · · Res

xn=x−1
λ,n

(
∆+(x)

x1 · · ·xn

)
· · ·
))

, (3.27)

where xλ,i is the ith coordinate of xλ ∈
(
C \ {0}

)n
.

Lemma 3.15. The discrete weights w+(x
−1
λ ) (λ ∈ Λ+0 ) are non-zero for generic

values of the multiplicity function t.

Proof. We fix λ ∈ Λ+0 . Recall that this implies that the coefficients λi ∈ Z of
λ satisfy λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. We define now n distinct positive roots
f1, . . . , fn ∈ R+ by

fi = ai + (λi − λi+1)δ (i = 1, . . . , n− 1), fn = an + 2λnδ. (3.28)

The new variables

yi = xfi = qλi−λi+1xix
−1
i+1 (i = 1, . . . , n− 1), yn = xfn/2 = qλnxn

generate the Laurent algebra A, i.e. A = C[y±11 , . . . , y±1n ]. We translate now the
definition of w+(x

−1
λ ) in terms of these new variables y = (y1, . . . , yn). Observe

that the residue point x = x−1λ corresponds with

(t−2, t−2, . . . , t−2, t∨n
−1t−1n ) ∈

(
C \ {0}

)n

in the y-coordinates under the above change of variables. Combined with the
definition of cf (see (3.3)), we see that cf (x

−1
λ ) = 0 for f ∈ R+ iff f = fi for some

i = 1, . . . , n. Furthermore,

cfi(x) =
(1− t2yi)

(1− yi)
=: ci(yi) (i = 1, . . . , n− 1),

cfn(x) =
(1− tnt

∨
nyn)(1 + tnt

∨
n
−1yn)

(1− y2n)
=: cn(yn),
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so that ci(yi) has a simple zero at yi = t−2 for i = 1, . . . , n − 1 and cn(yn) has a
simple zero at yn = t∨n

−1t−1n . Hence

Res
x1=x−1

λ,1

(
Res

x2=x−1
λ,2

(
· · · Res

xn=x−1
λ,n

(
n∏

i=1

1

cfi(x)xi

)
· · ·
))

=

= Res
yn=(t∨n)

−1t−1
n

(
1

cn(yn)yn

) n−1∏

i=1

Res
yi=t−2

(
1

ci(yi)yi

)
=

=

(
t∨n
−2t−2n − 1

)
(
1 + t∨n

−2
) (t−2 − 1)n−1,

so that w+(x
−1
λ ) can be written as

w+(x
−1
λ ) =

(
t∨n
−2t−2n − 1

)
(
1 + t∨n

−2
) (t−2 − 1)n−1

∏

f∈R≥0\{f1,...,fn}

cf (x
−1
λ )−1, (3.29)

where R≥0 = {f ∈ R | f(0) ≥ 0}. In particular, w+(x
−1
λ ) is non-zero for generic

values of the multiplicity function t. ¤

We have dealt now with the multiple residue of the W -invariant part ∆+(x) of
∆(x) at the residue point x = x−1λ for λ ∈ Λ+0 . We use this to define the multiple

residue w(x−1λ ) = w(x−1λ ; t| q) of ∆(x) at x = x−1λ (λ ∈ Λ0) by

w(x−1λ ) = C(x−1λ )w+(x
−1
λ+), λ ∈ Λ0. (3.30)

This formula should be compared with the analogous decomposition (3.15) of the
complex weight function ∆(x) into its W -invariant part ∆+(x) and the correction
term C(x). Observe that w(x−1λ ) is non-zero by the previous lemma, since C(x) is
regular and non-zero at x = x−1λ for generic values of the multiplicity function t.

Let w̃(γ−1λ ) = w(γ−1λ ; t̃| q) be the discrete weight (3.30) with respect to the

dual multiplicity function t̃. The diagonal terms 〈E(γλ; ·), E′(γ−1λ ; ·)〉 can now be
expressed in the following way.

Theorem 3.16 (Diagonal terms). For all λ ∈ Λ0, we have

〈E(γλ; ·), E′(γ−1λ ; ·)〉
〈1, 1〉 =

w̃(γ−10 )

w̃(γ−1λ )
.

There are two essentially different ways to proceed with the proof of this theorem.
The first way is by relating the diagonal terms to the quadratic norms of the
symmetric Koornwinder polynomials (see the next subsection for the definition of
the symmetric Koornwinder polynomials), and then using so-called shift operators
to shift the parameters to the trivial case t = 1. This approach has the advantage
that it also leads to an evaluation of 〈1, 1〉 (which is essentially Gustafson’s [13]
multivariable q-analogue of the beta-integral). This method does not lead though
to the expression of the diagonal terms in terms of residues of the weight function
in a natural way.

The second method, which we follow in these lecture notes, makes use of the
double affine Hecke algebra H and the duality of the non-symmetric Koornwinder
polynomials. The proof is based on the following observation. Let λ ∈ Λ0 and
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p ∈ A. Then the Laurent polynomial p(x)E ′(γ−1λ ;x−1) ∈ A can again be written
as linear combination of the non-symmetric Koornwinder polynomials:

p(x)E′(γ−1λ ;x−1) =
∑

µ

dλp(µ)E
′(γ−1µ ;x−1), dλp(µ) ∈ C.

The upshot of duality is that multiplication of E ′(γ−1λ ;x−1) by p(x) can be rewritten

in terms of a linear operator acting on the spectral parameter γ−1λ of the Koorn-

winder polynomial. In particular, the coefficients dλp(µ) can be realized as coef-
ficients of explicit difference-reflection operators acting on functions with support
on the discrete spectrum {γ−1µ |µ ∈ Λ0}, which make them computable in certain
specific cases. We will show that this line of argument naturally leads to the explicit
expressions

dλE(γλ;·)(0) =
w̃(γ−10 )

w̃(γ−1λ )
, λ ∈ Λ0,

which is equivalent to the expression of the diagonal term 〈E(γλ; ·), E′(γ−1λ ; ·)〉 as
given in theorem 3.16.

3.8. Symmetric Koornwinder polynomials. We now discuss the symmetric
Koornwinder polynomials, which satisfy orthogonality relations with respect to the
symmetric part ∆+(x) of the weight function ∆(x). We emphasize in this prelimi-
nary introduction the close connections with the non-symmetric theory, as well as
with the classical orthogonal polynomial theory (as discussed in the introduction
of these lecture notes).

Let AW be the subalgebra of A consisting of Laurent polynomials p ∈ A satisfy-
ing wp = p for all w ∈W . In view of (3.23), we have a linear basis mλ(x) (λ ∈ Λ+0 )
of AW , where mλ is the orbit sum defined by

mλ(x) =
∑

µ∈Wλ

xµ, λ ∈ Λ+0 .

For any λ ∈ Λ0, say λ =
∑

i λiεi with λi ∈ Z, we set

Y λ = Y λ1
1 Y λ2

2 · · ·Y λn
n

which is well defined since the Y -operators Yi (i = 1, . . . , n) pair-wise commute and
are invertible. We can extend this construction linearly, by setting

p(Y ) =
∑

λ

dλY
λ,

(
p(x) =

∑

λ

dλx
λ ∈ A

)
.

Theorem 3.17. For any p ∈ AW , we have that p(Y )|AW ∈ EndC(AW ). Further-
more, for generic values of the multiplicity function t, there exists a unique basis
{P+λ = P+λ (·; t| q) |λ ∈ Λ+0 } of AW satisfying the two properties

– p(Y )P+λ = p(γλ)P
+
λ for all p ∈ AW ,

– The coefficient of mλ in the expansion of P
+
λ as linear combination of orbit

sums mµ (µ ∈ Λ+0 ), is equal to one.

Definition 3.18. The W -invariant Laurent polynomial P+λ (λ ∈ Λ+0 ) is called the
monic (symmetric) Koornwinder polynomial of degree λ.

Any p(Y ) with p ∈ A can be realized as a difference-reflection operator with
rational coefficients, i.e. p(Y ) is a finite Q-linear combination of operators τ(λ)w
with λ ∈ Λ0 and w ∈ W . Restricted to AW , we thus see that p(Y )|AW can be
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realized as a q-difference operator with coefficients in the field Q. In particular,
{p(Y )|AW | p ∈ AW } is a commutative sub-algebra of EndC(AW ) consisting of q-
difference operators with coefficients in Q, which is diagonalized by the symmetric
Koornwinder polynomials.

As an example, we give in the following theorem the explicit form of the q-
difference operator

L :=
(
mε1(Y )−mε1(γ0)

)
|AW .

The term mε1(γ0) is added so that L(1) = 0, where 1 ∈ AW is the Laurent polyno-
mial identically equal to one (indeed, observe that Yi(1) = γ0,i for i = 1, . . . , n by
(3.9) and (3.25) since Tj(1) = tj for all j = 0, . . . , n).

Theorem 3.19. The q-difference operator L is explicitly given by

L =

n∑

j=1

(
φj(x)(τ(εj)− 1) + φj(x

−1)(τ(−εj)− 1)
)
,

with the rational coefficient φj(x) given by

φj(x) =t
−1
0 t−1n t2(1−n) (1− axj)(1− bxj)(1− cxj)(1− dxj)

(1− x2j )(1− qx2j )

×
∏

i6=j

(1− t2xixj)(1− t2x−1i xj)

(1− xixj)(1− x−1i xj)
.

Remark 3.20. In remark 3.13 we saw that the explicit form of the weight function
∆+(x) indicated a connection with the theory of one-variable Askey-Wilson poly-
nomials. The same is the case for the q-difference operator L: for n = 1 (which
we have excluded, but can in fact be treated in a similar fashion) it reduces to a
multiple of the Askey-Wilson second order q-difference operator

∑

ε=±1

(1− ayε)(1− byε)(1− cyε)(1− dyε)

(1− y2ε)(1− qy2ε)
(T ε

q − 1),

for which the Askey-Wilson polynomials are joint eigenfunctions (here (T ε
q p)(y) =

p(qεy) are the multiplicative qε-shift in the one variable y). In particular, the
symmetric Koornwinder polynomials form a multivariable generalization of the one-
variable Askey-Wilson polynomials, with one extra degree of freedom t.

We can renormalize the symmetric Koornwinder polynomials now in a similar
manner as their non-symmetric counterparts. Following the same reasoning as
in remark 3.9, we see that P+λ (x;1| q) = mλ(x) for all λ ∈ Λ+0 . In particular,

P+λ (γ0(1| q);1| q) 6= 0. Since P+λ depends meromorphically on the multiplicity

function t, we thus see that P+λ (x0) = P+λ (x0; t| q) 6= 0 for generic values of the
multiplicity function t.

Definition 3.21. The renormalized symmetric Koornwinder polynomial E+(γλ; ·)
= E+(γλ; ·; t| q) of degree λ ∈ Λ+0 is defined by

E+(γλ;x) =
P+λ (x)

P+λ (x0)
, λ ∈ Λ+0 .

In other words, E+(γλ;x) is the constant multiple of the symmetric Koornwinder
polynomial P+λ (x) which takes the value one at x = x±10 .
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Let Ẽ+(xλ; ·) = E+(xλ; ·; t̃| q) for λ ∈ Λ+0 be the renormalized Koornwinder
polynomial of degree λ with respect to dual parameters. The duality of the non-
symmetric Koornwinder polynomials has the following counterpart for symmetric
Koornwinder polynomials.

Theorem 3.22. For all λ, µ ∈ Λ+0 , we have

E+(γλ;xµ) = Ẽ+(xµ; γλ).

The second order q-difference equation which is satisfied by the symmetric Koorn-
winder polynomials (see theorem 3.17 and theorem 3.19) can be converted into a
recurrence relation for the symmetric Koornwinder polynomials using duality. For-
mulated in terms of the symmetric Koornwinder polynomials with dual parameters,
this can be stated as follows.

Corollary 3.23. The symmetric Koornwinder polynomials Ẽ+(xλ; ·) (λ ∈ Λ+0 )
satisfy the recurrence relation

n∑

j=1

(
φj(xλ)

(
Ẽ+(xλ+εj ; ·)− Ẽ+(xλ; ·)

)
+ φj(x

−1
λ )
(
Ẽ+(xλ−εj ; ·)− Ẽ+(xλ; ·)

))
=

=
(
mε1(·)−mε1(γ0)

)
Ẽ+(xλ; ·)

for all λ ∈ Λ+0 , where the contribution of the term φj(x
±1
λ )
(
Ẽ+(xλ±εj ; ·)−Ẽ+(xλ; ·)

)

in the left hand side is taken to be zero if λ± εj 6∈ Λ+0 .

Proof. Let λ ∈ Λ+0 . We will rewrite the eigenvalue equation
(
LE+(γµ; ·)

)
(xλ) =

(
mε1(γµ)−mε1(γ0)

)
E+(γµ;xλ), µ ∈ Λ+0 (3.31)

(see theorem 3.17) using theorem 3.19 and the duality of the symmetric Koorn-
winder polynomials. It follows from the explicit form (3.26) of xλ that λ± εj 6∈ Λ+0
implies φj(x

±1
λ ) = 0. On the other hand, if λ± εj ∈ Λ+0 , then
(
τ(±εj)E+(γµ; ·)

)
(xλ) = E+(γµ;xλ±εj ) = Ẽ+(xλ±εj ; γµ)

by the duality of the symmetric Koornwinder polynomials. So substitution of the
explicit expression of L in (3.31) as given in theorem 3.19 combined with the above
remarks and duality, imply the desired recurrence relation when both sides are
evaluated at γµ for arbitrary µ ∈ Λ+0 . Since both sides of the desired identity are
in AW , we conclude that the identity must also be true in AW . ¤

Remark 3.24. In the one variable case, corollary 3.23 gives the three term recurrence
relation for the Askey-Wilson polynomials.

For the orthogonality relations of the symmetric Koornwinder polynomials, we
define the bilinear form 〈·, ·〉+ = 〈·, ·〉+,t,q by

〈p1, p2〉+ =
1

(2πi)n

∫∫

x∈Tn
p1(x)p2(x)∆+(x)

dx

x
, p1, p2 ∈ A,

see (3.16) for the definition of ∆+(x).
The orthogonality relations and diagonal terms for the symmetric Koornwinder

polynomials are now given as follows.
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Theorem 3.25. For all λ, µ ∈ Λ+0 we have

〈E+(γλ; ·), E+(γµ; ·)〉+
〈1, 1〉+

= δλ,µ
w̃+(γ

−1
0 )

w̃+(γ
−1
λ )

,

where δλ,µ is the Kronecker delta.

Remark 3.26. Observe that the eigenvalue mε1(γλ) − mε1(γ0) of the symmetric
Koornwinder polynomial E+(γλ; ·) with respect to the second order q-difference
operator L (λ ∈ Λ+0 ) are pair-wise different. Hence E+(γλ; ·) is, up to a constant,
the unique W -invariant Laurent polynomial which is an eigenfunction of L with
eigenvalue mε1(γλ) −mε1(γ0). From the explicit form of L, see theorem 3.19, we
then easily derive that

E+(γλ;x; t| q) = E+(γ−1λ ;x; t−1| q−1), λ ∈ Λ+0 .

This fact already indicates that the bi-orthogonality relations for the non-symmetric
Koornwinder polynomials (see theorem 3.14) become orthogonality relations for the
symmetric Koornwinder polynomials.

The advantage of working with 〈·, ·〉+ is that the weight function ∆+(x) is posi-
tive on Tn when the parameters q, t are furthermore assumed to be real (in contrast
with ∆(x)). In particular, the orthogonality relations for the symmetric Koorn-
winder polynomials are then formulated with respect to a positive orthogonality
measure, and hence we can really speak of multivariable orthogonal polynomials in
the sense of “classical” orthogonal polynomial theory.

We will see in §8.4, that the restriction of the bilinear form 〈·, ·〉 to the sub-
space AW coincides with 〈·, ·〉+ up to a constant multiple. This is caused by the
fact that the correction term C(x) of ∆(x) with respect to its W -invariant part
∆+(x) symmetrizes to a constant, i.e.

∑
w∈W

(
wC
)
(x) lies in the base field C of

Q. The fact that C symmetrizes to a constant is a consequence of an identity of
Macdonald, who introduced it as a generalization of the Poincaré series of the Weyl
group W . This fact is crucial for establishing the precise connections between the
symmetric and the non-symmetric theory. In particular, it leads to the following
explicit expansion of the symmetric Koornwinder polynomial as linear combination
of the non-symmetric Koornwinder polynomials.

Theorem 3.27. We have

E+(γλ;x) = C̃(γ−10 )−1
∑

µ∈Wλ

C̃(γ−1µ )E(γµ;x), λ ∈ Λ+0

where C̃(x) = C(x; t̃|q).

4. The affine Hecke algebra and Noumi’s representation

We discuss the affine Hecke algebra of type C̃n, which turns out to describe the
algebra of symmetries for the Koornwinder polynomials. For this we need to recall
some basic results from the theory of Coxeter groups and Hecke algebras, for which
we give precise references to the literature (we refer to Humphreys’ book [14] as
much as possible).
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4.1. The length function. In this subsection we recall some of the basic proper-
ties of the length function l :W → C on the affine Weyl group W, which is defined
by

l(w) = #(R+ ∩ w−1R−), w ∈ W. (4.1)

We start by recalling the following two well known facts, which are valid for an
arbitrary Coxeter group.

Proposition 4.1. (i) The length l(w) of w ∈ W is equal to the minimal possible

length of an expression w = si1si2 · · · sir of w as a product of simple reflections
(such an expression is called a reduced expression of w).

(ii) For w ∈W in the finite Weyl groupW , there exists a reduced expression w =
si1 · · · sir with all indices ij in {1, . . . , n}. In particular, l(w) = #(Σ+ ∩ w−1Σ−)
for w ∈ W (so the length function of W, restricted to the finite Weyl group W ,
coincides with the length function of W ).

Proof. For (i), see for instance [14, §5.6]. For (ii) one observes that W ⊂ W is
a parabolic sub-group, which means that W is a sub-group of W generated by
a subset I of the simple reflections si (i = 0, . . . , n). In our present setting we
have I = {1, . . . , n}. For the compatibility of the length functions with respect to
parabolic sub-groups one can for instance consult [14, thm. 5.5]. ¤

The length of an affine Weyl group element w ∈ W can be explicitly computed
in the following manner.

Proposition 4.2. For λ ∈ Λ0 and w ∈W , we have

l(τ(λ)w) =
∑

α∈Σ+

| −
(
λ,wα

)
+ χ(wα)|,

where χ(α) = 1 if α ∈ Σ− and = 0 if α ∈ Σ+.

Proof. We use that R± = Σ± ∪ {f ∈ R | f(0) ≷ 0}, that l(u) = #(R− ∩ uR+) for
all u ∈ W, and that

(τ(λ)w)(α+ kδ) = wα+ (k +
(
λ,wα

)
)δ, α ∈ Σ, k ∈ Z (4.2)

for all w ∈ W and λ ∈ Λ0. We distinguish now between four cases, while making
use of (4.2): If α ∈ Σ+ and

(
λ,wα

)
≤ 0, then

#{k ∈ Z+ | (τ(λ)w)(α+ kδ) ∈ R−} = χ(wα)−
(
λ,wα

)
.

If α ∈ Σ+ and
(
λ,wα

)
> 0, then

#{k ∈ Z+ | (τ(λ)w)(α+ kδ) ∈ R−} = 0.

If α ∈ Σ− and
(
λ,wα

)
< 0, then

#{k ∈ Z+ | (τ(λ)w)(α+ (k + 1)δ) ∈ R−} = 1− χ(−wα)−
(
λ,wα

)
− 1

= −χ(w(−α)) +
(
λ,w(−α)

)
.

