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1.1 Introduction

The theory of one-variable (ordinary) hypergeometric and basic hypergeometric series goes
back to work of Euler, Gauss and Jacobi. The theory of elliptic hypergeometric series is of
a much more recent vintage [20]. The three theories deal with the study of series

∑
k≥0 ck

with f (k) := ck+1/ck a rational function in k (hypergeometric theory), a rational function in
qk (basic hypergeometric theory), or a doubly periodic meromorphic function in k (elliptic
hypergeometric theory, see [21, Ch. 11] for an overview).

Examples of elementary functions admitting hypergeometric and basic hypergeometric se-
ries representations are

(1 − z)−α =

∞∑
k=0

(α)k

k!
zk,

(az; q)∞
(z; q)∞

=

∞∑
k=0

(a; q)k

(q; q)k
zk (1.1.1)

for |z| < 1 and α, a ∈ C, with (α)k := α(α + 1) · · · (α + k − 1) for k ∈ Z≥0 the shifted factroial
(or Pochhammer symbol), (a; q)k := (1 − a)(1 − qa) · · · (1 − qk−1a) for k ∈ Z≥0 ∪ {∞} the
q-shifted factorial. Here, and throughout the entire chapter, we assume for convenience that
0 < q < 1. Note that the series in the second identity, with a = qα, tends to the series in the
first identity as q ↑ 1, at least formally, and that the identities (1.1.1) reduce to polynomial
identities when α ∈ Z≤0. Also note that the series in (1.1.1) are indeed hypergeometric and
basic hypergeometric series, respectively, since f (k) = k+α

k+1 z and f (k) =
1−qka
1−qk+1 z for the first

and second series in (1.1.1). These are the well known Newton (generalized) binomial theorem
and its q-analogue [21, §1.3]. They form, apart from the (q)-exponential series, the simplest
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nontrivial examples of an impressive scheme of hypergeometric and basic hypergeometric
summation identities [21], with the members in the scheme related by limit transitions.

The summands of elliptic, basic and classical hypergeometric series are expressible in terms
of products and quotients of elliptic, basic and classical shifted factorials. The basic and clas-
sical ones are the (q-)shifted factorials as defined in the previous paragraph. The elliptic (or
theta) shifted factorial is given by (z; q, p)k :=

∏k−1
i=0 θ(zqi; p) for k ∈ Z≥0 and 0 < p < 1,

with θ(z; p) :=
∏∞

i=0(1 − piz)(1 − pi+1/z) the modified theta function. These shifted factorials
can be expressed as Γ(qkz)/Γ(z) (or, in the classical case, Γ(z + k)/Γ(z)) with Γ(z) an appro-
priate analogue of the classical Gamma function. For the elliptic hypergeometric case this is
Ruijsenaars’ elliptic Gamma function [66]

∞∏
i, j=0

1 − z−1 pi+1q j+1

1 − zpiq j , 0 < p, q < 1,

for the basic hypergeometric case the (modified) q-Gamma function (z; q)−1
∞ , and for the clas-

sical hypergeometric case the classical Gamma function.
There is no “simple” elliptic analogue of (1.1.1). In fact, the first elliptic hypergeometric

summation formula that was found [20] generalizes the top level terminating (basic) hyperge-
ometric summation identity! This is a general pattern for the elliptic hypergeometric theory:
the top levels of the (basic) hypergeometric theory admit elliptic versions, and there is little
room for degenerations without falling outside the realm of elliptic hypergeometric series.
Possibly this is one of the reasons for the late discovery of elliptic hypergeometric series.

Parallel to the theory of hypergeometric series there is a theory of hypergeometric integrals,
see §1.2.3 and, in Chapters 5 and 6, the sections 5.3 and 6.2. Such integrals can often be iden-
tified with hypergeometric series. But, certainly in the elliptic case, there are many instances
where the hypergeometric integral is convergent while a possible corresponding hypergeo-
metric series diverges [65, §2.10]. Hypergeometric integrals naturally appear as coordinates
of vector-valued solutions of Knizhnik–Zamolodchikov (KZ) and Knizhnik–Zamolodchikov–
Bernard (KZB) equations and their q-analogues, see Chapter 11. The elliptic case, correspond-
ing to solutions of qKZB equations, already appeared in 1996 in [17, §7] (yet formally) and
soon afterwards rigorously in [18, §6].

This volume deals with multivariable generalizations of ordinary, basic and elliptic hy-
pergeometric series and integrals. This includes various multivariable extensions of classical
(bi)orthogonal polynomials and functions, which form an important subclass of hypergeomet-
ric series within the one-variable theory.

Various multivariable theories have emerged, each with its own characteristic features de-
pending on the particular motivation for, and context behind, its multivariable extension. For
instance, there are important multivariable theories motivated by special function theory itself
(see Chapters 2–6), by representation theory and Lie theory (see Chapters 7–9 and 12), by
combinatorics (see Chapter 10) and by theoretical physics (see Chapters 8–9 and 11–12).

In the remainder of this introductory chapter we give a short discussion of each type of
multivariable special functions treated in this volume, and we highlight their interrelations and
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differences. In §1.2 we first discuss the multivariable series which may be seen as extensions
of the three types of hypergeometric series. The different classes of multivariable extensions
of classical (bi)orthogonal functions will be discussed in §1.3.

We hope that this short impression of the various classes of multivariable special functions
and their interrelations helps the reader to oversee the chapters in this volume, and how they
are related.
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1.2 Multivariable classical, basic and elliptic hypergeometric series

1.2.1 Appell and Lauricella hypergeometric series

Gauss’ hypergeometric series is given by

2F1

(
a, b
c

; x
)

:=
∞∑

k=0

(a)k(b)k

(c)kk!
xk, (1.2.1)

which absolutely converges for |x| < 1. One of the oldest generalizations of the Gauss hy-
pergeometric series to several variables was given by Appell, who introduced the four Appell
hypergeometric series in two variables [1], [16, §5.7], denoted by F1, F2, F3, F4. For instance,

F2(a, b1, b2, c1, c2; x, y) :=
∞∑

m,n=0

(a)m+n(b1)m(b2)n

(c1)m(c2)n m! n!
xmyn, (x, y) ∈ C2, |x| + |y| < 1. (1.2.2)

The series (1.2.2) are double series
∑∞

m,n=0 cm,n/(m! n!) with cm+1,n/cm,n and cm,n+1/cm,n of the
form p1(m, n)/r1(m, n) and p2(m, n)/r2(m, n) for suitable relative prime polynomials pi and
ri in two variables (i = 1, 2). This extends the property characterizing hypergeometric series
in one variable, and such series are therefore also called hypergeometric. The highest degree
of the four polynomials p1, r1, p2, r2 is called the order of the hypergeometric series in two
variables. The Appell hypergeometric series have order two. Horn classified all hypergeomet-
ric series of order two, see the list of 34 series in [16, §5.7.1]. Lauricella defined n-variable
analogues FA, FB, FC , FD of F2, F3, F4, F1, respectively. The Appell and Lauricella hyperge-
ometric series are discussed in Chapter 3.

Many properties and formulas for Gauss hypergeometric series generalize to Appell and
Lauricella hypergeometric series, but, not surprisingly, one has to deal with interesting com-
plications concerning, for instance, the integral representations, systems of partial differential
equations, and monodromy, see Chapter 3. Furthermore, solutions of the system of partial
differential equations for these series form a much richer collection than in the case of the
Gauss hypergeometric series, where all local solutions at regular singularities are expressed
in terms of series of the same type. For instance, for F2 six different types of series occur as
local solutions, including some which are hypergeometric series of order higher than two, or
even not hypergeometric series at all. See Olsson [54]. Gel’fand’s A-hypergeometric functions
(see Chapter 4) offer a fruitful point of view for the study of Appell and Lauricella hypergeo-
metric series. This can also give inspiration for a study of q-analogues, see [51], where also a
connection is made with quantum groups. In [21, Chapter 10] there is a chapter on q-series in
two or more variables.