If α ∈ Σ− and
(
λ,wα

)
≥ 0, then

#{k ∈ Z+ | (τ(λ)w)(α+ (k + 1)δ) ∈ R−} = 0.
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Now adding these contributions, we obtain

l(τ(λ)w) = #{f ∈ R+ | (τ(λ)w)(f) ∈ R−}
=
∑

α∈Σ+

| −
(
λ,wα

)
+ χ(wα)|,

as desired. ¤

The following corollary of this length identity will play a crucial role in estab-
lishing the commutativity of the Y -operators Y1, . . . , Yn, see (3.9).

Corollary 4.3. We have

l(τ(λ+ µ)) = l(τ(λ)τ(µ)) = l(τ(λ)) + l(τ(µ)), ∀λ, µ ∈ Λ+0 .

Proof. Recall that λ ∈ Λ0 is a dominant weight iff
(
λ, α

)
≥ 0 for all α ∈ Σ+. Hence

the previous proposition shows that l(τ(λ)) =
∑

α∈Σ+

(
λ, α

)
for all λ ∈ Λ+0 , which

immediately implies the desired result. ¤

Finally, we give here another consequence of proposition 4.2 which is needed in
§4.3.
Corollary 4.4. For all w ∈W and λ ∈ Λ+0 , we have l(τ(λ)w) = l(τ(λ)) + l(w).

Proof. We fix w ∈ W and λ ∈ Λ+0 . Observe that if χ(wα) = 1 for α ∈ Σ+, then(
λ,wα

)
≤ 0, and if χ(wα) = 0 for α ∈ Σ+, then

(
λ,wα

)
≥ 0. Hence proposition

4.1(ii) and proposition 4.2 yield

l(τ(λ)w) =
∑

α∈Σ+∩w−1Σ−

(
1− (λ,wα)

)
+

∑

α∈Σ+∩w−1Σ+

(
λ,wα

)

= l(w) +
∑

α∈Σ+

|
(
w−1λ, α

)
| = l(w) + l(τ(w−1λ)).

So it remains to prove that l(τ(wµ)) = l(τ(µ)) for any µ ∈ Λ0 and w ∈ W . It
suffices to take w = si (i = 1, . . . , n) a simple reflection. Then si permutes the set
Σ+ \ {ai} and maps ai to −ai ∈ Σ−. Hence

l(τ(siµ)) =
∑

α∈Σ+\{ai}

|
(
µ, α

)
|+ |

(
µ, siai

)
| =

∑

α∈Σ+

|
(
µ, α

)
| = l(τ(µ)),

as desired. ¤

4.2. The affine Hecke algebra of type C̃n. The Hecke algebra of type C̃n is a
deformation of the group algebra C[W] of the affine Weyl group W. As a vector
space over C, the group algebra C[W] has the affine Weyl group elements as a
linear basis, and the multiplication is defined by extending the group multiplication
linearly. By the presentation of the affine Weyl groupW in terms of the involutions
si (i = 0, . . . , n), see proposition 2.10, we see that C[W] is isomorphic to the unital
algebra over C generated by Vi (i = 0, . . . , n) satisfying V 2i = 1 (i = 0, . . . , n)
and satisfying the same braid relations as the simple reflections si (see proposition
2.10).

Let now t = {tf | f ∈ Rnr} be a multiplicity function of Rnr. Its restriction to
the reduced root system R is denoted by tR, so tR = {tf | f ∈ R}. It is isomorphic

to a (generic) element in
(
C\{0}

)3
, since tR is completely determined by its values

t0 = ta0
, t = tk = tak (k ∈ {1, . . . , n − 1} arbitrary), and tn = tan . The Hecke

algebra H is now defined as the following deformation of the group algebra C[W].
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Definition 4.5. The affine Hecke algebra H = H(W; tR) of type C̃n is the unital

algebra over C generated by V0, . . . , Vn and satisfying the quadratic relations

(Vi − ti)(Vi + t−1i ) = 0, i = 0, . . . , n,

and the C̃n-braid relations

ViVi+1ViVi+1 = Vi+1ViVi+1Vi, i = 0, n− 1,

ViVi+1Vi = Vi+1ViVi+1, i = 1, . . . , n− 2,

ViVj = VjVi, |i− j| > 1.

Observe that the quadratic relation for Vi implies that Vi is invertible in H, with
inverse given by V −1i = Vi − ti + t−1i .

An important property of the affine Hecke algebra H is the existence of a canon-
ical basis {Vw |w ∈ W} of H, in analogy with the canonical basis W of the group
algebra C[W]. It is constructed as follows.

Proposition 4.6. Let w ∈ W, and let w = si1si2 . . . sir be a reduced expression.
Then

Vw = Vi1Vi2 · · ·Vir ∈ H
is well defined (i.e. independent of the choice of reduced expression w = si1si2 · · · sir
for w ∈ W).

Proof. This is known as Iwahori-Matsumoto’s theorem: for any set of elements

(a0, . . . , an) in an algebra A which satisfy the C̃n-braid relations, we have that

aw := ai1ai2 · · · air ∈ A
is independent of the choice of reduced expression w = si1si2 · · · sir of w ∈ W.
Intuitively, two reduced expressions for the same affine Weyl group element w ∈ W
can be obtained from each-other by using the braid relations only (and not the
quadratic relations s2i = 1). For a proof, see for instance [24, Thm. 2]. ¤

Theorem 4.7. The elements Vw (w ∈ W) form a C-linear basis of H.

Proof. See for instance [14, Chapter 7]. ¤

4.3. The commutative sub-algebra AZ of H. We are now in a position to
generalize the structureW =W n τ(Λ0) ofW as a semi-direct product of the finite
Weyl group W and the abelian sub-group τ(Λ0) to the level of the affine Hecke
algebra H.

Let tΣ = {tα |α ∈ Σ} be the restriction of the multiplicity function tR to the
finite root system Σ ⊂ R. Then tΣ is a multiplicity function of Σ, in the sense that
it is constant on W -orbits in Σ. In particular, tΣ is uniquely determined by its two
values (t, tn) = (tak , tan) (k ∈ {1, . . . , n− 1} arbitrary).

Since the Weyl groupW is the sub-group ofW generated by the simple reflections
si (i = 1, . . . , n), we define H0 = H0(Σ; tΣ) ⊂ H(W; tR) = H to be the unital sub-
algebra generated by Vi (i = 1, . . . , n). It follows from theorem 4.7 that H0 is finite
dimensional with linear basis {Vw |w ∈W}, and that H0 (as algebra) only depends
on the values of the multiplicity function tR at Σ (i.e. on tΣ).

Next we define the analogue of the commutative sub-group τ(Λ0) in H. We
write

Zλ = Vτ(λ) ∈ H, λ ∈ Λ+0 .
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Lemma 4.8. For all λ, µ ∈ Λ+0 , we have

ZλZµ = Zλ+µ = ZµZλ

in H. Furthermore, Z0 = 1 ∈ H is the identity element.

Proof. If w,w′ ∈ W are two elements such that l(ww′) = l(w)+ l(w′), then Vww′ =
VwVw′ . Indeed, this follows from the definition of the basis elements Vu (u ∈ W) and
the observation that ww′ = si1 · · · sirsj1 · · · sjt is a reduced expression of ww′ ∈ W
if w = si1 · · · sir and w′ = sj1 · · · sit are reduced expressions of w and w′ in W,
respectively.

Now apply this observation to w = τ(µ), w′ = τ(λ) with λ, µ ∈ Λ+0 , using
corollary 4.3 and the fact that the translation operators τ(λ) and τ(µ) commute in
W. ¤

For λ ∈ Λ0, we define

Zλ = Zµ(Zν)−1, λ = µ− ν ∈ Λ0, µ, ν ∈ Λ+0 .

This is independent of the decomposition of λ = µ − ν as a difference of two
dominant weights µ, ν ∈ Λ+0 by the previous lemma. Indeed, if λ = µ′ − ν′ is
another such decomposition, then µ + ν ′ = µ′ + ν ∈ Λ+0 , hence by the previous
lemma

Zµ(Zν)−1 = Zµ+ν′(Zν+ν′)−1 = Zµ′+ν(Zν+ν′)−1 = Zµ′(Zν′)−1.

Observe that ZλZµ = Zλ+µ = Zµ+λ now holds for all λ, µ ∈ Λ0. We write AZ ⊂ H
for the commutative sub-algebra generated by the Zλ (λ ∈ Λ0). For any p ∈ A,
say p =

∑
λ dλx

λ, we set p(Z) =
∑

λ dλZ
λ. Furthermore, we write Zi = Zεi for

i = 1, . . . , n. Observe that Z±1i (i = 1, . . . , n) generate AZ as an algebra.
The following step is to describe the commutation relations between the Z-

operators and the elements of the finite Hecke algebra H0. We start with the
following observation.

Lemma 4.9. Let λ ∈ Λ0 and i ∈ {1, . . . , n}.
(i) If

(
λ, ai

)
= 0, then ViZ

λ = ZλVi in H.

(ii) If
(
λ, ai

)
= 1, then Zλ = ViZ

siλVi in H.

Proof. (i) Observe that

Λ0 =

n⊕

j=1

Zωj , Λ+0 =

n⊕

j=1

Z+ωj

with ωj the fundamental weight

ωj = ε1 + ε2 + · · ·+ εj , j = 1, . . . , n

(or equivalently: ωj is the unique element in Λ0 satisfying
(
ωj , a

∨
i

)
= δi,j for all

i = 1, . . . , n). The weights λ ∈ Λ0 (respectively dominant weights λ ∈ Λ+0 ) which
are orthogonal to ai are then given by the Z-span (respectively Z+-span) of ωj

(j 6= i). In particular, if
(
λ, ai

)
= 0, then there exist µ1, µ2 ∈ Λ+0 with λ = µ1 − µ2

and 〈µj , ai〉 = 0 for j = 1, 2, and Zλ = Zµ1(Zµ2)−1.
So it suffices to prove (i) for λ ∈ Λ+0 orthogonal to ai. We then have siλ = λ, so

that siτ(λ) = τ(λ)si, and l(siτ(λ)) = l(τ(λ)si) = l(τ(λ)) + 1 by corollary 4.4. We
conclude that

ViZ
λ = ViVτ(λ) = Vsiτ(λ) = Vτ(λ)si = Vτ(λ)Vi = ZλVi,
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as desired.
(ii) If

(
λ, ai

)
= 1, then we can write λ = µ− ν with µ, ν ∈ Λ+0 and

(
µ, ai

)
= 1,(

ν, ai
)
= 0. By (i), we may thus assume without loss of generality that ν = 0, i.e.

that λ = µ ∈ Λ+0 .
If λ ∈ Λ+0 and

(
λ, ai

)
= 1, then λ+ siλ ∈ Λ+0 . Indeed,
(
λ+ siλ, ai

)
=
(
λ, siai + ai

)
= 0 (4.3)

since siai = −ai, and for j ∈ {1, . . . , n} \ {i} we have
(
λ+ siλ, aj

)
=
(
λ, siaj + aj

)
≥ 0

since siaj ∈ Σ+. We now set

w = τ(λ+ siλ) = τ(λ)τ(siλ) = τ(λ)siτ(λ)si ∈ W.

We claim that we have the length identity

l(w) = l(wsi)− 1 = l(τ(λ)) + l(siτ(λ))− 1 = 2l(τ(λ))− 2. (4.4)

First we observe that (4.4) implies

Zλ+siλ = Vw = VwsiV
−1
i = Vτ(λ)Vsiτ(λ)V

−1
i = ZλV −1i ZλV −1i ,

which leads to the desired identity. So it remains to prove (4.4).
The first equality of (4.4) is immediate from corollary 4.4 using the fact that

λ+ siλ ∈ Λ+0 .
We now use the fact that λ ∈ Λ+0 and the fact that si permutes Σ+ \ {ai} and

maps ai to −ai, to derive from proposition 4.2 that

l(siτ(λ)) = l(τ(siλ)si) =
∑

α∈Σ+

| −
(
λ, α

)
+ χ(siα)|

=
∑

α∈Σ+\{ai}

(
λ, α

)
= l(τ(λ))− 1,

where we used
(
λ, ai

)
= 1 for the third and fourth equality. This gives the third

identity of (4.4). Finally, for the second equality of (4.4), it now suffices to show
that l(w) = 2l(τ(λ))−2. But proposition 4.2, (4.3), λ+ siλ ∈ Λ+0 and the fact that
si(Σ

+ \ {ai}) = Σ+ \ {ai} imply

l(w) = l(τ(λ+ siλ)) =
∑

α∈Σ+\{ai}

(
λ+ siλ, α

)
= 2

∑

α∈Σ+\{ai}

(
λ, α

)
.

Since
(
λ, ai

)
= 1 and λ ∈ Λ+0 , proposition 4.2 now implies that

l(w) = 2
∑

α∈Σ+

(
λ, α

)
− 2 = 2l(τ(λ))− 2,

which completes the proof of (4.4). ¤

Corollary 4.10. For i = 1, . . . , n we have

Zi = Vi · · ·Vn−1VnVn−1 · · ·V0V −11 V −12 · · ·V −1i−1

in H.
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Proof. By proposition 4.2 we have l(τ(ε1)) = 2n, so

τ(ε1) = s1 · · · sn−1snsn−1 · · · s1s0

is a reduced expression of τ(ε1) in W. Hence

Z1 = Vτ(ε1) = V1 · · ·Vn−1VnVn−1 · · ·V1V0.

Now assume that the desired expression for Zj is valid for j = 1, . . . , i − 1, with
2 ≤ i ≤ n fixed. Observe that τ(εi) = τ(si−1εi−1) = si−1τ(εi−1)si−1, and that(
εi−1, ai−1

)
= 1. It follows from lemma 4.9(ii) that Zi−1 = Vi−1ZiVi−1, which

proves the induction step. ¤

Let T̃f = Tf (t̃| q) ∈ EndC(A) (f ∈ R) be Noumi’s difference-reflection operators

with respect to dual parameters, see (3.5). Observe that T̃α (α ∈ Σ) only depends
on the multiplicity function tR.

Proposition 4.11. For all i = 1, . . . , n and p ∈ A, we have

Vip(Z)−
(
T̃−aip

)
(Z) =

(
sip
)
(Z)(Vi − ti)

in H.

Proof. For the moment, we exclude the case i = n, so we fix i ∈ {1, . . . , n − 1}.
Using the explicit expression for Noumi’s difference-reflection operators (see (3.5)),
we see that the desired commutation relation is equivalent to

Vip(Z)− (sip)(Z)Vi = (t− t−1)Zai

(
(sip)(Z)− p(Z)

1− Zai

)
. (4.5)

The left hand side and the right hand side of (4.5) depend linearly on p, so it suffices
to prove it for monomials p(x) = xλ (λ ∈ Λ0). Furthermore, it is easy to check that
if (4.5) is valid for p(x) = xν with ν = λ, µ ∈ Λ0, then it is also valid for p(x) = xν

with ν = −λ and ν = λ+ µ. Hence it suffices to prove (4.5) for p(x) = xωj , where
ωj = ε1 + ε2 + · · · + εj (j = 1, . . . , n) are the fundamental weights. For j 6= i, we
have

(
ωj , ai

)
= 0 and siωj = ωj , so (4.5) is then equivalent to ViZ

ωj = ZωjVi,

which is valid by lemma 4.9(i). If p(x) = xωi , then
(
ωi, ai

)
= 1 and siωi = ωi− ai.

Then (4.5) is equivalent to

ViZ
ωi − ZsiωiVi = (t− t−1)Zωi ,

i.e. V −1i Zωi = ZsiωiVi. This is indeed valid by lemma 4.9(ii).
Now we consider the case i = n. The desired identity is now equivalent to

Vnp(Z)−
(
snp
)
(Z)Vn =

(
(tn − t−1n )Z2n + (t0 − t−10 )Zn

)
((

snp
)
(Z)− p(Z)

1− Z2n

)
.

By a similar argument as before, it suffices to prove the identity for p(Z) = Zi

(i = 1, . . . , n). For i = 1, . . . , n− 1, the identity holds true for p(Z) = Zi by lemma
4.9(i). So it suffices to prove the identity for p(Z) = Zn, in which case we have to
show that

VnZn − Z−1n Vn = (tn − t−1n )Zn + (t0 − t−10 ).
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By corollary 4.10 and the identities V 2n = (tn− t−1n )Vn+1 and V −10 = V0− t0+ t−10 ,
we have

VnZn = Vn
(
VnVn−1 · · ·V1V0V −11 V −12 · · ·V −1n−1

)

= (tn − t−1n )Zn + Vn−1 · · ·V2V1
(
V −10 + t0 − t−10

)
V −11 V −12 · · ·V −1n−1

= (tn − t−1n )Zn + Z−1n Vn + (t0 − t−10 ),

as desired. ¤

Corollary 4.12. The set {ZλVw |w ∈W, λ ∈ Λ0} and the set {VwZλ |w ∈W, λ ∈
Λ0} are linear bases of H. In particular, AZ⊗H0 ' H ' H0⊗AZ as vector spaces

by multiplication.

Proof. We first consider the set {ZλVw |λ ∈ Λ0, w ∈ W}. By proposition 4.10,
V0 can be written as a product of Z1 and Vi’s (i = 1, . . . , n). Furthermore, in any
product with factors from Zλ (λ ∈ Λ0) and Vw (w ∈W ), we can pull the Zλ factors
to the left of the Vw factors in view of the previous proposition. Hence the elements
ZλVw (λ ∈ Λ0, w ∈W ) span H. For the linear independence, we let

∑

λ,w

dλ,wZ
λVw = 0, dλ,w ∈ C (4.6)

be a finite, vanishing sum in H. There exists a µ ∈ Λ+0 such that µ + λ ∈ Λ+0
for all those λ ∈ Λ0 for which dλ,w 6= 0 for some w ∈ W (since there exists only
finitely many such λ). Multiplying the element (4.6) with Zµ from the left and
using corollary 4.4, we see that

∑

λ,w

dλ,wVτ(µ+λ)w = 0.

By theorem 4.7, we conclude that all coefficients dλ,w are zero.

Let now H ′ be the affine Hecke algebra of type C̃n with respect to the inverse
multiplicity function t−1R = (t−10 , t−1, t−1n ), and write V ′i (i = 0, . . . , n), V ′w (w ∈ W)
and Z ′λ (λ ∈ Λ0) for the elements Vi, Vw and Zλ in H ′. Then there exists a unique
anti-algebra homomorphism φ : H → H ′ mapping Vi to V ′i

−1 for i = 0, . . . , n
(indeed, observe that all the defining relations of H are preserved if one formally
extends the map φ(Vi) = V ′i

−1 (i = 0, . . . , n) anti-multiplicatively).
Observe that φ(Vw) = V ′w

−1 for all w ∈ W, hence in particular φ(Zλ) = Z ′−λ for
all λ ∈ Λ0. We conclude now from the first part of this proposition that the elements
φ(ZλVw) = V ′w

−1Z ′−λ (w ∈W and λ ∈ Λ0) form a linear basis of H ′. Multiplying
from the left by the invertible element V ′σ, with σ = −1 ∈ W the longest Weyl
group element (which maps v to −v for all v ∈ V ), and using that V ′σV

′
w
−1 = V ′σw

for all w ∈ W since l(σw) = l(σ) − l(w) for all w ∈ W , we conclude that the
elements V ′wZ

′λ (w ∈W and λ ∈ Λ0) form a linear basis of H ′. Now inverting the
multiplicity function again, gives the second statement of the corollary. ¤

It follows from this corollary that the commutative sub-algebra AZ of H is
naturally isomorphic to the algebra A of Laurent polynomials in the indeterminates
x1, . . . , xn by identifying Zi with xi for all i = 1, . . . , n.