Appell and Lauricella hypergeometric series have several interrelations with other special
functions in several variables. The first example (which may have been the motivating ex-
ample for Appell) are the biorthogonal polynomials on the simplex and ball, see Chapter 2.
Further examples deal with Heckman–Opdam hypergeometric functions (see Chapter 8). In
the case of root system A these functions can be identified for certain degenerate parameter
values with a special Lauricella FD (or, in two variables, with Appell F1), see [72]. A special
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case of Heckman–Opdam hypergeometric functions for root system BC2 can be written as a
sum of two Appell F4 functions (see [3, Theorems 3.3 and 2.3]). In the polynomial case one of
the F4 terms vanishes, so that special BC2 Jacobi polyomials can be written as a terminating
F4, see [39, (7.15)]. Another special case of the Heckman–Opdam functions for BCn, now for
general n, can be expressed as n-variable analogues [3, (5.1) and Theorem 5.4] of Kampé de
Fériet hypergeometric series (certain hypergeometric series in two variables of order three).

1.2.2 A-hypergeometric functions

The A-hypergeometric (or GKZ hypergeometric) functions were introduced by Gel’fand,
Zelevinsky & Kapranov [23] in 1989, but there have been analogous approaches before. In
particular, W. Miller Jr. [48] described in 1973 a new approach to the hypergeometric differ-
ential equation

z(1 − z) f ′′(z) +
(
c − (a + b + 1)z

)
f ′(z) − ab f (z) = 0, (1.2.3)

of which the Gauss hypergeometric series (1.2.1) is a solution. He observed that, if the param-
eters a, b, c in (1.2.3) are replaced by s∂s, u∂u, t∂t, then the resulting system of PDEs

QF = 0, s∂sF = aF, u∂uF = bF, t∂tF = cF (1.2.4)

with

Q := z(1 − z)∂zz + t∂tz − z(s∂sz + u∂uz + ∂z) − su∂su

has a solution

F(s, u, t, z) = saubtc
2F1

(
a, b
c

; z
)
. (1.2.5)

Miller defines the dynamical symmetry algebra G of Q as the set of all first order PDEs L such
that QL f = 0 whenever Q f = 0. It is a Lie algebra which has a basis of operators acting on
solutions of the form (1.2.5) (so-called contiguity relations). Then G is seen to be isomorphic
to sl(4). Miller [48] pointed out that a similar approach works for generalized hypergeometric
series r+1Fr and for Appell and Lauricella hypergeometric series. This was elaborated by him
in several papers in 1972, 1973.

In 1980 Kalnins, Manocha & Miller [32] transformed systems like (1.2.4), in the case of
Appell’s and Horn’s hypergeometric series in two variables, into so-called canonical systems.
These systems coincide with special cases of the later introduced A-hypergeometric systems
[23]. M. Saito [68, 69] recognized the relevance of [32] for the GKZ theory. He also worked
with a symmetry algebra for operators Q which no longer requires that the operators in the
algebra are first order.

A change of variables turns the system (1.2.4) of PDEs in the following canonical (or A-
hypergeometric) form,

(∂xy − ∂zw) f = 0, (x∂x − y∂y) f = (1 − c) f , (x∂x + z∂z) f = −a f , (x∂x + w∂w) f = −b f
(1.2.6)
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with corresponding solution

f (x, y, z,w) = y c−1z−aw−b
2F1

(
a, b
c

;
xy
zw

)
, (1.2.7)

see for instance [75, §2.6, §3.2.1]. Note that the change of variables has transformed the sec-
ond order partial differential operator Q to ∂xy−∂zw, which is essentially the 4D Laplace oper-
ator. This makes it manifest that the dynamical symmetry algebra of Q is sl(4), see also [10].