LECTURE NOTES ON KOORNWINDER POLYNOMIALS 31

4.4. The Noumi representation. The algebraic structure of the affine Hecke
algebra H in terms of the commutative sub-algebra AZ and the finite Hecke algebra
H0 allows us to define a crucial representation of H on A, which is known as the
Noumi representation. We start with the following observation.

Lemma 4.13. Noumi’s difference-reflection operators Ti = Ti(t| q) ∈ EndC(A)
(i = 1, . . . , n) defined by (3.5) satisfy the quadratic relations (Ti− ti)(Ti + t−1i ) = 0
(i = 1 . . . , n) and the Cn-braid relations

TiTi+1Ti = Ti+1TiTi+1, i = 1, . . . , n− 2,

Tn−1TnTn−1Tn = TnTn−1TnTn−1,

TiTj = TjTi, |i− j| > 1, i, j ∈ {1, . . . , n}.

Proof. Let χ : H0(W ; tΣ) → C be the character (i.e. one-dimensional algebra
homomorphism) defined by χ(Vi) = ti for i = 1, . . . , n. Consider the corresponding
induced left H-module

IndHH0
(χ) = H ⊗H0

C.

By corollary 4.12, we may identify IndHH0
(χ) as C-vector space with A. In view

of proposition 4.11, we then see that the restriction of the H-action on A to the
sub-algebra H0(W ; tΣ) is given by

Vip = T̃−aip, p ∈ A, i = 1, . . . , n,

where T̃−ai is Noumi’s difference-reflection operator T−ai(t̃| q) with respect to dual

parameters. In particular, T̃−ai (i = 1, . . . , n) satisfy the quadratic relations

(T̃−ai − ti)(T̃−ai + t−1i ) = 0, i = 1, . . . , n

in EndC(A), and they satisfy the Cn-braid relations in EndC(A). The same con-

clusion is true for the T̃i (i = 1, . . . , n), since T̃−ai = σT̃iσ for all i = 1, . . . , n by
lemma 3.5(iii), where σ = −1 ∈ W is the finite Weyl group element which maps
v ∈ V to −v for all v ∈ V .

We want to think of T̃i as an operator associated with the ith vertex in the

extended Dynkin diagram of type C̃n for i = 1, . . . , n. Recalling the definition

of the multiplicity function t and its dual t̃ (see (3.12)), we see that T̃i = Ti
(i = 1, . . . , n − 1) is completely given in terms of the simple root ai. This is

though not the case for T̃n (which depends on the parameters t0 and tn), since the
parameter t0 is associated with the zeroth vertex of the extended Dynkin diagram.

This can be remedied by the following observation. The T̃i (i = 1, . . . , n) depend on

t0, t, tn, while H0 only depends on t and tn. So when we regard the T̃i (i = 1, . . . , n)
as operators defining an action of H0 on A, the parameter t0 occurs as a “dummy
parameter”, i.e. an extra degree of freedom. In particular, replacing t0 by t∨n in

the operator T̃n does not change the quadratic relations and braid relations. But
interchanging the value t0 by t∨n results in replacing the dual multiplicity function
t̃ by the multiplicity function t itself. Hence we conclude that Ti = Ti(t| q) ∈
EndC(A) (i = 1, . . . , n) satisfy the quadratic relations (Ti − ti)(Ti + t−1i ) = 0
(i = 1, . . . , n), as well as the Cn-braid relations. ¤

We are now in a position to define the Noumi representation of the affine Hecke
algebra H.
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Theorem 4.14. There exists a unique algebra homomorphism πt,q : H(W; tR)→
EndC(A) satisfying

πt,q(Vi) = Ti(t| q) = ti + t−1i cai(·; t|q)
(
si − 1

)

for i = 0, . . . , n.

Proof. For the proof we need to consider the extended affine Weyl groupWe, which

is the sub-group of End(V̂ ) generated by W and the involution

ω = uτ
(
(ε1 + ε2 + · · ·+ εn)/2

)
,

where u ∈W is the Weyl group element which maps the vector v = (v1, . . . , vn) to
(−vn, . . . ,−v1) for all v ∈ V . It is easy to check that

ω(ai) = an−i, i = 0, . . . , n

hence the extended affine Weyl group We stabilizes the affine root system R. Fur-
thermore, ω stabilizes the lattice Λ = Λ0 +

1
2Zδ, so that the canonical action of

W on A (see lemma 3.1) extends to an action of We on A by the assignment
w(xµ) = xwµ for w ∈ We and µ ∈ Λ0. In particular,

(ωp)(x) = p(q
1
2x−1n , . . . , q

1
2x−11 ), p ∈ A.

Furthermore, the analogue of lemma 3.5(iii) for ω ∈ We becomes ωTi(t| q)ω−1 =
Tn−i(t

ω| q) for i = 0, . . . , n, where tω is the multiplicity function tω = {tωf | f ∈ R}.
Combined with lemma 4.13, we see that the operators Sω

i := Tn−i(t
ω| q) (i =

1, . . . , n) satisfy the quadratic and braid relations ofH0(W ; tΣ), hence the operators

Si := Tn−i(t| q), (i = 1, . . . , n)

satisfy the quadratic and braid relations of H0(W ; (tω)Σ).
Again using lemma 4.13, we conclude that (Ti−ti)(Ti+t−1i ) = 0 for i = 0, . . . , n,

and that the following braid relations are valid in EndC(A) for i, j ∈ {0, . . . , n}:
TiTi+1TiTi+1 = Ti1TiTi+1Ti, i = 0, n− 1,

TiTi+1T1 = Ti+1TiTi+1, i = 1, . . . , n− 2,

TiTj = TjTi, |i− j| > 1, (i, j) 6∈ {(0, n), (n, 0)}.
So it remains to prove that T0Tn = TnT0. But this is a direct consequence of the
fact that

(
a0, an

)
= 0 (in particular, s0(an) = an and sn(a0) = a0). ¤

Remark 4.15. Observe that the representation πt,q depends on three extra param-
eters compared with the affine Hecke algebra H = H(W; tR), namely q, t∨0 and
t∨n . The parameter q already entered in the description of the underlying W-action
on A: it determines the “shift-length” for the action of the translation part τ(Λ0).
The extra parameters t∨0 , t

∨
n are associated with the extension R ⊂ Rnr of the affine

root system R to the non-reduced root system Rnr, in which two extraW-orbits are
attached to R, one at the zeroth vertex, and one at the nth vertex of the extended
Dynkin diagram.

For t∨0 = t∨n = 1, we are in the setting of Macdonald polynomials. In Cherednik’s
study of Macdonald polynomials via affine Hecke algebras the associated multiplic-
ity function tR is also assumed to be invariant under the action of the extended
affine Weyl group We (see the proof of theorem 4.14 for the definition of We). In
the present setting this would amount to yet another elimination of a degree of
freedom since the We-invariance of tR forces the extra condition t0 = tn.
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In view of corollary 4.10 and (3.9) we can realize the Y -operators Yi ∈ EndC(A)
as the image under the Noumi representation πt,q of Zi ∈ AZ ⊂ H:

Yi = πt,q(Zi) ∈ EndC(A), i = 1, . . . , n. (4.7)

Since the Zi (i = 1, . . . , n) mutually commute in H, we conclude that the Yi
(i = 1, . . . , n) mutually commute in EndC(A). This is precisely the content of
theorem 3.6.

5. The non-symmetric Koornwinder polynomials

5.1. Triangularity of the Y -operators. The lattice Λ0 contains, besides the cone
Λ+0 of dominant weights, also the cone Λ>

0 consisting of Z+-linear combinations of
the co-roots α∨ with α ∈ Σ+:

Λ>
0 = Z+ − span{α∨ |α ∈ Σ+} =

n⊕

i=1

Z+a∨i .

We use Λ>
0 to define two partial orders on Λ0, which both will play an important

role in the analysis of the Y -operators. Recall that for arbitrary λ ∈ Λ0, we denote
λ+ ∈ Λ+0 for the unique dominant weight within the W -orbit Wλ.

Definition 5.1. Let λ, µ ∈ Λ0.
(i) We write λ ≤ µ if µ− λ ∈ Λ>

0 (and λ < µ if λ ≤ µ and λ 6= µ).
(ii) We write λ ¹ µ if λ+ < µ+, or if λ+ = µ+ and λ ≤ µ (and λ ≺ µ if λ ¹ µ
and λ 6= µ).

Lemma 5.2. We have µ ≤ µ+ for all µ ∈ Λ0.

Proof. Let µ ∈ Λ0 \Λ+0 . We have to show that µ < µ+. Recall that the element µ+

is the unique element in Wµ satisfying
(
µ+, α

)
∈ Z+ for all α ∈ Σ+. Since µ 6= µ+,

there thus exists an α ∈ Σ+ with
(
µ, α

)
∈ Z<0, so that

sαµ = µ−
(
µ, α

)
α∨ > µ.

If sαµ = µ+, then we are ready. Otherwise, there exists an β ∈ Σ+ such that
sβsαµ > sαµ > µ. Continuing this procedure inductively leads to the desired result
(indeed, observe that it ends after a finite number of steps since #Wµ <∞). ¤

We have now the following technical lemma.

Lemma 5.3. Let µ ∈ Λ0 and α ∈ Σ+.
If
(
µ, α

)
≥ 2, then µ− rα∨ ≺ µ for r = 1, . . . ,

(
µ, α

)
− 1.

If
(
µ, α

)
≤ −2, then µ+ rα∨ ≺ µ for r = 1, . . . ,−

(
µ, α

)
− 1.

Proof. We write mα =
(
µ, α

)
∈ Z. Suppose that mα ≥ 2 and write µr = µ − rα∨

with r ∈ {1, . . . ,mα − 1}. We show that µ+r < µ+.
Let w ∈W such that µ+r = wµr. Then wα

∨ ∈ Λ>
0 or wα∨ ∈ −Λ>

0 . If wα
∨ ∈ Λ>

0 ,
then µ+r = wµ − rwα∨ < wµ ≤ µ+, where we have used lemma 5.2 for the last
equality. On the other hand, if wα∨ ∈ −Λ>

0 , then µ+r = wµ − rwα∨ < wµ −
mαwα

∨ = (wsα)µ ≤ µ+. This proves the assertion for mα ≥ 2. The case mα ≤ −2
can be obtained by applying the previous case to sαµ. ¤

For f ∈ R we define

R(f) = tfsf + t−1f cf (·)
(
1− sf

)
, (5.1)
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where cf (·) is given by (3.3). Observe that R(f) = Tfsf for all f ∈ R, where
Tf = Tf (t| q) (f ∈ R) are Noumi’s difference-reflection operators defined by (3.5).
In particular, it follows that R(f) ∈ EndC(A).

Recall that sgn : Z → {±1} is the function which maps a non-negative integer
to 1 and a strictly negative integer to −1.

Lemma 5.4. Let λ ∈ Λ0. For f = α+mδ ∈ R+ with α ∈ Σ+ we have

R(f)(xλ) = t
sgn((λ,f))
f xλ +

∑

µ≺λ

cλ,µx
µ

for certain constants cλ,µ ∈ C.

Proof. Let f = α+mδ ∈ R+ with α ∈ Σ+. Then necessarily m ∈ Z+. The lemma
is clear when

(
λ, f

)
= 0, since then sf (x

λ) = xλ. So we assume that
(
λ, f

)
6= 0.

We can write

R(f)(xλ) = tfx
sfλ + t−1f

(
1− tf tf/2x

f/2
)(
1 + tf t

−1
f/2x

f/2
)
Df (x

λ), (5.2)

where Df ∈ EndC(A) is the linear operator defined by (3.6). We distinguish be-
tween the two cases

(
λ, f

)
> 0 and

(
λ, f

)
< 0.

If
(
λ, f

)
> 0, then (5.2) and (3.7) show that

R(f)(xλ) = tfx
λ +

(λ,f)∑

r=1

drx
λ−rα∨

for certain constants dr. Now by lemma 5.3, and by the fact that sαλ = λ −(
λ, f

)
α∨ ≺ λ, we arrive at R(f)(xλ) = tfx

λ+ lower order terms w.r.t. ¹.
If
(
λ, f

)
< 0, then the xsαλ term in the expansion of R(f)(xλ) as linear com-

bination of monomials is zero. Indeed, by (3.7) the contribution to xsαλ in the
expansion of

t−1f

(
1− tf tf/2x

f/2
)(
1 + tf t

−1
f/2x

f/2
)
Df (x

λ)

in monomials is given by −tfqm(λ,α
∨)xsαλ, which cancels with the first factor tfx

sfλ

in (5.2).
It follows then from (5.2) and (3.7) that

R(f)(xλ) = t−1f xλ +

−(λ,f)−1∑

r=1

drx
λ+rα∨

for certain constants dr, where the sum is empty if
(
λ, f

)
= −1. By lemma 5.3, we

thus see that R(f)(xλ) = t−1f xλ+ lower order terms w.r.t. ¹, as desired. ¤

Observe that R(wf) = wR(f)w−1 for all w ∈ W and all f ∈ R. Combined with
(3.8) and (3.9), we obtain

Yi =R(εi − εi+1)R(εi − εi+2) · · · R(εi − εn)R(2εi)

×R(εi + εn) · · · R(εi + εi+1)R(εi + εi−1) · · · R(εi + ε1)

×R(2εi + δ)τ(εi)R(ε1 − εi)
−1 · · · R(εi−1 − εi)

−1

(5.3)

for i = 1, . . . , n. This leads to the following result.
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Proposition 5.5. For all i = 1, . . . , n and λ ∈ Λ0 we have

Yi(x
λ) = γλ,ix

λ +
∑

µ≺λ

cλ,µx
µ

for certain constants cλ,µ ∈ C, where γλ = (γλ,1, . . . , γλ,n) ∈
(
C \ {0}

)n
is given by

(3.11).

Proof. The triangularity of the factors R(·) in (5.3) (see lemma 5.4) implies the
triangularity of Yi for i = 1, . . . , n. Now it can be shown that the diagonal term
is given by γλ,i by carefully collecting the leading terms coming from repeated
application of lemma 5.4 to the factors R(·) in (5.3) acting on xλ, and using
τ(εi)(x

λ) = q(λ,εi)xλ. ¤

5.2. The definition of the non-symmetric Koornwinder polynomials. Our
first objective of this subsection is to prove that the diagonal terms {γλ |λ ∈ Λ0}
(see (3.11)) are pair-wise different for generic parameters t and q. For this we need
some standard facts on parabolic sub-groups of W . These facts hold in greater
generality, see [14, §1.10, §1.12] for more details.

Let I ⊂ {s1, . . . , sn} be any subset of the simple reflections of W , and WI ⊂W
the sub-group generated by I (which is called a parabolic sub-group of W ). Then
in any coset wWI ∈ W/WI , there exists a unique element u of minimal length.
The corresponding set of reprentatives W I of the coset space W/WI are called
the minimal coset representatives. Hence any w ∈ W can be uniquely written as
w = uv with u ∈ W I and v ∈ WI . Furthermore, the minimality of the length of u
forces the additivity of lengths in this decomposition:

l(uv) = l(u) + l(v), u ∈W I , v ∈WI . (5.4)

There is an alternative description of W I in terms of root systems as follows. The
root sub-system ΣI ⊂ Σ defined by

ΣI = R− span{ai | i ∈ {1, . . . , n} : si ∈WI} ∩ Σ

has {ai | si ∈WI} as a basis, with corresponding positive roots given by Σ+I = ΣI ∩
Σ+. Its Weyl group can be naturally identified with the parabolic sub-group WI ⊂
W . Then the minimal coset representatives W I can alternatively be described by

W I = {w ∈W |w(Σ+I ) ⊂ Σ+}. (5.5)

Stabilizer sub-groups of dominant weights λ ∈ Λ+0 are examples of parabolic sub-
groups, since the stabilizer sub-group Wλ = {w ∈W |wλ = λ} is generated by the
simple reflections si (i = 1, . . . , n) in Wλ, see [14, §1.12]. The coset space W/Wλ is
then in one-to-one correspondence with the W -orbit Wλ, the coset wWλ (w ∈W )
corresponding to the element wλ in the orbit Wλ. In other words, for λ ∈ Λ+0
the minimal coset representatives W λ of W/Wλ are exactly the elements wµ ∈ W
(µ ∈Wλ) with wµ ∈W the unique element of minimal length such that wµλ = µ.

Lemma 5.6. For λ ∈ Λ0 and p ∈ A we have p(γ±1λ ) = (w−1λ p)(γ±1λ+ ). In particular,

if λ ∈ Λ0 and i ∈ {1, . . . , n} are such that siλ 6= λ, then (sip)(γ
±1
λ ) = p(γ±1siλ

).

Proof. For the first statement of the lemma, it suffices to prove that

wλρm(λ+) = ρm(λ), wλρl(λ
+) = ρl(λ), ∀λ ∈ Λ0,
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see (3.11). We prove the first identity, the second is proved in a similar manner.
We rewrite ρm(λ) as follows:

ρm(λ) = wλ


 ∑

α∈Σ+
m

sgn
((
λ+, w−1λ α

))
(w−1λ α)∨


 .

Comparing with the expression ρm(λ+) =
∑

α∈Σ+
m
α∨ = ρm (see (3.24)), it suffices

to prove that
(
λ+, w−1λ α

)
< 0 for α ∈ Σ+m with w−1λ α ∈ Σ−.

We fix an α ∈ Σ+m so that w−1λ α ∈ Σ−. Let I be the sub-set of simple reflections

in W which stabilize λ+, so that WI = Wλ+ . Then wλ(Σ
+
I ) ⊂ Σ+, and since wλ

preserves lengths of roots, we have wλ(ΣI ∩ Σ−m) ⊂ Σ−m. It follows that w−1λ α ∈
Σ−m \ (Σ−m ∩ ΣI), hence

(
λ+, w−1λ α

)
< 0, as desired.

For the second statement of the lemma it suffices to show that siwλ = wsiλ

for i ∈ {1, . . . , n} and λ ∈ Λ0 with siλ 6= λ. To show this, we remark that
l(siwλ) = l(wλ)±1 iff w−1λ ai ∈ Σ± by the definition of the length function, since si
permutes Σ+ \ {ai} and maps ai to −ai. Since siλ 6= λ by assumption, we obtain(
λ, ai

)
=
(
λ+, w−1λ ai

)
≷ 0 iff w−1λ ai ∈ Σ± iff l(siwλ) = l(wλ)± 1. In particular, it

suffices to prove siwλ = wsiλ when siλ 6= λ and l(siwλ) = l(wλ)− 1, since the case
l(siwλ) = l(wλ) + 1 then follows by replacing λ by siλ.

Now suppose that l(siwλ) = l(wλ)− 1 and siλ 6= λ. We have siwλ ∈ wsiλWλ, so
if siwλ 6= wsiλ, then l(wsiλ) < l(siwλ) = l(wλ) − 1, hence l(siwsiλ) < l(wλ). But
siwsiλ ∈ wλWλ, so we arrive at a contradiction with the minimality of the length
of wλ within the coset wλWλ. Hence siwλ = wsiλ, as desired. ¤

Now from the explicit expressions (3.25) for the diagonal elements γλ ∈
(
C\{0}

)n

with λ ∈ Λ+0 , it is immediate that the elements
(
γξ1λ,w(1), . . . , γ

ξn
λ,w(n)

)
∈
(
C \ {0}

)n
, λ ∈ Λ+0 , w ∈ Sn, ξj ∈ {±1}

are pair-wise different for generic values of t and q. By the (proof of the) previous

lemma, this implies that the diagonal elements γλ ∈
(
C \ {0}

)n
(λ ∈ Λ0) are

pair-wise different for generic values of t and q.

Theorem 5.7. There exists a unique basis {Pλ = Pλ(·; t| q)}λ∈Λ0
of A such that

– Pλ(x) = xλ +
∑

µ≺λ cλ,µx
µ for certain constants cλ,µ,

– p(Y )Pλ = p(γλ)Pλ for all p ∈ A.

Proof. Let ∝ be a total order on Λ0 such that λ ≺ µ implies λ ∝ µ.
We fix λ ∈ Λ0. Let Aλ be the finite dimensional sub-space of A spanned by the

monomials xµ with µ ¹ λ. Then for all p ∈ A, p(Y ) preserves Aλ by proposition
5.5. In fact, with respect to the basis xµ (µ ¹ λ), ordered along the total ordering
∝, p(Y ) is represented by a triangular matrix with diagonal terms given by p(γµ)
(µ ¹ λ). We choose now p ∈ A such that p(γµ) 6= p(γλ) for all µ ≺ λ, then it follows
that p(Y )|Aλ has a non-zero eigenfunction pλ ∈ Aλ with eigenvalue p(γλ), which is
unique up to a non-zero multiplicative constant. Furthermore, the coefficient of xλ

in the expansion of such an eigenfunction pλ(x) in terms of monomials xµ (µ ¹ λ)
is non-zero. Hence p(Y )|Aλ has exactly one eigenfunction Pλ ∈ Aλ with eigenvalue
p(γλ) and with the coefficient of xλ in the expansion of Pλ(x) in terms of monomials
xµ (µ ¹ λ) being equal to one.
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For any other g ∈ A, we now have g(Y )Pλ = g(γλ)x
λ +

∑
µ≺λ cλ,µx

µ ∈ Aλ for
certain constants cλ,µ by proposition 5.5, and

p(Y )
(
g(Y )Pλ

)
= g(Y )

(
p(Y )Pλ

)
= p(γλ)

(
g(Y )Pλ

)
,

hence g(Y )Pλ = g(γλ)Pλ. This concludes the proof of the theorem. ¤

The Laurent polynomial Pλ ∈ A is exactly the monic non-symmetric Koorn-
winder polynomial of degree λ ∈ Λ0 as defined in definition 3.8. Indeed, theorem
5.7 implies theorem 3.7 since the diagonal terms γλ (λ ∈ Λ0) are pair-wise different.

6. The double affine Hecke algebra and duality

6.1. The double affine Hecke algebra. The double affine Hecke algebra plays
an indispensable role in the understanding of duality for the non-symmetric Koorn-
winder polynomials. It is defined as follows.

Definition 6.1. The double affine Hecke algebra H = H(t| q) is the sub-algebra
of EndC(A) generated by the image πt,q(H(W ; tR)) of the affine Hecke algebra
H(W ; tR) under the Noumi representation, and by A (regarded here as multiplica-
tion operators in EndC(A)).

In other words, H is generated by Noumi’s difference-reflection operators Ti ∈
EndC(A) (i = 0, . . . , n) and A (considered as multiplication operators). In order to
avoid confusion later on, we write p(z) ∈ EndC(A) for the element p ∈ A considered
as multiplication operator, and zi for the multiplication operator zεi (i = 1, . . . , n).

In order to understand the algebraic structure of H, we need to construct an
explicit basis of H first. For this we need a preliminary proposition on the action of
the affine Weyl groupW on the field Q of rational functions in the n indeterminates
x1, . . . , xn, see proposition 3.1 for the definition of this action.

Proposition 6.2. The affine Weyl group elements w ∈ W, considered as endo-
morphism of Q via the action defined in lemma 3.1, are Q-linearly independent
(where we regard EndC(Q) as a Q-module in the obvious manner, i.e. Q acts as
multiplication operators).

Proof. Suppose that
∑

w,λ cw,λ(x)wτ(λ) = 0 in EndC(Q) (w ∈ W , λ ∈ Λ0), with

cw,λ ∈ Q not all zero (but only finitely many being non-zero). We show that this
leads to a contradiction.

Multiplying out the denominators of cw,λ, we may assume without loss of gen-
erality that cw,λ ∈ A. Hence there exist coefficients cw,λ,µ ∈ C, not all zero (but

non zero for only a finite number of triples (w, λ, µ) ∈W × Λ×20 ), so that
∑

w,λ,µ

cw,λ,µx
µwτ(λ) = 0

in EndC(Q). In other words, there exist Laurent polynomials pw,µ ∈ A, not all zero
(but non zero for only finitely many (w, µ) ∈W × Λ0), so that

∑

w,µ

xµwpw,µ(τ(ε1), . . . , τ(εn)) = 0

in EndC(Q). Applying this to xν with ν ∈ Λ0 arbitrary, we get
∑

w,µ

xµ+wνpw,µ

(
qν1 , . . . , qνn

)
= 0
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in A for all ν ∈ Λ0, where νi =
(
ν, εi

)
. Fix now w ∈W and µ ∈ Λ0 with pw,µ 6= 0. It

then follows that pw,µ(q
ν1 , . . . , qνn) = 0 for those ν ∈ Λ0 satisfying µ+wν 6= µ′+w′ν

for all pairs (µ′, w′) 6= (µ,w) with pw′,µ′ 6= 0. But there are only finitely many pairs
(µ′, w′) with pw′,µ′ 6= 0, and q is assumed to be generic, hence we conclude that
pw,µ = 0, which is a contradiction. Hence the automorphisms w ∈ W of Q are
Q-linear independent, as desired. ¤

This leads directly to the following result.

Theorem 6.3. The sets {zλTw |λ ∈ Λ0, w ∈ W} and {zλTwY µ |λ, µ ∈ Λ0, w ∈
W} are linear bases of the double affine Hecke algebra H.
Proof. It suffices to prove the theorem for {zλTw |λ ∈ Λ0, w ∈ W} by (the proof of)
corollary 4.12. We need the Bruhat decomposition ≤ on W, which can be defined
as follows: let u,w ∈ W, and let w = si1si2 · · · sir be a fixed reduced expression of
w. Then u ≤ w if there exists a sequence 1 ≤ j1 < j2 < . . . jp ≤ r such that

u = sij1 sij2 · · · sijp .
This defines a partial order onW (which is not obvious with the present definition,
but see [14, §5,9, §5.10] for more details). From the explicit form of Noumi’s
difference-reflection operators Ti (i = 0, . . . , n), it is now obvious that

Tw =
∑

u≤w

aw,u(x)u ∈ EndC(A) (w ∈ W) (6.1)

for certain uniquely defined aw,u ∈ Q. Furthermore, aw,w 6= 0. Suppose now that∑
λ,w cλ,wz

λTw = 0 on H, with only finitely many constants cλ,w 6= 0 (but not all

zero). Then by (6.1),
∑

λ,w

cλ,w
∑

u≤w

zλaw,u(z)u = 0 in EndC(A).

Let now w be a maximal element of the finite, non-empty set

{u ∈ W | cλ,u 6= 0 for some λ ∈ Λ0}
with respect to the Bruhat-order. Then the previous proposition implies

aw,w(x)
∑

λ

cλ,wx
λ = 0 in Q.

But not all cλ,w are zero, and aw,w ∈ Q is non-zero, hence this leads to the desired
contradiction. ¤

We can now give a characterizing set of commutation relations within the double
affine Hecke algebra H, as follows.

Proposition 6.4. Let F = F(t| q) be the unital C-algebra generated by Hi (i =
0, . . . , n) and u±1i (i = 1, . . . , n), with relations

– u−1i is the inverse of ui, and the ui’s pair-wise commute for i = 1, . . . , n
(we define p(u) ∈ F for p ∈ A now in the usual manner);

– The quadratic relations (Hi − ti)(Hi + t−1i ) = 0 and the C̃n-braid relations

for (H0, . . . , Hn) ;
– Hip(u)−

(
Ti(t| q)p

)
(u) =

(
sip
)
(u)
(
Hi − ti

)
for i = 0, . . . , n and p ∈ A.

Then F(t| q) ' H(t| q) as algebra by identifying p(u) ∈ F with p(z) ∈ H (p ∈ A)
and Hj ∈ F with Tj(t| q) ∈ H (j = 0, . . . , n).
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Proof. We first prove the existence of a surjective algebra homomorphism φ : F →
H mapping Hj to Tj for j = 0, . . . , n and mapping p(u) to p(z) for p ∈ A. In other
words, we have to verify that the defining relations of F are also valid in H when
the Hj ’s are replaced by the Tj ’s and the ui’s are replaced by the zi’s. Only the last
of the defining relations of F then requires proof. But this follows by substituting
the explicit expression for Noumi’s difference-reflection operator Ti (see (3.5)): we
then have for any p ∈ A and i ∈ {0, . . . , n} that

Ti p(z)− (Tip)(z) = t−1i cai(z)(si p(z)− (sip)(z))

= (sip)(z)t
−1
i cai(z)

(
si − Id

)
= (sip)(z)

(
Ti − ti

)

in H ⊂ EndC(A). Hence the surjective algebra homomorphism φ : F → H exists.
In order to prove that φ is injective, it suffices to prove that F is spanned by

{uλHw |λ ∈ Λ0, w ∈ W} where Hw = Hi1Hi2 . . . Hir for a reduced expression
w = si1si2 · · · sir . This is though immediate from the defining relations of F . ¤

Sometimes it is convenient to have a presentation of H which is entirely formu-
lated in terms of the generators Ti (i = 0, . . . , n) and zj (j = 1, . . . , n). We give the
characterizing commutation relations in the following proposition.

Proposition 6.5. The characterizing commutation relations of H in terms of the
algebraic generators Ti (i = 0, . . . , n) and z±1j (j = 1, . . . , n) are given by

– z−1i is the inverse of zi, and the zi’s pair-wise commute (i = 1, . . . , n);

– The C̃n-braid relations for (T0, . . . , Tn);
– The quadratic relations (Ti − ti)(Ti + t−1i ) = 0 for i = 0, . . . , n;
– Tizj = zjTi for i = 0, . . . , n and j = 1, . . . , n with |i− j| > 1;
– Tizi−1 = zi−1Ti for i = 2, . . . , n;
– TiziTi = zi+1 for i = 1, . . . , n− 1;
– (z−1n T−1n − t∨n)(z

−1
n T−1n + t∨n

−1) = 0;
– (q−1/2T−10 z1 − t∨0 )(q

−1/2T−10 z1 + t∨0
−1) = 0.

Proof. It is easily verified that the generators Ti and zi ofH satisfy the commutation
relations as stated in the proposition (use proposition 6.4). As an example, we give
the details on the quadratic relation for z−1n T−1n . Making use of the commutation
relation between zn and Tn (see proposition 6.4), we compute

Tnz
−1
n = znTn +

(t−1n − tn) + (t∨n
−1 − t∨n)zn

1− z2n
(zn − z−1n )

= znTn + (tn − t−1n )z−1n + (t∨n − t∨n
−1).

Combined with T−1n = Tn+ t−1n − tn we conclude that T−1n z−1n = znTn+ t∨n − t∨n−1,
hence

(z−1n T−1n )2 = z−1n (znTn + t∨n − t∨n
−1)T−1n = 1 + (t∨n − t∨n

−1)z−1n T−1n .

This is equivalent to the quadratic relation for z−1n T−1n . The checks of the other
commutation relations are left for the reader.

The list of commutation relations as stated in this proposition is sufficient to be
able to commute Ti with an arbitrary Laurent polynomial p(z) in H. Hence, by a
similar argument as in the proof of proposition 6.4 and by making use of the basis
for H given in theorem 6.3, it follows that the given list of commutation relations
between the Ti’s and the zj ’s characterize the algebraic structure of H. ¤
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6.2. Isomorphisms between double affine Hecke algebras. Observe that the
commutation relations between Ti and p(Y ) are very similar to the commutation
relations between the Ti and p(Z) for i = 1, . . . , n and p ∈ A. In fact, they can be
written as

T−1i p(Y )−
(
T̃ ′ip
)
(Y ) = (sip)(Y )(T−1i − t−1i ),

Ti p(z)−
(
Tip
)
(z) = (sip)(z)(Ti − ti)

(6.2)

for i = 1, . . . , n and p ∈ A, where T̃ ′i := Ti(t̃
−1| q−1) = T−ai(t̃| q)−1 (for the first

equality in (6.2), we have used that T−1i − t−1i = Ti − ti). The last equality of

(6.2) also holds true for i = 0. Now if we write Ỹ ′i , z̃
′
i (i = 1, . . . , n) etc. for the

generators of H̃′ = H(t̃−1| q−1), then (6.2) suggests the existence of an algebra

homomorphism ε : H → H̃′ mapping Ti to T̃
′
i
−1, mapping zi to Ỹ

′
i and mapping Yi

to z̃′i (i = 1, . . . , n). Such a map ε indeed respects the commutation relations (6.2).
There is though more to check, since the relations (6.2), together with the quadratic
and Cn-braid relations for Ti (i = 1, . . . , n) are not sufficient to characterize the
algebraic structure of H.

In other words, we have to convince ourselves that ε preserves the (defining)
commutation relations between the zi and Yj . These relation are hard to make
explicit, so instead we use the presentation of H in terms of Ti (i = 0, . . . , n) and
zj (j = 1, . . . , n) as given in proposition 6.4. To formulate ε in terms of these
generators, we first observe that T0 can be written as

T0 = T−11 T−12 · · ·T−1n−1T
−1
n YnTn−1 · · ·T2T1,

see (3.9). We write

U0 = T1T2 · · ·Tn−1z−1n T−1n T−1n−1 · · ·T−12 T−11 ∈ H, (6.3)

and Ũ ′0 ∈ H̃′ for the element U0 with the parameters (t, q) replaced by (t̃−1, q−1).
Then, provided the existence of the algebra homomorphism ε, the image of T0
under ε would be Ũ ′0

−1. Since T0 satisfies the second commutation relation in (6.2)
for i = 0, the existence of the algebra homomorphism ε amounts to checking the
following commutation relations.

Proposition 6.6. The element U0 ∈ H satisfies the following commutation rela-
tions:

– (U0 − t∨n)(U0 + t∨n
−1) = 0;

– U0T1U0T1 = T1U0T1U0 and U0Ti = TiU0 for i = 2, . . . , n;

– U−10 p(Y )−
(
T̃ ′0p
)
(Y ) = (s′0 p)(Y )(U−10 − t∨n−1) for all p ∈ A, where s′0 acts

on A by (s′0 p)(x) = p(q−1x−11 , x2, . . . , xn).

Proof. The proof of the proposition is rather tedious, and is therefore postponed
to §9. ¤

This proposition, combined with proposition 6.4, implies that the algebra homo-
morphism ε exists. More precisely, it leads to the following theorem.

Theorem 6.7. There exists a unique algebra isomorphism ε = εt,q : H → H̃′
mapping Yi to z̃

′
i, mapping zi to Ỹ ′i and mapping Ti to T̃ ′i

−1 for i = 1, . . . , n.

Furthermore, ε maps T0 to Ũ
′
0
−1. The inverse of ε is given by ε̃′ := εt̃−1,q−1 .
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Proof. We define ε(T0) = Ũ ′0
−1, ε(Ti) = T̃ ′i

−1, ε(zi) = Ỹ ′i for i = 1, . . . , n. By
proposition 6.6 and (6.2), it is easy to check that ε preserves the characterizing
commutation relations of H as given in proposition 6.4, hence ε extends uniquely

to an algebra homomorphism ε : H → H̃′.
We show now that ε(Yi) = z̃′i for i = 1, . . . , n. By proposition 6.5 we have

zi+1 = TiziTi for i = 1, . . . , n− 1. Furthermore,

zn = T−1n · · ·T−12 T−11 U−10 T1T2 · · ·Tn−1
by the definition of U0, so that

zi = T−1i T−1i+1 · · ·T−1n−1T
−1
n T−1n−1 · · ·T−12 T−11 U−10 T1T2 · · ·Ti−1, i = 1, . . . , n.

Combined with (3.9) and the definition of ε, we conclude that ε(Yi) = z̃′i for i =
1, . . . , n.

Consider now the algebra homomorphism ε̃′ ◦ ε : H → H. This algebra homo-
morphism acts as the identity on the generators Ti, Yi and zi (i = 1, . . . , n) of H,
hence ε̃′ ◦ ε = IdH. Similarly, we see that ε ◦ ε̃′ = IdH̃′ . Hence ε is an algebra
isomorphism with inverse ε̃′, as desired. ¤

Using theorem 6.7 and proposition 6.4, we obtain the following stronger version
of proposition 6.6. It can be seen as the the counterpart of proposition 6.4, in which
the role of the z-operators are replaced by the role of the Y -operators.

Proposition 6.8. The elements U0, Ti and Yi (i = 1, . . . , n) generate H as an alge-
bra. The characterizing commutation relations of H with respect to these generators
are given by

– (U0 − t∨n)(U0 + t∨n
−1) = 0 and (Ti − ti)(Ti + t−1i ) = 0 for i = 1, . . . , n;

– The C̃n-braid relations for (U0, T1, . . . , Tn);
– Y −1i is the inverse of Yi and the Yi pair-wise commute (i = 1, . . . , n);
– The Lusztig-type commutation relations

U−10 p(Y )−
(
T̃ ′0p
)
(Y ) = (s′0 p)(Y )(U−10 − t∨n

−1),

T−1i p(Y )−
(
T̃ ′ip
)
(Y ) = (sip)(Y )(T−1i − t−1i )

for i = 1, . . . , n and p ∈ A.

The so-called duality (anti-)isomorphism, is the composition of ε with the fol-
lowing elementary (anti-)isomorphism.

Lemma 6.9. There exists a unique algebra isomorphism † = †t,q : H → H′ (re-
spectively anti-algebra isomorphism ‡ = ‡t,q : H → H′) satisfying Ti 7→ T ′i

−1

(i = 0, . . . , n) and zj 7→ z′j
−1 (j = 1, . . . , n).

Proof. This follows by verifying that the characterizing algebraic relations of H in
terms of the generators zi (i = 1, . . . , n) and Tj (j = 0, . . . , n) are respected by †
(respectively ‡) when † (respectively ‡) is formally extended as algebra homomor-
phism (respectively anti-algebra homomorphism). The actual verification is easy
and is left to the reader. ¤

We use the notation X‡ and X† for the image of X ∈ H under ‡ and †, respec-
tively. Furthermore, we write †̃′ (respectively ‡̃′) for † (respectively ‡) with respect
to the parameters (t̃−1, q−1).
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Definition 6.10. (i) We call the algebra isomorphism Φ = Φt,q = †̃′ ◦ ε : H → H̃
the duality isomorphism of H.
(ii) We call the anti-algebra isomorphism Ψ = Ψt,q = ‡̃′ ◦ ε : H → H̃ the duality
anti-isomorphism of H.

Observe that Φ (respectively Ψ) is uniquely characterized as the (anti-)algebra

homomorphismH → H̃ which maps U0 to T̃0, Ti to T̃i and Yi to z̃
−1
i for i = 1, . . . , n,

where we denote T̃i, z̃i etc. for the generators Ti, zi etc. in the double affine Hecke

algebra H̃ = H(t̃| q) with respect to dual parameters.

Corollary 6.11. Ψ maps zi to Ỹ
−1
i for i = 1, . . . , n. In particular, the inverse of

the duality anti-isomorphism Ψ = Ψt,q is given by Ψ̃ := Ψt̃,q.

Proof. We compute (Y λ)‡ (λ ∈ Λ0), i.e. the image of the Y -operator Y λ ∈ H under
the anti-isomorphism ‡. We first assume that λ ∈ Λ+0 . Let τ(λ) = si1si2 · · · sir be
a reduced expression of τ(λ) in W. Then by the definition of ‡, we see that

(Y λ)‡ = (Tτ(λ))
‡ = (Ti1Ti2 · · ·Tir )‡ = (T ′i1T

′
i2 · · ·T

′
ir )
−1 = Y ′−λ.

It follows that (Y λ)‡ = Y ′−λ for all λ ∈ Λ0, hence Y
‡
i = Y ′i

−1 for i = 1, . . . , n. So

Ψ = ‡̃′ ◦ ε maps zi to Ỹ
−1
i for i = 1, . . . , n.

It follows now that the algebra homomorphism Ψ̃ ◦ Ψ acts as the identity on

the algebraic generators zi, Ti and Yi (i = 1, . . . , n) of H, hence Ψ̃ ◦ Ψ = IdH.

In a similar fashion, we see that Ψ ◦ Ψ̃ = IdH̃. This completes the proof of the
corollary. ¤

6.3. Duality of the non-symmetric Koornwinder polynomials. We define

evaluation mappings Ev : H → C and Ẽv : H̃ → C by

Ev(X) =
(
X(1)

)
(x−10 ), Ẽv(X̃) =

(
X̃(1)

)
(γ−10 )

for X ∈ H and X̃ ∈ H̃, where 1 ∈ A is the Laurent polynomial identically equal
to one. Observe that the renormalized non-symmetric Koornwinder polynomial
E(γλ; ·) (see definition 3.10) is exactly the constant multiple of the monic Koorn-
winder polynomial Pλ for which the associated multiplication operator E(γλ; z) in
H is mapped to one under the evaluation map Ev.

The evaluation mappings Ev and Ẽv are compatible with respect to the duality

anti-isomorphism Ψ : H → H̃ in the following sense.

Lemma 6.12. For all X ∈ H, we have Ẽv
(
Ψ(X)

)
= Ev(X).

Proof. By linearity, it suffices to prove the equality for X = zλTwY
µ, where λ, µ ∈

Λ0 and w ∈W . Observe that

Ψ(X) = z̃−µT̃w−1 Ỹ −λ.

Now Y µ(1) = γµ0 1 and Ỹ −λ(1) = x−λ
0 1 since 1 ∈ A is the non-symmetric Koorn-

winder polynomial of degree zero, so that

Ev(X) = x−λ
0 γµ0 Ev(Tw), Ẽv(Ψ(X)) = γµ0 x

−λ
0 Ẽv(T̃w−1).

Now Ti(1) = ti 1 and T̃i(1) = t̃i 1 = ti 1 for i = 1, . . . , n by the definition of
Noumi’s difference-reflection operators Ti (see (3.5)), hence Ev(Tw) = tw, where
tw = ti1ti2 · · · tir if w = si1si2 · · · sir is a reduced expression of w ∈ W . Similarly,
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Ẽv(T̃w−1) = t̃w−1 = tw−1 = tw for all w ∈ W . This now immediately yields the

desired identity Ẽv
(
Ψ(X)

)
= Ev(X). ¤

We define now two pairings B : H× H̃ → C and B̃ : H̃ ×H → C by B(X, X̃) =

Ev
(
Ψ̃(X̃)X

)
and B̃(X̃,X) = Ẽv

(
Ψ(X)X̃

)
for X ∈ H and X̃ ∈ H̃. Then lemma

6.12 shows that

B(X, X̃) = B̃(X̃,X), X ∈ H, X̃ ∈ H̃. (6.4)

In the following lemma we collect some elementary identities for these bilinear
forms.

Lemma 6.13. Let p ∈ A. Let X,X1, X2 ∈ H and X̃, X̃1, X̃2 ∈ H̃.
(i) B

(
X1X2, X̃

)
= B

(
X2,Ψ(X1)X̃

)
and B(X, X̃1X̃2) = B(Ψ̃(X̃1)X, X̃2).

(ii) B
(
XTi, X̃

)
= tiB

(
X, X̃) for i = 0, . . . , n.

(iii) B
(
(X(p))(z), X̃

)
= B(Xp(z), X̃) and B

(
X, (X̃(p))(z̃)

)
= B

(
X, X̃p(z̃)

)
,

where (X(p))(z) is the multiplication operator in H corresponding to the Laurent
polynomial X(p) ∈ A, and Xp(z) is the product of the elements X and p(z) in H.

Proof. (i) Recall that Ψ is an anti-algebra isomorphism with inverse Ψ̃. Hence

B(X1X2, X̃) = Ev(Ψ̃(X̃)X1X2) = Ev(Ψ̃(Ψ(X1)X̃)X2) = B(X2,Ψ(X1)X̃).

Similarly one proves the second identity.
(ii) By the definition of Noumi’s difference-reflection operators Ti ∈ H (see

(3.5)) we have Ti(1) = ti 1 for i = 0, . . . , n, where 1 ∈ A is the Laurent polynomial
identically equal to one. Hence

B(XTi, X̃) =
(
Ψ̃(X̃)XTi(1)

)
(x−10 ) = ti

(
Ψ̃(X̃)X(1)

)
(x−10 ) = tiB(X, X̃),

as desired.
The first equality of (iii) is a direct consequence of the identity (X(p))(z)(1) =

X(p) = (X p(z))(1) in A. The second equality of (iii) follows from the first by
applying (6.4). ¤

By lemma 6.13 we have for all p ∈ A and all λ ∈ Λ0,

B̃
(
p(z̃), E(γλ; z)

)
= B̃

(
1, (p(Y −1)E(γλ; ·))(z)

)

= p(γ−1λ )B̃
(
1, E(γλ; z)

)
= p(γ−1λ )

(6.5)

where we used for the last equality that

B̃
(
1, E(γλ; z)

)
= B

(
E(γλ; z), 1

)
= E(γλ;x

−1
0 ) = 1

by (6.4). In a similar manner, one shows that

p(x−1µ ) = B
(
p(z), Ẽ(xµ; z̃)

)
, p ∈ A, µ ∈ Λ0. (6.6)

Taking p = Ẽ(xµ; ·) in (6.5) and p = E(γλ; ·) in (6.6) and using the duality (6.4)
for the pairing, we arrive at

E(γλ;x
−1
µ ) = B

(
E(γλ; z), Ẽ(xµ; z̃)

)

= B̃
(
Ẽ(xµ; z̃), E(γλ; z)

)
= Ẽ(xµ; γ

−1
λ ), ∀λ, µ ∈ Λ0

(6.7)

which is the duality of the renormalized non-symmetric Koornwinder polynomials,
see theorem 3.11.
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6.4. Spectral difference-reflection operators. In this subsection we apply the
duality of the non-symmetric Koornwinder polynomials to rewrite the action of
the difference-reflection operators U0 and Ti (i = 1, . . . , n) on the non-symme-
tric Koornwinder polynomials E(γλ; ·) in terms of operators acting on the spectral
parameter λ ∈ Λ0. For this, we need to extend the W -action on Λ0 to an action of
the affine Weyl group W on Λ0 in the following way.

Lemma 6.14. Define s0 · λ = (−1 − λ1, λ2, . . . , λn) for λ = (λ1, . . . , λn) ∈ Λ0.
This uniquely extends to an action of W on Λ0 (denoted by w · λ for w ∈ W and

λ ∈ Λ0) such that the restriction to W gives the action of W ' Sn n (±1)n on Λ0
by permutations and sign changes of the basis elements εi (i = 1, . . . , n).

Proof. In terms of the simple generators si (i = 0, . . . , n), the action of W on Λ0
reads as

s0 · λ = (−1− λ1, λ2, . . . , λn),

si · λ = siλ = (λ1, . . . λi−1, λi+1, λi, λi+2, . . . , λn),

sn · λ = snλ = (λ1, . . . , λn−1,−λn)
for i = 1, . . . , n − 1 and λ ∈ Λ0. It is clear that these operators on Λ0 satisfy

s2i = 1 for i = 0, . . . , n and that they satisfy the C̃n-braid relations. Hence these
operations on Λ0 induce an unique action of W on Λ0. ¤

We call the action defined in lemma 6.14 the dot-action of W on Λ0. The
following property of the dot-action is very useful.

Lemma 6.15. For λ ∈ Λ0 and p ∈ A, we have (s0p)(γ−1λ ) = p(γ−1s0·λ
).

Proof. By the definition of the action ofW on A (see lemma 3.1), and the definition
of the diagonal terms γλ (see (3.11)), we have for all µ, λ ∈ Λ0 that

(
s0(x

µ)
)
(γ−1λ ) = (t0tn)

−(ρl(λ),sε1µ) t−(ρm(λ),sε1µ) qµ1−(λ,sε1µ),

where µ1 =
(
µ, ε1

)
. On the other hand, by the definition of the dot-action (see

lemma 6.14),

(γ−1s0·λ
)µ = (t0tn)

−(ρl(s0·λ),µ) t−(ρm(s0·λ),µ) qµ1−(λ,sε1µ).

Comparing the two outcomes, and using the fact that ρm(ν) = wνρm for all ν ∈ Λ0
and similarly for ρl (see (3.24) and §5.2 for the notations), we see that the lemma
will be a direct consequence of the identity

ws0·λ = sε1wλ, λ ∈ Λ0 (6.8)

in the finite Weyl group W . We give a proof of (6.8) using an explicit description
of w−1λ in terms of its action on λ ∈ Λ0. So fix λ = (λ1, . . . , λn) ∈ Λ0, where

λi =
(
λ, εi

)
. For j ∈ {1, . . . , n− 1} we set σj = sn−1sn−2 · · · sj , and we set σn = e

the identity element in W . Let j ∈ {1, . . . , n} be the largest such that λj < 0. If
j ≤ n− 1, then

snσjλ > σjλ > sn−2sn−3 · · · sjλ > · · · > sjλ > λ

with respect to the dominance order ≤ on Λ0, and if j = n, then snλ > λ. Now
recall that siwλ = wsiλ for i ∈ {1, . . . , n} and λ ∈ Λ0 such that siλ 6= λ by the
proof of lemma 5.6, hence snσjwλ = wsnσjλ. On the other hand, snσjλ has now
one negative coefficient less than the original element λ. So we can iterate this
process to make all coefficients of λ positive.
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To be precise, let 1 ≤ j1 < j2 < · · · < jr ≤ n be the indices j for which the
coefficient λj is strictly negative. Set µ = σj1σj2 · · ·σjrλ ∈ Λ0. Then µ is obtained
from λ by moving the strictly negative coordinates to the far right, interchanging
their order, and then taking the absolute values of these coefficients (i.e. the last r
terms of µ are given by µ = (· · · , |λjr |, . . . , |λj2 |, |λj1 |)). Furthermore,

wµ = snσj1snσj2 · · · snσjrwλ = vλuλwλ

where uλ = sεj1 sεj2 · · · sεjr ∈ (±1)n ⊂ W and vλ = σj1σj2 · · ·σjr ∈ Sn ⊂ W .

The new element µ does not have to be in Λ+0 yet. If µ 6∈ Λ+0 , then there exists an
i ∈ {1, . . . , n−1} such that µi ¯ µi+1, so that siµ < µ with respect to the dominance
order and wsiµ = siwµ. Continuing this way, we conclude that wλ = uλπ

−1
λ , where

uλ = u−1λ ∈ (±1)n ⊂W with coefficient −1 iff the corresponding coefficient of λ is
strictly negative, and πλ ∈ Sn ⊂ W defined as the composition πλ = νλvλ with vλ
as before, and νλ the permutation which turns µ = vλuλλ into a partition in such
a way that the order between equal coefficients of µ are preserved.

Let us now return to the proof of (6.8). We first observe that we may assume
λ1 =

(
λ, ε1

)
≥ 0 without loss of generality. Indeed, if (6.8) is true for such λ, and

µ ∈ Λ0 satisfies µ1 < 0, then s0 · µ satisfies (s0 · µ)1 ≥ 0. Thus by the assumption
wµ = ws0·s0·µ = sε1ws0·µ, i.e. ws0·µ = sε1wµ.

So let λ ∈ Λ0 such that λ1 ≥ 0, and write |λ| = (|λ1|, |λ2|, . . . , |λn|) = uλλ ∈ Λ0.
Let i ∈ {1, . . . , n} such that π−1λ (i) = 1. Since λ1 ≥ 0, we have by the explicit

combinatorial description of wλ = uλπ
−1
λ that

λ+ = πλ|λ| =
(
|λπ−1

λ
(1)|, . . . , |λπ−1

λ
(n)|
)

with

|λπ−1
λ
(i−1)| ° |λπ−1

λ
(i)| = λ1, if i ≥ 2. (6.9)

Combined with s0 · λ = (−1− λ1, λ2, . . . , λn), we see that

(s0 · λ)+ = πs0·λus0·λ(s0 · λ)
=
(
|λπ−1

λ
(1)|, . . . , |λπ−1

λ
(i−1)|, |λπ−1

λ
(i)|+ 1, |λπ−1

λ
(i+1)|, . . . , |λπ−1

λ
(n)|
)
.

So we see that ws0·λ = us0·λπ
−1
s0·λ

with us0·λ = sε1uλ, and by the combinatorial

rule for πs0·λ ∈ Sn and (6.9), πs0·λ = πλ. Hence (6.8) is verified for λ1 ≥ 0, which
completes the proof of the lemma.

¤

We are now in the position to rewrite the action of U0 and Ti (i = 1, . . . , n)
on the renormalized Koornwinder polynomials E(γ; ·) in terms of linear operators
acting on the spectral parameter γ ∈ Spec(Y ) = {γλ |λ ∈ Λ0}. We define an action
of W on Spec(Y ) by wγλ = γw·λ (λ ∈ Λ0, w ∈ W).

Proposition 6.16. (i) For γ ∈ Spec(Y ) we have
(
U0E(γ; ·)

)
(x) = t̃0E(γ;x) + t̃−10 ca0

(γ−1; t̃; q)
(
E(s0γ;x)− E(γ;x)

)
.

(ii) For i = 1, . . . , n and γ ∈ Spec(Y ) we have
(
TiE(γ; ·)

)
(x) = t̃iE(γ;x) + t̃−1i cai(γ

−1; t̃; q)
(
E(siγ;x)− E(γ;x)

)
.
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Proof. By (6.6) and lemma 6.13 we have

B
(
E(γλ; z), T̃i Ẽ(xµ; z̃)

)
=

{(
U0E(γλ; ·)

)
(x−1µ ) if i = 0(

TiE(γλ; ·)
)
(x−1µ ) if i = 1, . . . , n

for all λ, µ ∈ Λ0. So it suffices to prove that

B
(
E(γλ; z), T̃i Ẽ(xµ; z̃)

)
= t̃iE(γλ;x

−1
µ )

+ t̃−1i cai(γ
−1
λ ; t̃; q)

(
E(γsi·λ;x

−1
µ )−E(γλ;x

−1
µ )
) (6.10)

for all λ, µ ∈ Λ0 and all i = 0, . . . , n.
By lemma 6.13(iii), (6.4) and (6.5) we have

B
(
E(γλ; z), T̃iẼ(xµ; z̃)

)
= B

(
E(γλ; z),

(
T̃iẼ(xµ; ·)

)
(z̃)
)

=
(
T̃iẼ(xµ; ·)

)
(γ−1λ ).

(6.11)

Now we plug in the explicit expression for Noumi’s difference-reflection operator

T̃i. We have to consider two cases.
If si · λ = λ (hence in particular i 6= 0), then we claim that γaiλ = γai0 (= t2 if

i < n and = t20t
2
n if i = n), so that cai(γ

−1
λ ; t̃| q) = 0. If the claim is valid, then

substitution of the explicit expression for Noumi’s difference-reflection operator T̃i
in (6.11) shows that

B
(
E(γλ; z), T̃iẼ(xµ; z̃)

)
= t̃iẼ

(
xµ; γ

−1
λ

)
= t̃iE(γλ;x

−1
µ )

by (6.7), which is in accordance with (6.10).
We prove the claim for i ∈ {1, . . . , n − 1} with si · λ = siλ = λ, the case

i = n is proved in a similar manner. By the explicit expression (3.11) for γλ,
it then suffices to show that

(
ρm(λ), ai

)
= 2 and

(
ρl(λ), ai

)
= 0. But, since

siλ = λ, si
(
Σ+m \ {ai}

)
= Σ+m \ {ai} and si(Σ

+
l ) = Σ+l , we have

(
ρl(λ), ai

)
=

1
2

∑
α∈Σ+

l
sgn((λ, α))(α, ai) and

(
ρm(λ), ai

)
=
∑

α∈Σ+
m

sgn((λ, α))(α, ai) = 2 +
∑

α∈Σ+
m\{ai}

sgn((λ, α))(α, ai).

The claim then follows from the fact that for I = Σ+l and I = Σ+m \ {ai},
∑

α∈I

sgn((λ, α))(α, ai) =
∑

α∈I

sgn((λ, siα))(siα, ai)

=
∑

α∈I

sgn((siλ, α))(α, siai)

= −
∑

α∈I

sgn((λ, α))(α, ai) = 0.

If si · λ 6= λ, then (sip)(γ
−1
λ ) = p(γ−1si·λ

) for all p ∈ A by lemma 5.6 and lemma
6.15. Hence substitution of the explicit expression for Noumi’s difference-reflection

operator T̃i in (6.11) and applying the duality (6.7) then immediately proves (6.10).
This completes the proof of the proposition. ¤
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7. Bi-orthogonality relations and diagonal terms

7.1. Bi-orthogonality. From now on, we assume that q has modulus < 1 in order
to ensure convergence of the weight function. Furthermore, we assume that for
the reparametrization of the multiplicity function t in terms of the parameters
{a, b, c, d} and t (see (3.18)), we have that the moduli of a, b, c, d and t are also < 1.
We use freely the notations as introduced in §3.6 and §3.7.

We start with the observation that the bilinear form 〈·, ·〉 = 〈·, ·〉t,q is non-
degenerate for generic parameter values.

Lemma 7.1. The bilinear form 〈·, ·〉 is non-degenerate in both factors. In other
words, 〈p1, p2〉 = 0 for all p1 ∈ A implies p2 = 0, and similarly for the other factor.

Proof. By analytic continuation, it suffices to show that 〈·, ·〉 is non-degenerate
when a, b, c, d, q and t are real. But then the weight function ∆(·) is of the form
∆(x) = C(x)∆+(x), with C ∈ Q and ∆+(x) a positive weight function on the torus
Tn. Let p ∈ A so that p(x)C(x) is positive for x ∈ Tn (which can be done since
C ∈ Q). For 0 6= p2(x) =

∑
λ cλx

λ ∈ A, we now set

p1(x) = p(x)
∑

λ

cλx
λ ∈ A,

then it follows from the definition of 〈·, ·〉 that

〈p1, p2〉 =
1

(2πi)n

∫∫

x∈Tn
|p2(x−1)|2p(x)C(x)∆+(x)

dx

x
> 0,

which shows the non-degeneracy in the second factor of 〈·, ·〉. The non-degeneracy
in the first factor is proved in a similar manner. ¤

We now show that the anti-algebra isomorphism ‡ of H (see lemma 6.9) cor-
responds to taking the adjoint with respect to the non-degenerate bilinear form
〈·, ·〉.
Proposition 7.2. For X ∈ H we have

〈X(p1), p2〉 = 〈p1, X‡(p2)〉, p1, p2 ∈ A. (7.1)

Proof. It suffices to prove (7.1) for a set of algebraic generators for H, since ‡ is
an anti-algebra homomorphism. Indeed, if the proposition is correct for Xi ∈ H
(i = 1, 2), then for all p1, p2 ∈ A,

〈(X1X2)p1, p2〉 = 〈X2p1, X‡1p2〉
= 〈p1, X‡2X‡1p2〉 = 〈p1, (X1X2)‡p2〉,

so (7.1) is also valid for X1X2 ∈ H. We will now verify (7.1) for the algebraic
generators p(z) (p ∈ A) and Ti (i = 0, . . . , n) of H.

For X = p(z) (p ∈ A) we have

〈p(z)p1, p2〉 =
1

(2πi)n

∫∫

Tn
p1(x)p(x)p2(x

−1)∆(x)
dx

x

= 〈p1, p(z′−1)p2〉 = 〈p1, p(z)‡ p2〉.
So it remains to prove (7.1) for X = Ti (i = 0, . . . , n). Let p1, p2 ∈ A. We

write σ = −1 ∈ W for the Weyl group element which maps v to −v for all v ∈ V .
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Observe that (σ p)(x) = p(x−1) for all p ∈ A. It follows by direct computations
using the explicit expression for Noumi’s difference-reflection operator Ti that

(
Tip1

)
(x)
(
σp2
)
(x)− p1(x)

(
σ
(
T ′i
−1p2

))
(x) = t−1i hi(x)cai(x; t; q) (7.2)

for i = 0, . . . , n, with

hi(x) =
(
sip1

)
(x)
(
σp2
)
(x)− p1(x)

(
si(σp2)

)
(x)

and with the action of si as defined in lemma 3.1. Now observe that hi is si-
alternating, i.e. sihi = −hi for i = 0, . . . , n. On the other hand,

cai(x)∆(x) =
∏

f∈R+\{ai}

1

cf (x)
(7.3)

is invariant under the action of si for i = 0, . . . , n, where the action of si is extended
from A to (suitably nice) functions in the n variables x = (x1, . . . , xn) via the
formulas (3.17). The invariance of the function (7.3) under the action of si is an
immediate consequence of the fact that si permutes the roots R+ \ {ai}. Hence
〈Tip1, p2〉 − 〈p1, T ′i−1p2〉 can be rewritten as an integral over

(
Tn, dxx

)
with si-

alternating integrand for all i ∈ {0, . . . , n}.
Now 〈Tip1, p2〉 − 〈p1, T ′i−1p2〉 = 0 for i = 1, . . . , n follows from the fact that the

measure
(
Tn, dxx

)
is W -invariant:

∫
Tn g(x)dx/x =

∫
Tn(wg)(x)dx/x for all w ∈ W ,

and for sufficiently nice functions g.
The case i = 0 is more subtle. The behaviour of the measure

(
Tn, dxx

)
under the

action of s0 is given by
∫∫

x∈Tn
(s0h)(x)

dx

x
=

∫

y1∈qT

∫∫

y∈Tn−1

h(y1, y)
dy1
y1

dy

y
,

which implies that

〈T0p1, p2〉 − 〈p1, T ′0−1p2〉 =

=
1

2(2πi)n

∫

y1∈T−qT

∫∫

y∈Tn−1

t−10 h0(y1, y)ca0
(y1, y)∆(y1, y)

dy1
y1

dy

y
.

(7.4)

For fixed y ∈ Tn−1, the integrand in the right-hand side of (7.4) depends ana-
lytically on y1 ∈ {c ∈ C | q ≤ |c| ≤ 1}. Indeed, by the expression of ∆+(x) in
terms of q-shifted factorials (see lemma 3.12), we see that the y1-dependent factor
of ca0

(y1, y)∆(y1, y) is given by
(
y21 , q

2y−21 ; q
)
∞(

ay1, by1, cy1, dy1, qay
−1
1 , qby−11 , qcy−11 , qdy−11 ; q

)
∞

.

n∏

j=2

(
y1yj , y1y

−1
j , qy−11 yj , qy

−1
1 y−1j ; q

)
∞(

t2y1yj , t2y1y
−1
j , qt2y−11 yj , qt2y

−1
1 y−1j ; q

)
∞

,

which has the desired analytic behaviour due to the conditions on the parame-
ters a, b, c, d, q and t. Thus by Cauchy’s theorem we conclude that 〈T0p1, p2〉 −
〈p1, T ′0−1p2〉 = 0. This completes the proof of the proposition. ¤

Recall that E′(γ−1λ ; ·) (λ ∈ Λ0) is the renormalized non-symmetric Koornwinder
polynomial of degree λ with respect to inverse parameters (t−1, q−1). Fix now
λ, µ ∈ Λ0 such that λ 6= µ, hence γλ 6= γµ, see §5.2. So there exists a Laurent
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polynomial p ∈ A with p(γλ) 6= p(γµ). Combined with proposition 7.2 and p(Y )‡ =
p(Y ′−1) (see the proof of corollary 6.11), we obtain

p(γλ) 〈E(γλ; ·), E′(γ−1µ ; ·)〉 = 〈p(Y )E(γλ; ·), E′(γ−1µ ; ·)〉
= 〈E(γλ; ·), p(Y ′−1)E′(γ−1µ ; ·)〉
= p(γµ) 〈E(γλ; ·), E′(γ−1µ ; ·)〉.

Since p(γλ) 6= p(γµ), we conclude that

〈E(γλ; ·), E′(γ−1µ ; ·)〉 = 0.

This proves the bi-orthogonality relations for the non-symmetric Koornwinder poly-
nomials with respect to 〈·, ·〉, see theorem 3.14.

7.2. Diagonal terms. The main objective of this subsection is to evaluate the
diagonal terms 〈E(γλ; ·), E′(γ−1λ ; ·)〉 (λ ∈ Λ0) in terms of residues of the weight
function ∆(·), see theorem 3.16. Observe that by lemma 7.1 and theorem 3.14, we
know that the diagonal terms are non-zero for generic values of the parameters. We
again use freely the notation of §3.6 and §3.7.

Let

F = {g : Spec(Y ′)→ C |#supp(g) <∞},
where Spec(Y ′) = {γ−1λ |λ ∈ Λ0} is the spectrum of the Y ′-operators. Let F =
Ft,q : A → F be the linear map defined by

F(p)(γ) = 〈p,E′(γ; ·)〉, p ∈ A, γ ∈ Spec(Y ′). (7.5)

We call F the non-symmetric Koornwinder transform. Observe that F is injective
since 〈·, ·〉 is non-degenerate, and that F is surjective by theorem 3.14.

Remark 7.3. Recall that for t = 1 the multiplicity function identically equal to
one, E(γλ;x;1| q) is equal to the monomial xλ for λ ∈ Λ0, and the weight function
∆(x;1| q) is identically equal to one. Hence F1,q relates to the classical Fourier
transform on the torus Tn.

In the next proposition we determine the intertwining properties of F with re-
spect to the action of the double affine Hecke algebra H on A. Recall the action of
W on Spec(Y ′), defined at the end of §6.4: wγ−1λ = γ−1w·λ for λ ∈ Λ0 and w ∈ W.
This induces an action of W on F by

(wg)(γ−1λ ) = g(γ−1w−1·λ), λ ∈ Λ0, w ∈ W, g ∈ F.

Proposition 7.4. The maps

(T̃ig)(γ) = t̃ig(γ) + t̃−1i cai(γ; t̃; q)((sig)
(
γ)− g(γ)

)
, i ∈ {0, . . . , n},

(
p(z̃)g

)
(γ) = p(γ)g(γ), p ∈ A

(7.6)

where g ∈ F and γ ∈ Spec(Y ′), uniquely extend to an action of the double affine
Hecke algebra H̃ = H(t̃| q) on F . Furthermore,

F(X(p)) = Φ(X)F(p), X ∈ H, p ∈ A, (7.7)

where Φ is the duality isomorphism.
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Proof. We first prove the intertwining property (7.7) for the algebraic generators
U0, Ti and p(Y ) (i = 1, . . . , n and p ∈ A) of H. Now for any p, p1 ∈ A and γ ∈
Spec(Y ′) we have by the definition of the non-symmetric Koornwinder polynomial
(see theorem 3.7) and by proposition 7.2,

F(p(Y )p1)(γ) = 〈p(Y )p1, E
′(γ; ·)〉 = 〈p1, p(Y ′−1)E′(γ; ·)〉 = p(γ−1)F(p1)(γ)

since p(Y )‡ = p(Y ′−1) for p ∈ A by the proof of corollary 6.11. Hence

F(p(Y )p1) = p(z̃−1)(F(p1)) = Φ(p(Y ))F(p1),

which proves (7.7) for X = p(Y ) (p ∈ A).
For X = U0, we observe that U ‡0 = U ′0

−1 = U ′0 + t̃0 − t̃−10 ∈ H′. Hence for p ∈ A
and γ ∈ Spec(Y ′), we derive from proposition 6.16 and proposition 7.2 that

F(U0 p)(γ) = 〈U0 p,E′(γ; ·)〉 = 〈p, U ′0−1E′(γ; ·)〉
= t̃0〈p,E′(γ; ·)〉+ t̃0ca0

(γ−1; t̃−1; q−1)
(
〈p,E′(s0γ; ·)〉 − 〈p,E′(γ; ·)〉

)

= t̃0F(p)(γ) + t̃−10 ca0
(γ; t̃; q)

(
F(p)(s0γ)−F(p)(γ)

)

=
(
T̃0F(p)

)
(γ),

where we used that cf (γ
−1; t−1; q−1) = t−2f cf (γ; t; q) for f ∈ R in the fourth

equality. Since Φ(U0) = T̃0, we see that (7.7) is valid for X = U0. The case X = Ti
(i = 1, . . . , n) of (7.7) is proved in exactly the same manner as for X = U0. We
leave the verification to the reader.

Using these intertwining properties, we can immediately conclude that the for-

mulas (7.6) uniquely extend to an action of H̃ on F and that (7.7) holds for all
X ∈ H in view of the bijectivity of the non-symmetric Koornwinder transform F
and the fact that Φ : H → H̃ is an algebra isomorphism. ¤

Next we determine the inverse of the non-symmetric Koornwinder transform F .
We let G = Gt,q : F → A be the linear endomorphism defined by

(Gg)(x) =
∑

λ∈Λ0

g(γ−1λ )E(γλ;x; t; q)w̃(γ
−1
λ ), g ∈ F, (7.8)

where the non-zero discrete weight w̃(γ−1λ ) = w(γ−1λ ; t̃; q) is defined by (3.27) and
(3.30).

Proposition 7.5. We have

G(X̃g) = Φ−1(X̃)G(g), X̃ ∈ H̃, g ∈ F.

Proof. It suffices to check the intertwining property for X̃ = p(z̃) (p ∈ A) and

X̃ = T̃i (i = 0, . . . , n), compare with the proof of proposition 7.4.

For X̃ = p(z̃) (p ∈ A), we have for g ∈ F ,

G(p(z̃) g)(x) =
∑

λ∈Λ0

p(γ−1λ )g(γ−1λ )E(γλ;x)w̃(γ
−1
λ )

=
∑

λ∈Λ0

g(γ−1λ )
(
p(Y −1)E(γλ; ·)

)
(x)w̃(γ−1λ )

=
(
p(Y −1)G(g)

)
(x) =

(
Φ−1(p(z̃))G(g)

)
(x).

So it remains to check the intertwining property for X̃ = T̃i (i = 0, . . . , n). We
use the short-hand notation c̃f (γ) = cf (γ; t̃; q) for all f ∈ R. Let g ∈ F and
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i ∈ {0, . . . , n}. Since Φ−1(T̃0) = U0 and Φ−1(T̃i) = Ti for i = 1, . . . , n, we have by
proposition 6.16,

(
Φ−1(T̃i)

(
Gg
))
(x) =

=
∑

λ∈Λ0

g(γ−1λ )
(
t̃iE(γλ;x) + t̃−1i c̃ai(γ

−1
λ )
(
E(γsi·λ;x)− E(γλ;x)

))
w̃(γ−1λ ).

Combined with the definition of the action of H̃ on F , see proposition 7.4, we obtain

G
(
T̃ig
)
− Φ−1(T̃i)

(
Gg
)
= t̃−1i

∑

λ∈Λ0

hi(γλ; ·)c̃ai(γ−1λ )w̃(γ−1λ )

with hi(γλ; ·) ∈ A given by

hi(γλ;x) = g(γ−1si·λ
)E(γλ;x)− g(γ−1λ )E(γsi·λ;x).

Since hi(γsi·λ;x) = −hi(γλ;x) for i = 0, . . . , n and λ ∈ Λ0, it thus suffices to prove
that

c̃ai(γ
−1
λ )w̃(γ−1λ ) = w̃+(γ

−1
λ+ )

∏

α∈Σ−∪{ai}

c̃α(γ
−1
λ ) (7.9)

is invariant under replacement of λ ∈ Λ0 by si · λ for all i ∈ {0, . . . , n} and all
λ ∈ Λ0. For i ∈ {1, . . . , n} this is immediate by lemma 5.6.

As in the proof of proposition 7.2, the proof for i = 0 is more subtle. We

begin by rewriting w̃(γ−1λ ) as a (kind of) multiple residue of ∆̃(x)dxx = ∆(x; t̃; q)dxx
at x = γ−1λ . This can be done using the W -invariance of the weight function

∆̃+(·) = ∆+(·; t̃; q), together with the combinatorial structure of the Weyl group
elements wλ ∈W , see the proof of lemma 6.15. The result is as follows.

Write wλ = uλvλ with vλ ∈ Sn and uλ ∈ (±1)n with respect to the natural
identification W ' Sn n (±1)n, and let nλ = #{i ∈ {1, . . . , n} |λi < 0}. By the
precise combinatorial description of wλ, see the proof of lemma 6.15, we have that
nλ is also equal to the number of −1 components of uλ ∈ (±1)n. Now we use the

W -invariance of ∆̃+(·) and the fact that

Res
y=y0

(
g(y)

y

)
= − Res

y=y−1
0

(
g(y)

y

)

for a one variable function g(y) having a simple pole at y = y0 and satisfying
g(y) = g(y−1). Then we obtain from the original definition (3.30) of w̃(γ−1λ ) (λ ∈
Λ0), together with lemma 5.6, that

w̃
(
γ−1λ

)
= Res

x=γ−1
λ

(
∆̃(x)

x1 · · ·xn

)
(7.10)

for all λ ∈ Λ0, where the multiple residue at x = γ−1λ is defined by

Res
x=γ−1

λ

= (−1)nλ Res
xvλ(1)=γ

−εvλ(1)

λ

(
Res

xvλ(2)=γ
−εvλ(2)

λ

(
· · · Res

xvλ(n)=γ
−εvλ(n)

λ

(
·
)
· · ·
))
.

In particular, we obtain

c̃a0
(γ−1λ )w̃(γ−1λ ) = Res

x=γ−1
λ

(
c̃a0

(x)∆̃(x)

x1 · · ·xn

)
(7.11)
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for all λ ∈ Λ0. Now we consider (7.11) with λ replaced by s0 · λ. We first consider
the changes in the multiple residue. By (6.8), we have ws0·λ = sε1wλ for all λ ∈ Λ,
i.e. ns0·λ = nλ ± 1 and vs0·λ = vλ. Furthermore,

(γ−1s0·λ
)εi =

{
qγε1λ if i = 1,

γ−εi
λ if i = 2, . . . , n

by lemma 6.15. We conclude that if we replace the residue at x1 = γ−ε1
λ by the

residue at x1 = qγε1λ in the definition of the multiple residue at x = γ−1λ , then we

obtain minus the multiple residue at x = γ−1s0·λ
. On the other hand, we know by the

proof of proposition 7.2 that c̃a0
(x)∆̃(x) is invariant under the action of s0. Hence

the invariance of (7.11) under replacement of λ by s0 · λ follows from the simple
observation that

Res
y=y0

(
g(y)

y

)
= − Res

y=qy−1
0

(
g(y)

y

)

when g(y) is a function depending on a single variable y, having a simple pole at
y = y0, and satisfying the invariance condition g(qy−1) = g(y). ¤

In the following theorem we combine proposition 7.4 and proposition 7.5 to show
that G is, up to a constant, the inverse of the Koornwinder transform F ..

Theorem 7.6. We have G ◦ F = c IdA and F ◦ G = c IdF with c = ct,q =

w(γ−10 ; t̃; q) 〈1, 1〉t,q.
Proof. By proposition 7.4 and proposition 7.5 we have

G(F(p)) = G(F(p(z)1)) = p(z)G(F(1)), ∀p ∈ A, (7.12)

where 1 ∈ A is the Laurent polynomial identically equal to one. Furthermore, it
follows from theorem 3.14 that

G
(
F(E(γ; ·))

)
= 〈E(γ; ·), E′(γ−1; ·)〉t,q w(γ−1; t̃; q)E(γ; ·) (7.13)

for γ ∈ Spec(Y ). Formula (7.13) reduces to G(F(1)) = c 1 when γ = γ0, with
the constant c as given in the statement of the theorem. Combined with (7.12) it
follows that G◦F = c IdA. Since F is bijective, we then also have F ◦G = c IdF . ¤

Now we fix γ = γλ ∈ Spec(Y ), λ ∈ Λ0. Since G ◦ F = c IdA by the previous
theorem, we have G(F(E(γ; ·))) = cE(γ; ·). Comparing this outcome with the
right-hand side of (7.13), we obtain

〈E(γ; ·), E′(γ−1; ·)〉t,q w(γ−1; t̃; q) = ct,q = 〈1, 1〉t,q w(γ−10 ; t̃; q).

Hence we obtain the expressions for the diagonal terms 〈E(γλ; ·), E′(γ−1λ ; ·)〉 in

terms of multiple residue w̃(γ−1λ ) as stated in theorem 3.16.

8. Symmetric Koornwinder polynomials

8.1. Symmetric Koornwinder polynomials. Recall that AW ⊂ A is the sub-
algebra consisting of Laurent polynomials p ∈ A which areW -invariant (i.e. wp = p
for all w ∈W ), where the action is as given in lemma 3.1.

Similarly we write AW
Y for the sub-algebra of AY consisting of W -invariant el-

ements, where the action is given by w(Y λ) = Y wλ for w ∈ W and λ ∈ Λ0. A
linear basis of AW and AW

Y is given by the monomials mλ(x) =
∑

µ∈Wλ x
µ and

mλ(Y ) =
∑

µ∈Wλ Y
µ (λ ∈ Λ+0 ), respectively.
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Lemma 8.1. Let p ∈ A. Then p ∈ AW iff Tip = tip (i = 1, . . . , n).

Proof. Let p ∈ AW . By the explicit expression for Noumi’s difference-reflection
operator Ti, see (3.5), we have Tip = tip for all i = 1, . . . , n. On the other hand,
if p ∈ A satisfies Tip = tip for all i = 1, . . . , n, then again by (3.5), sip = p for
i = 1, . . . , n, hence p ∈ AW . ¤

It follows from lemma 8.1 and the commutation relation (6.2) that (T−1i −
t−1i )p(Y ) = p(Y )(T−1i −t−1i ) for i = 1, . . . , n and p ∈ AW , hence Noumi’s difference-
reflection operators Ti (i = 1, . . . , n) commute with any p(Y ) ∈ AW

Y . This leads to
the following lemma.

Lemma 8.2. The action of AW
Y on A preserves AW , i.e. p(Y )|AW ∈ EndC(AW ).

Proof. Fix p1 ∈ AW and let p(Y ) ∈ AW
Y . Then we have

Tip(Y ) p1 = p(Y )Ti p = tip(Y )p1, i = 1, . . . , n,

hence p(Y )p1 ∈ AW by lemma 8.1. ¤

LetQ[W] ⊂ EndC(Q) be the subalgebra generated byQ (acting as multiplication
operators) and by the automorphismsW (see lemma 3.1). Observe that H ⊂ Q[W],
and that

Q[W] =
⊕

w∈W

Qw =
⊕

w∈W,λ∈Λ0

Qτ(λ)w

as a Q-submodule of EndC(Q) by proposition 6.2. Furthermore, Q[τ(Λ0)] =⊕
λ∈Λ0

Q τ(λ) is the subalgebra of Q[W] consisting of q-difference operators with
coefficients in Q.

With D ∈ Q[W], say

D =
∑

w∈W

D(x,w)w, D(x,w) ∈ Q[τ(Λ0)],

we associate a q-difference operator by

Dsym =
∑

w∈W

D(x,w) ∈ Q[τ(Λ0)].

Observe that Df = Dsymf if f ∈ Q is W -invariant. Now lemma 5.2, proposition
5.5 and lemma 5.6 imply

p(Y )symmλ = p(γλ)mλ +
∑

µ∈Λ+:µ<λ

cλ,µmµ, p ∈ AW , λ ∈ Λ+0

for certain constants cλ,µ ∈ C. Hence p(Y )sym|AW = p(Y )|AW is a triangular
endomorphism of AW with respect to the basis of monomials mλ (λ ∈ Λ+0 ) and
with respect to the partial order ≤, with diagonal terms given by p(γλ) (λ ∈ Λ+0 ).
Since the W -orbits of the spectral points {γλ |λ ∈ Λ+0 } (where W = Sn n (±1)n
acts by permutations and inversions on γ ∈ (C \ {0})n) are pair-wise different for
generic parameters, we arrive at the following symmetric analogue of theorem 5.7.

Theorem 8.3. There exists a unique basis {P+λ }λ∈Λ+ of AW such that

– P+λ (x) = mλ(x) +
∑

µ∈Λ+:µ<λ cλ,µmµ(x) for certain constants cλ,µ,

– p(Y )sym P+λ = p(γλ)P
+
λ for all p(Y ) ∈ AW

Y ,

for all λ ∈ Λ+0 .
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Theorem 8.3 implies theorem 3.17. In particular, the polynomial P+λ (x) =

P+λ (x; t| q) defined in theorem 8.3 is the monic, symmetric Koornwinder polynomial

of degree λ ∈ Λ+0 as defined in definition 3.18.

8.2. The second order q-difference operator. In this subsection we show that
the q-difference operator

L =
(
mε1(Y )−mε1(γ0)

)
sym

∈ Q[τ(Λ0)] (8.1)

coincides with Koornwinder’s second order q-difference operator, see theorem 3.19.
We use the expression (5.3) for the Y -operator Yi as starting point for the compu-
tation of L, where R(f) = Tfsf (f ∈ R) is given by (5.1). Using (5.3) and the fact

that R(f)−1 = R(−f) + (t−1f − tf )sf , we see that (Y ±1i )sym can be written as

(Yi)sym = t1−i
(
R(εi − εi+1)R(εi − εi+2) · · · R(εi − εn)R(2εi)

×R(εi+εn) · · · R(εi + εi+1)R(εi + εi−1) · · · R(εi + ε1)R(2εi + δ)τ(εi)
)
sym

(8.2)

and

(Y −1i )sym = t1+i−2nt−1n

(
R(εi−1 − εi) · · · R(ε1 − εi)τ(−εi)R(2εi + δ)−1

)
sym

. (8.3)

Since R(f) ∈ Q ⊕Q sf ⊂ Q[W] for f ∈ R, and since the factor R(2εi + δ)τ(εi)
and τ(−εi)R(2εi + δ)−1in the expression (8.2) and (8.3) can be rewritten as

R(2εi + δ)τ(εi) = t0sεi + t−10 c2εi+δ(·)
(
τ(εi)− sεi

)
,

τ(−εi)R(2εi + δ)−1 = t−10 sεi + t−10 c−2εi−δ(·)
(
τ(−εi)− sεi

) (8.4)

since s2εi+δ = sεiτ(−εi) = τ(εi)sεi , it immediately follows that L is of the form

L = φ(x) +

n∑

j=1

(
φ+j (x)τ(εj) + φ−j (x)τ(−εj)

)
(8.5)

for (unique) coefficients φ, φ±j ∈ Q. Since L(1) = 0, where 1 ∈ A is the Laurent

polynomial identically equal to one, we have φ(x) = −
∑n

j=1(φ
+
j (x) + φ−j (x)), so

that

L =

n∑

j=1

(
φ+j (x)(τ(εj)− 1) + φ−j (x)(τ(−εj)− 1)

)
. (8.6)

We will reduce the computation of the coefficients φ±j to the computation of φ+1 ,
using the following easy lemma.

Lemma 8.4. The coefficients φ±j ∈ Q of a second order q-difference operator

L ∈ Q[τ(Λ0)] of the form (8.6) are uniquely determined from the action of L on
the sub-algebra AW of W -invariant Laurent polynomials.

Proof. Suppose L|AW = L′|AW with L′ of the form (8.6) with coefficients φ′ ±j ∈ Q.
We have to show that φ±j = φ′ ±j for j = 1, . . . , n. Dividing out the common

denominators, we may assume that φ±j , φ
′ ±
j ∈ A for j = 1, . . . , n.

We now take pk(x) = mkε1(x) ∈ AW with k ∈ Z+, then

(Lpk)(x) = (qk − 1)
n∑

j=1

(
xkj (φ

+
j (x)− q−kφ−j (x)) + x−k

j (φ−j (x)− q−kφ+j (x))
)
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and similarly for L′. Since q is generic (in particular, not a root of unity), L|AW =
L′|AW leads to

φ±j (x)− q−kφ∓j (x) = φ′ ±j (x)− q−kφ′ ∓j (x), k À 0

by comparison of powers of x±1j , and hence φ±j = φ′ ±j for j = 1, . . . , n, as desired.
¤

It follows from this lemma and lemma 8.2 that L isW -invariant, i.e. w◦L◦w−1 =
L in EndC(A) for all w ∈ W . By the W -invariance of L, and since {±εj}nj=1 is

exactly the W -orbit Wε1, the explicit expressions for φ±j will immediately follow

from the explicit expression for the coefficient φ+1 of L.
In order to evaluate φ+1 , we compute the τ(ε1)-contribution of (Y ±1i )sym ∈

Q[τ(Λ0)] for i = 1, . . . , n. By (8.2), (8.4) and the fact that R(f) ∈ Q ⊕ Q sf ,
the τ(ε1) contribution of (Yi)sym can only be non-zero when there exists an ordered
sub-word w ∈W of the word

wi := sεi−εi+1
· · · sεi−εnsεisεi+εn · · · sεi+εi+1

sεi+εi−1
· · · sεi+ε1 ∈W (8.7)

which maps εi to ε1. Similarly, by (8.3) and (8.4) we see that the τ(ε1) contribution
of (Y −1i )sym can only be non-zero when there exists an ordered sub-word v ∈W of
the word

vi := sεi−1−εi · · · sε2−εisε1−εi ∈W (8.8)

which maps −εi to ε1. The ordered sub-words which satisfy these properties are
easy to determine. The result is as follows.

Lemma 8.5. (i) For i ∈ {2, . . . , n}, there exists no ordered sub-word w of wi which

maps εi to ε1.
(ii) The unit element e ∈W is the only sub-word of w1 which maps ε1 to itself.
(iii) For i ∈ {1, . . . , n}, there exists no ordered sub-word v of vi which maps −εi

to ε1.

Proof. The proof is left to the reader. ¤

So for the τ(ε1) component of L, it suffices to pick up the τ(ε1) contribution of
(Y1)sym associated with the sub-word e ∈W of w1 in (8.2). This is given by

φ+1 (x) = t−1cε1−ε2(x)t
−1cε1−ε3(x) · · · t−1cε1−εn(x)t

−1
n c2ε1(x)

× t−1cε1+εn(x)t
−1cε1+εn−1

(x) · · · t−1cε1+ε2(x)t
−1
0 c2ε1+δ(x)

= (t0tn)
−1t2(1−n)c2ε1(x)c2ε1+δ(x)

n∏

i=2

cε1−εi(x)cε1+εi(x).

Now substitution of the expressions (3.19) for the cf ’s, and making use of the
W -invariance of L, we arrive at the explicit expression of L as given in theorem
3.19.

8.3. Duality of the symmetric Koornwinder polynomials. The duality of the
renormalized symmetric Koornwinder polynomials E+(γλ; ·) (λ ∈ Λ+0 ), see defini-
tion 3.21, can be established in a similar fashion as the duality of the renormalized
non-symmetric Koornwinder polynomials, see §6.3. We freely use the notations of
§6.3.
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Similar arguments as for the proof of (6.5) and (6.6), we have for all p ∈ AW

and all λ, µ ∈ Λ+0 the identity

p(γλ) = B̃
(
p(z̃), E+(γλ; z)

)
, p(xµ) = B

(
p(z), Ẽ+(xµ; z̃)

)
. (8.9)

Now we substitute p = Ẽ+(xµ; ·) in the first equality of (8.9) and p = E+(γλ; ·) in
the second equality of (8.9), and we use the duality (6.4) of the bilinear form B to
arrive at

E+(γλ;xµ) = Ẽ+(xµ; γλ), λ, µ ∈ Λ+0 ,

which proves the duality of the symmetric Koornwinder polynomials, see theorem
3.22.

8.4. Macdonald’s generalization of the Poincaré series. The correction term
of the W -invariant part ∆+(·) of the complex weight function ∆(·) is given by the
rational function C ∈ Q, see (3.16). The relation between the non-symmetric theory
and the symmetric theory of the Koornwinder polynomials strongly depends on the
symmetrizing properties of C. These properties were investigated by Macdonald as
generalizations of Poincaré series of Weyl groups. In this subsection we discuss
these properties in detail for C.

We define A− ⊂ A as the sub-space of A consisting of Laurent polynomial
p ∈ A satisfying wp = σ(w)p, where σ :W → {±1} is the character of W given by
σ(w) = (−1)l(w) for all w ∈W (see lemma 3.1 for the action of W on A).

We denote ρ by the half-sum of positive roots, so

ρ =
1

2

∑

α∈Σ+

α = ω1 + · · ·+ ωn =

n∑

i=1

(n− i+ 1)εi ∈ Λ+0 ,

where (recall) ωi = ε1 + · · · + εi (i = 1, . . . , n) are the fundamental weights. Now
we set Λ++0 = Λ+0 + ρ, so

Λ++0 = {λ = (λ1, . . . , λn) ∈ Λ0 |λ1 > λ2 > · · · > λn > 0}.
The elements in Λ++0 are called regular dominant weights, since Λ++0 is exactly the
subset of dominant weights λ ∈ Λ+0 for which the stabilizer sub-group Wλ ⊂ W
only consists of the identity element.

Since the intersection of Wλ with Λ+0 consists of one point λ+ ∈ Λ+0 for all
λ ∈ Λ0, we see that the “anti-symmetric” monomials

m−λ (x) =
∑

w∈W

σ(w)xwλ ∈ A−, λ ∈ Λ+0

span A−. If λ ∈ Λ+0 \ Λ++0 , then there exists a simple reflection si ∈W stabilizing
λ, since the stabilizer sub-group Wλ is a parabolic sub-group of W . It follows that
m−λ (x) = 0 iff λ ∈ Λ+0 \ Λ++0 , and that {m−λ |λ ∈ Λ++0 } is a linear basis of A−.

Lemma 8.6. We have

m−ρ (x) = xρ
∏

α∈Σ−

(1− xα)

in A.

Proof. We write p(x) = xρ
∏

α∈Σ−(1− xα). For i = 1, . . . , n we have si(ρ) = ρ− ai
since ρ = ω1 + · · ·+ ωn and

(
ωi, a

∨
j

)
= δi,j . Since si permutes Σ+ \ {ai} and maps
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ai to −ai, we see that si p = −p = σ(si)p for all i = 1, . . . , n. Hence p ∈ A−. We
now use the dominance order ≤ on Λ0, see definition 5.1 and lemma 5.2. Then

m−ρ (x)− p(x) =
∑

λ<ρ

cλx
λ

for some constants cλ. On the other hand, the left hand side of this identity lies
in A−. So if it is non-zero, then its expansion in monomials has a contribution for
the monomial xλ for some λ ∈ Λ++0 . But there are no regular dominant weights
λ ∈ Λ++0 which are strictly smaller than ρ since Λ+0 ⊂ Λ>

0 , hence m
−
ρ (x) = p(x), as

desired. ¤

Proposition 8.7. ∑

w∈W

wC(·; t; q) = Ct,q (8.10)

lies in the base field C of Q. In particular,

〈p1, p2〉t,q =
Ct,q

|W | 〈p1, p2〉+,t,q, ∀p1, p2 ∈ AW (8.11)

where |W | = 2nn! is the cardinality of the finite Weyl group W .

Proof. The identity (8.11) follows directly from (8.10) using (3.15), the definitions
of 〈·, ·〉 and 〈·, ·〉+, and the invariance of the measure (Tn, dxx ) under the action of
W .

For (8.10), we observe that lemma 8.6 and the definition of C ∈ Q (see (3.16))
implies that

m−ρ (x)
∑

w∈W

(wC)(x) =

=
∑

w∈W

σ(w)w

(
xρ

∏

α∈Σ−

(1− tαtα/2x
α/2)(1 + tαt

−1
α/2x

α/2)

)
,

(8.12)

which thus lies in A. On the other hand,
∑

w∈W wC ∈ Q is W -invariant, and
m−ρ ∈ A−, so that the expression (8.12) actually lies in A−. We have to show that

(8.12) is a constant multiple of m−ρ (x). To show this, it is sufficient to prove that if
the monomial xµ (µ ∈ Λ0) occurs in the expansion of (8.12) as linear combination
of monomials with non-zero coefficient, then µ ≤ ρ, cf. the proof of lemma 8.6. But
every monomial contribution within the large brackets of (8.12) is of the form xµ

with µ = 1
2

∑
α∈Σ+ ξαα, ξα ∈ {−1, 0, 1} and ξα 6= 0 when α ∈ Σ+m. Clearly, such

a µ is smaller than (or equal to) ρ with respect to the dominance order. Since ρ
is a dominant weight, we then also have wµ ≤ ρ for all w ∈ W and for any such
µ. Hence (8.12) is a constant multiple of m−ρ (x), which completes the proof of the
proposition. ¤

A product form of the constant Ct,q can be obtained by specializing the left hand

side of (8.10) at x−10 . In fact, we have the following more general result (see §5.2
for the notations concerning parabolic sub-groups).

Lemma 8.8. Let λ ∈ Λ+0 , then Ct;q =
∑

w∈Wλ C(x−1wλ; t; q). In particular, Ct,q =

C(x−10 ; t; q).
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Proof. Let λ ∈ Λ+0 . By the definition (8.10) of Ct,q we have

Ct,q =
∑

u∈Wλ,w∈Wλ

(w−1u−1C)(x−1λ ; t; q) (8.13)

(indeed, observe that wC(x) ∈ Q is regular at x = x−1λ for all w ∈W , so that we may

specialize
∑

w∈W wC(x) ∈ Q at x = x−1λ ). We consider a term (w−1u−1C)(x−1λ ) in
the sum (8.13) with w 6= 1. Then there exists a simple root ai (i ∈ {1, . . . , n}) which
is orthogonal to λ (i.e.

(
λ, ai

)
= 0), and such that α = (uw)(ai) ∈ Σ− (we have

used (5.5) here). Now the factor cw−1u−1α(x
−1
λ ) = cai(x

−1
λ ) of (w−1u−1C)(x−1λ ) is

zero, since xaiλ = xai0 (= t2 if i ∈ {1, . . . , n− 1} and = t∨n
2t2n if i = n), see the proof

of proposition 6.16. Hence the contribution in the sum (8.13) is zero unless w = 1.
The lemma follows now from lemma 5.6. ¤

8.5. The link between the symmetric and non-symmetric theory. In this
subsection we expand the renormalized symmetric Koornwinder polynomials as
linear combinations of the non-symmetric Koornwinder polynomials. We first show
that E+(γλ; ·) (λ ∈ Λ+0 ) can be obtained by letting the trivial idempotent of H0
act on any non-symmetric Koornwinder polynomial E(γµ; ·) (µ ∈ Wλ) under the
Noumi representation πt,q.

So we first have to introduce the trivial idempotent ofH0 and establish some of its
elementary properties. We work directly in the image of the Noumi representation
πt,q. By Iwahori-Matsumoto’s theorem (cf. the proof of proposition 4.6), we may
write tw = ti1ti2 · · · tir for a reduced expression w = si1si2 · · · sir ∈W . We then set

C+ =
1∑

w∈W t2w

∑

w∈W

twTw ∈ H, (8.14)

which satisfies the following elementary properties.

Lemma 8.9. (i) (Ti − ti)C+ = 0 for i = 1, . . . , n.
(ii) C2+ = C+.

(iii) C+ ∈ H ⊂ EndC(A) is a projection onto AW . In particular, we have

AW = {p ∈ A |C+ p = p}.
(iv) (C+)‡ = C ′+, where

C ′+ =
1∑

w∈W t−2w

∑

w∈W

t−1w T ′w ∈ H′

is the trivial idempotent with respect to inverse parameters, and ‡ is the anti-
isomorphism of H defined in lemma 6.9.

Proof. (ii) is immediate from (i) and (iii) is a direct consequence of (i) and lemma
8.1. So it remains to prove (i) and (iv).

For (i), we fix i ∈ {1, . . . , n} and decompose W = W+
i ∪W−

i (disjoint union),
where W±

i consists of the Weyl group elements w ∈W such that l(siw) = l(w)±1.
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Observe that W+
i = siW

−
i . Then we compute

Ti
(∑

w∈W

twTw
)
=

∑

w∈W+
i

(
twTiTw + tsiwTiTsiw

)

=
∑

w∈W+
i

tw
(
Ti + tiT

2
i

)
Tw

=
∑

w∈W+
i

tw
(
ti + t2iTi

)
Tw = ti

∑

w∈W

twTw,

where we have used the quadratic relations (Ti − ti)(Ti + t−1i ) = 0 for the third
equality.

For (iv), we observe that

(C+)
‡ =

1∑
w∈W t2w

∑

w∈W

twT
′
w
−1 ∈ H′.

Hence it suffices to show that C+ ∈ H can also be written as

C+ =
1∑

w∈W t−2w

∑

w∈W

t−1w T−1w .

We show this by changing the summation variable in (8.14) to u = σw, where
σ = −1 ∈W is the longest Weyl group element (which maps v to −v for all v ∈ V ).
Then l(σw) = l(σ)− l(w) for all w ∈W , so that tσw = tσt

−1
w and Tσw = TσT

−1
w for

all w ∈W . In particular,
∑

w∈W

t2w = t2σ
∑

w∈W

t−2w ,
∑

w∈W

twTw = tσTσ
∑

w∈W

t−1w T−1w .

Substituting these expressions into (8.14) and using (i) then shows

C+ = t−1σ Tσ
1∑

w∈W t−2w

∑

w∈W

t−1w T−1w =
1∑

w∈W t−2w

∑

w∈W

t−1w T−1w ,

as desired. ¤

Proposition 8.10. Let λ ∈ Λ+0 and µ ∈Wλ, then

E+(γλ; ·) = C+E(γµ; ·).

Proof. Fix λ ∈ Λ+0 and µ ∈ Wλ. Let p(Y ) ∈ AW
Y . Since the Ti’s commute with

p(Y ) for i = 1, . . . , n, we have that p(Y )C+ = C+p(Y ) in H. Hence

p(Y )
(
C+E(γµ; ·)

)
= C+

(
p(Y )E(γµ; ·)

)
= p(γλ)C+E(γµ; ·),

since p(γµ) = p(γλ) by lemma 5.6 and by the W -invariance of p. Since p(Y ) ∈ AW
Y

is arbitrary and C+E(γµ; ·) ∈ AW by lemma 8.9(iii), it follows that C+E(γµ; ·)
is a constant multiple of E+(γλ; ·). To show that the constant multiple is one, it
suffices to show that (

C+E(γµ; ·)
)
(x−10 ) = 1.

Now cai(x
−1
0 ; t| q) = 0 for all i = 1, . . . , n, so that (Ti p)(x

−1
0 ) = tip(x

−1
0 ) for

i = 1, . . . , n. In particular,
(
TwE(γµ; ·)

)
(x−10 ) = twE(γµ;x

−1
0 ) = tw, ∀w ∈W.
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Hence
(
C+E(γµ; ·)

)
(x−10 ) =

1∑
w∈W t2w

∑

w∈W

tw
(
TwE(γµ; ·)

)
(x−10 ) = 1,

as desired. ¤

We are now in a position to derive the explicit expansion of the symmetric
Koornwinder polynomial in terms of non-symmetric Koornwinder polynomials, see
theorem 3.27. By proposition 6.16 and proposition 8.10 we have an expansion of
the form

E+(γλ;x) =
∑

µ∈Wλ

cλµE(γµ;x), λ ∈ Λ+0

for unique coefficients cλµ ∈ C. We first show that cλµ = Kλ C̃(γ−1µ ) for all µ ∈ Wλ,
with the constant Kλ independent of µ ∈Wλ. By theorem 3.14 and theorem 3.16,
we have

〈E+(γλ; ·), E′(γ−1µ ; ·)〉 = cλµ〈E(γµ; ·), E′(γ−1µ ; ·)〉 =
cλµ

C̃(γ−1µ )

〈1, 1〉 w̃(γ−10 )

w̃+(γ
−1
λ )

(8.15)

for all λ ∈ Λ+0 and µ ∈ Wλ. On the other hand, by lemma 8.9, proposition 8.10,
proposition 7.2 and remark 3.26,

〈E+(γλ; ·), E′(γ−1µ ; ·)〉 = 〈C+E+(γλ; ·), E′(γ−1µ ; ·)〉
= 〈E+(γλ; ·), C‡+E′(γ−1µ ; ·)〉
= 〈E+(γλ; ·), C ′+E′(γ−1µ ; ·)〉
= 〈E+(γλ; ·), E′+(γ−1λ ; ·)〉 = 〈E+(γλ; ·), E+(γλ; ·)〉

(8.16)

for all λ ∈ Λ+0 and µ ∈ Wλ, where E′+(γ−1λ ; ·) is the renormalized symmetric
Koornwinder polynomial of degree λ with respect to inverse parameters. We con-
clude that the expression (8.15) is independent of µ ∈Wλ, hence

cλµ = KλC̃(γ−1µ ), µ ∈Wλ, λ ∈ Λ+0

for some constant Kλ independent of µ ∈Wλ and

E+(γλ;x) = Kλ

∑

µ∈Wλ

C̃(γ−1µ )E(γµ;x), λ ∈ Λ+0 .

Now we evaluate this expression at x = x−10 and we use lemma 8.8, to see that

Kλ = C̃(γ−10 )−1 (independent of λ ∈ Λ+0 ). This completes the proof of theorem
3.27.

8.6. Orthogonality relations and quadratic norms. In this subsection we es-
tablish the orthogonality relations and quadratic norms of the renormalized sym-
metric Koornwinder polynomials with respect to the non-degenerate bilinear form
〈·, ·〉+ on AW .

Recall from proposition 8.7 that 〈·, ·〉+ is the restriction of the bilinear form 〈·, ·〉
to the sub-algebra AW , up to an explicit constant. Hence the bi-orthogonality
relations of the non-symmetric Koornwinder polynomials with respect to 〈·, ·〉 (see
theorem 3.14), remark 3.26 and theorem 3.27, imply that

〈E+(γλ; ·), E+(γµ; ·)〉+ = 0, λ, µ ∈ Λ+0 , λ 6= µ,
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which are the orthogonality relations of the symmetric Koornwinder polynomials as
stated in theorem 3.25. For the diagonal terms, we observe that (8.15) and (8.16)
lead to

〈E+(γλ; ·), E+(γλ; ·)〉 =
〈1, 1〉 w̃(γ−10 )

C̃(γ−10 )w̃+(γ
−1
λ )

, λ ∈ Λ+0 (8.17)

since we have seen in the previous subsection that cλµ = C̃(γ−1µ )/C̃(γ−10 ). Now by
proposition 8.7 applied twice, we obtain from (8.17) that

〈E+(γλ; ·), E+(γλ; ·)〉+ =
〈1, 1〉+ w̃(γ−10 )

C̃(γ−10 )w̃+(γ
−1
λ )

.

But w̃(γ−10 ) = C̃(γ−10 )w̃+(γ
−1
0 ), so that

〈E+(γλ; ·), E+(γλ; ·)〉+
〈1, 1〉+

=
w̃+(γ

−1
0 )

w̃+(γ
−1
λ )

, λ ∈ Λ+0

which establishes the evaluation of the diagonal terms for the symmetric Koorn-
winder polynomials, see theorem 3.25.

9. Appendix

In this section we prove the commutation relations stated in proposition 6.6. We
recall here that U0 and Yi are given by the expressions

U0 = T1T2 · · ·Tn−1z−1n T−1n T−1n−1 · · ·T−11 ,

Yi = Ti · · ·Tn−1TnTn−1 · · ·T1T0T−11 T−12 · · ·T−1i−1.
(9.1)

For the actual verification of the Lusztig type commutation relation between U0 and
p(Y ) (p ∈ A) in proposition 6.6, we observe that it suffices to prove it for p(Y ) = Yi
(i = 1, . . . , n), cf. the proof of proposition 4.11. If we furthermore substitute the
explicit expression for the difference-reflection operator T0, we see that it suffices
to prove the following commutation relations in H:

(a) (U0 − t∨n)(U0 + t∨n
−1) = 0;

(b) U0T1U0T1 = T1U0T1U0;
(c) U0Ti = TiU0 for i = 2, . . . , n;
(d) U−10 Y1 = q−1Y −11 U−10 + (t∨n

−1 − t∨n)Y1 + q−1/2(t∨0
−1 − t∨0 );

(e) U0Yi = YiU0 for i = 2, . . . , n.

We first check the easy commutation relations (a) and (c). The relation (a) is
immediate from the quadratic relation for z−1n T−1n (see proposition 6.5) and (9.1),
which shows that U0 is conjugate to z−1n T−1n in H. For (c) we note that by the
commutation relations TiziTi = zi+1 (i = 1, . . . , n − 1) (see proposition 6.5) and
(9.1), we have

U0 = z−11 T−11 · · ·T−1n−1T
−1
n T−1n−1 · · ·T−11 = z−11 T0Y

−1
1 . (9.2)

If we write [X1, X2] = X1X2−X2X1 for the commutator of two elements X1, X2 ∈
H, then by proposition 6.5, [Tj , z

−1
1 ] = 0 and [Tj , T0] = 0 for j = 2, . . . , n. Further-

more, by Lusztig’s commutation relation between the Tj ’s and p(Y )’s (see (6.2)),

we also have [Tj , Y
−1
1 ] = 0 for j = 2, . . . , n. Combined with (9.2), this proves (c).

We next prove (e) by showing that U−10 Yj = YjU
−1
0 for j = 2, . . . , n. We fix

j ∈ {2, . . . , n}. Using the commutativity of the Yj ’s and using (9.2), we see that

U−10 Yj = YjU
−1
0 is equivalent to [T−10 z1, Yj ] = 0. Now using the expression (9.1)
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for Yj , together with the commutation relations between the Ti’s and zk’s (see
proposition 6.5), we compute

z1Yj = Tj · · ·Tn−1TnTn−1 · · ·T2z1T1T0T−11 · · ·T−1j−1

= Tj · · ·Tn−1TnTn−1 · · ·T2T−11 T0z2T
−1
1 · · ·T−1j−1

= Tj · · ·Tn−1TnTn−1 · · ·T2T−11 T0T1T
−1
2 · · ·T−1j−1z1.

Applying the C̃n-braid relations for the Ti’s, we obtain

T−10 z1Yj = Tj · · ·Tn−1TnTn−1 · · ·T2T−10 T−11 T0T1T
−1
2 · · ·T−1j−1z1

= Tj · · ·Tn−1TnTn−1 · · ·T2T1T0T−11 T−10 T−12 · · ·T−1j−1z1

= Tj · · ·Tn−1TnTn−1 · · ·T2T1T0T−11 T−12 · · ·T−1j−1T
−1
0 z1 = YjT

−1
0 z1

(here we have used that T−10 T−11 T0T1 = T1T0T
−1
1 T−10 , which is a direct consequence

of the braid relations). This completes the proof of (e).
Next we consider the commutation relation (d). By (9.2) and proposition 6.5,

we have

q1/2U0Y1 = q1/2z−11 T0 = q−1/2T−10 z1 + t∨0
−1 − t∨0

= q−1/2Y −11 U−10 + t∨0
−1 − t∨0 .

(9.3)

Using the quadratic relation (a) for U0 (which we already proved), we immediately
see that (d) is implied by (9.3).

Instead of proving the commutation relation (b), we prove the following equiv-
alent commutation relation in H:

U−10 T−11 U−10 T−11 = T−11 U−10 T−11 U−10 . (9.4)

We set Ξ = T2 · · ·Tn−1TnTn−1 · · ·T2 ∈ H. By proposition 6.5, we have Ξ z1 = z1Ξ,
and U−10 = T1ΞT1z1 by (9.1) and (9.2). Combined with the commutation relation
T1z1 = z2T

−1
1 (see proposition 6.5), we see that

T−11 U−10 T−11 U−10 = ΞT1z1ΞT1z1

= ΞT1Ξ z1T1z1 = ΞT1Ξ z1z2T
−1
1

(9.5)

on the one hand, and

U−10 T−11 U−10 T−11 = T1ΞT1z1ΞT1z1T
−1
1

= T1ΞT1Ξ z1T1z1T
−1
1 = T1ΞT1ΞT

−1
1 z1z2T

−1
1

(9.6)

on the other hand. Now multiplying the expressions (9.5) and (9.6) on the right by
the invertible element T1z

−1
1 z−12 T1 ∈ H, we see that it suffices to prove that

ΞT1ΞT1 = T1ΞT1Ξ (9.7)

in H. Set Ξi = Ti · · ·Tn−1TnTn−1 · · ·Ti for i = 2, . . . , n, then we claim that the
following commutation relations are valid in H:

ΞiTi−1ΞiTi−1 = Ti−1ΞiTi−1Ξi, i = 2, . . . , n. (9.8)

Observe that (9.7) is the special case i = 2 of (9.8). We prove now (9.8) by
downward induction on i. For i = n, we have Ξn = Tn, hence (9.8) is valid by
the braid relation TnTn−1TnTn−1 = Tn−1TnTn−1Tn in H. For the induction step,

we assume that (9.8) is valid for i = k + 1, with k ∈ {2, . . . , n − 1}. The C̃n-
braid relations for the Ti’s imply Tk−1Ξk+1 = Ξk+1Tk−1. Combined with the braid
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relation TkTk−1Tk = Tk−1TkTk−1 and the identity Ξk = TkΞk+1Tk, we see that the
expression in the left hand side of (9.8) with i = k can be rewritten as

ΞkTk−1ΞkTk−1 = TkΞk+1TkTk−1TkΞk+1TkTk−1

= TkΞk+1Tk−1TkTk−1Ξk+1TkTk−1

= TkTk−1Ξk+1TkΞk+1Tk−1TkTk−1

= TkTk−1(Ξk+1TkΞk+1Tk)Tk−1Tk,

while the expression in the right hand side of (9.8) with i = k can be rewritten as

Tk−1ΞkTk−1Ξk = Tk−1TkΞk+1TkTk−1TkΞk+1Tk

= Tk−1TkΞk+1Tk−1TkTk−1Ξk+1Tk

= Tk−1TkTk−1Ξk+1TkΞk+1Tk−1Tk

= TkTk−1(TkΞk+1TkΞk+1)Tk−1Tk,

hence (9.8) is also valid for i = k by the induction hypothesis. This completes the
proof of (9.8), and hence also the proof of the commutation relation (b).

With these considerations, the proof of proposition 6.6 is now complete.

10. Precise references to the literature

§2 Macdonald [20] derived the basic properties of affine root systems and
affine Weyl groups, and classified the irreducible root systems. In par-
ticular, in [20] the non-reduced affine root system C∨C was introduced.
The derivations in §2 are mainly ad hoc. For a more systematic treatment,
see Humphreys’ book [14].

§3.2–3.3 The difference-reflection operators associated with the non-reduced root
system of type C∨C, as well as the associated Y -operators, were written
down by Noumi in [26]. They generalize the difference-reflection operators
and Y -operators for classical, reduced affine root systems of Cherednik, see
[5]–[9]. The commutativity of the Y -operators (theorem 3.6) was proven
by Noumi [26].

§3.4–3.5 The non-symmetric Koornwinder polynomials (definition 3.10) were defined
by Sahi [29]. The duality of the non-symmetric Koornwinder polynomials
(theorem 3.11) was also proven in [29].

§3.6 The bi-orthogonality of the non-symmetric Koornwinder polynomials (the-
orem 3.14) was proven by Sahi [30] for discrete values of the parameters,
and by Stokman [32] for continuous values of the parameters.

§3.7 The evaluation of the diagonal terms for the non-symmetric Koornwinder
polynomials (theorem 3.16) was derived in [32].

§3.8 Symmetric Koornwinder polynomials were defined by Koornwinder [17] as
a generalization of the symmetric Macdonald polynomials associated with
the root system BC (see [23]), as well as a multivariable generalization of
the Askey-Wilson polynomials (see [2]). Koornwinder [17] proved that they
are eigenfunctions of the second order q-difference operator L as defined in
theorem 3.19, and proved their orthogonality relations (see theorem 3.25).
Koornwinder and Macdonald conjectured further properties of these poly-
nomials in an unpublished note, such as the duality (theorem 3.22) and the
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explicit expression for the quadratic norms (theorem 3.25). These conjec-
tures were proven by Van Diejen [10] for a sub-family of the Koornwinder
polynomials.

Noumi [26] clarified the important role of affine Hecke algebras in the the-
ory of symmetric Koornwinder polynomials (in the same spirit as Chered-
nik’s affine Hecke algebra approach to Macdonald polynomials).This was
also announced by Macdonald [22]. The explicit relation between Koorn-
winder’s second order q-difference operator and the Y -operators (see theo-
rem 3.19) was proven in [26]. The proof of duality for the symmetric Koorn-
winder polynomials (see theorem 3.22) for the complete family of symmetric
Koornwinder polynomials was proven by Sahi [29], using the analogue of
Cherednik’s [6] double affine Hecke algebra in the Koornwinder setting. By
Van Diejen’s [10] results, this in turn implied the quadratic norm evalua-
tions for the symmetric Koornwinder polynomials (see theorem 3.25) for
all parameters values. A proof of the quadratic norm evaluations using
affine Hecke algebras, which in particular leads to the expressions in terms
of multiple residues in a natural way, was derived in [32]. The precise link
between the non-symmetric Koornwinder polynomials and the symmetric
Koornwinder polynomials (theorem 3.27) follows easily from results in [32].

§4.1–4.3 The treatment of the affine Hecke algebra as given in these three sub-
sections follows the paper of Lusztig [19], who partly attributes the results
to Bernstein and Zelevinski. We focused our presentation to the case of

affine Hecke algebras of type C̃n, which is exactly the awkward case in
Lusztig [19]. The awkwardness lies in the fact that 〈Λ0, an〉 = 2Z instead
of Z, so that lemma 4.9 does not suffice to prove proposition 4.11. The
computation of the commutation relation of proposition 4.11 for i = n was
derived in Lusztig from (quite elaborate) computations in the associated
extended braid group. The shortcut of this result as presented in the proof
of proposition 4.11 seems to be new. Observe that 〈Λ0, an〉 = 2Z (where
Λ0 should be considered here as the co-root lattice of Σ) is exactly the
crucial property of the reduced root system Σ which allows one to squeeze
in two extra parameters into the theory (see §2.3 on the level of affine root
systems), leading eventually to the affine Hecke algebra interpretation of
the complete family of Koornwinder polynomials.

§4.4 The Noumi representation was defined in [26], following the approach of
Cherednik [5] in case of reduced root systems.

§5.1 The triangularity of the Y -operators (see proposition 5.4) was derived in
[32].

§5.2 The definition of the non-symmetric Koornwinder polynomials was given
by Sahi [30]. The presentation given here, which makes essential use of the
triangularity of the Y -operators, follows [32]. The advantage is that the
triangularity of the Koornwinder polynomials is automatically incorporated
in their definition (see theorem 5.7). In Sahi’s approach this requires proof,
see [30].

§6.1–6.3 The introduction of the double affine Hecke algebra, the derivation of its
basic algebraic structure and its application to the duality theorem of the
non-symmetric Koornwinder polynomial (theorem 3.11), follow closely the
paper of Sahi [29].
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§6.4 The application of the duality in obtaining spectral difference-reflection
operators is taken from [32].

§7.1 The results in this sub-section were derived in an algebraic manner in [30]
for a discrete set of parameter values. This sub-section follows the analytic
approach of [32] (which in particular leads to the results for continuous
parameter values).

§7.2 The derivation of the diagonal terms of the non-symmetric Koornwinder
polynomials in terms of multiple residues of the weight function follows
[32]. The approach is motivated by Cherednik’s paper [8], in which it be-
came apparent that (non-symmetric) Harish-Chandra transforms can be
well understood by computing their intertwining properties under the ac-
tion of the (degenerate) double affine Hecke algebra.

§8.1–8.2 The results in these sections linking symmetric Koornwinder polynomials
to the affine Hecke algebra follow Noumi [26].

§8.3 The proof of the duality for the symmetric Koornwinder polynomials follows
Sahi [29].

§8.4 The generalization of the Poincaré serie of type Cn was derived by Mac-
donald [21].

§8.5 The precise expansion of the renormalized symmetric Koornwinder poly-
nomials as linear combination of the renormalized non-symmetric Koorn-
winder polynomials can be easily derived from [32]. In [32] the “monic
version”, i.e. the explicit expansion of the monic symmetric Koornwinder
polynomial P+λ (λ ∈ Λ+0 ) in terms of the monic non-symmetric Koorn-
winder polynomials Pµ (µ ∈ Λ0) was proven, and explicit expressions for

Pµ(x
−1
0 ) and P+λ (x0) were derived (the so-called “evaluation formulas”).

Combined they lead to theorem 3.27. The proof of the expansion theorem
(theorem 3.27) as given in §8.5 is new.

§8.6 The derivation of the quadratic norms of the symmetric Koornwinder poly-
nomials in terms of residues of the weight function as given in §8.6 follows
[32].

§9 The proof of commutation relations between specific elements of the double
affine Hecke algebra, which is needed for the duality of the Koornwinder
polynomials in §6.2, follows Sahi [29].
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