The general A-hypergeometric system in n variables x = (x1, . . . , xn) depends on a d × n
matrix A = (ai j) = (a1 . . . an) with integer column vectors a j ∈ Z

d (from which the A in
A-hypergeometric) such that the Z-span of the a j equals Zd. The A-hypergeometric system,
depending on parameters β1, . . . , βd, is given by( ∏

ui>0
∂ui

xi

)
f =

( ∏
ui<0

∂−ui
xi

)
f (u ∈ L\{0}),

( n∑
j=1

ai jx j∂x j

)
f = βi f (i = 1, . . . , d) (1.2.8)

with L := {u ∈ Zn | Au = 0}. It can be seen to have the system (1.2.6) as the special case

A =


1 −1 0 0
1 0 1 0
1 0 0 1

 , β = (1 − c,−a,−b)t. (1.2.9)

For each ν ∈ Cn such that Aν = β we have a formal solution of the (ν-independent) differ-
ential equations (1.2.8) given by the series

∑
u∈L

n∏
j=1

xν j+u j

j

Γ(ν j + u j + 1)
. (1.2.10)

called A-hypergeometric series in Gamma function form. With the choice (1.2.9) of A, β and
with ν := (0, c − 1,−a,−b)t, u := k(1, 1,−1,−1)t (k ∈ Z) the series (1.2.10) becomes

∞∑
k=−∞

x k
1 x c−1+k

2 x−a−k
3 x−b−k

4

Γ(k + 1) Γ(c + k) Γ(−a − k + 1) Γ(−b − k + 1)

=
x c−1

2 x−a
3 x−b

4

Γ(c) Γ(1 − a) Γ(1 − b)

∞∑
k=0

(a)k (b)k

(c)k k!

(
x1x2

x3x4

)k

,

which is (1.2.7) apart from the Gamma factors in the denominator in front of the summation.
Choices for A and ν in (1.2.10) can be made such that the resulting series involves r+1Fr(z)

or an Appell or Lauricella hypergeometric series. For instance, for Appell’s F2 one can take

A =


1 0 0 0 0 1 1
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 −1 0
0 0 0 0 1 0 −1


, β = (−a,−b1,−b2, c1 − 1, c2 − 1)t,

u = m(−1,−1, 0, 1, 0, 1, 0) + n(−1, 0,−1, 0, 1, 0, 1)t,

ν = (−a,−b1,−b2, c1 − 1, c2 − 1, 0, 0)t.
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Then the first part of the system (1.2.8) is generated by ∂1∂2 f = ∂4∂6 f , ∂1∂3 f = ∂5∂7 f , and
(1.2.10) becomes

∞∑
m,n=−∞

x−a−m−n
1 x−b1−m

2 x−b2−n
3 x c1+m−1

4 x c2+n−1
5 x m

6 x n
7

Γ(m + 1) Γ(n + 1) Γ(c1 + m) Γ(c2 + n) Γ(1 − a − m − n) Γ(1 − b1 − m) Γ(1 − b2 − n)

=
x−a

1 x−b1
2 x−b2

3 x c1−1
4 x c2−1

5

Γ(c1) Γ(c2) Γ(1 − a) Γ(1 − b1) Γ(1 − b2)
F2

(
a, b1, b2, c1, c2;

x4x6

x1x2
,

x5x7

x1x3

)
.

The GKZ theory, of which Chapter 4 gives a survey, not only unifies the study of many
classes of multivariable special functions, but also exploits methods from algebra, geometry,
D-module theory and combinatorics, far beyond the methods used in classical approaches.

1.2.3 Classical, basic and elliptic hypergeometric series and integrals
associated with root systems

Hypergeometric integrals of classical, basic and elliptic type are integrals with integrand ex-
pressed in terms of products and quotients of Gamma factors Γ(ax) (in the classical case,
Γ(a + x)), with Γ(x) the Gamma function of the appropriate type. In the classical case in-
tegrands involving products of the form (1 − x)a are also considered to be hypergeometric
((1 − x)a is formally the q → 1 limit of the quotient (qx; q)∞/(qa+x; q)∞ of q-Gamma func-
tions). The singular set of the integrand of a hypergeometric integral is a union of geometric
(in the classical case, arithmetic) progressions. Hypergeometric series naturally arise as the
sum of residues of the integrand over such pole progressions.

Multidimensional hypergeometric integrals typically arise in contexts involving representa-
tion theory of algebraic and Lie groups. For instance, in harmonic analysis on compact sym-
metric spaces, the zonal spherical functions give rise to a family of multivariable orthogonal
polynomials with respect to a measure on a compact torus that is absolutely continuous with
respect to the Haar measure. The associated weight function admits a natural factorization in
terms of the root system underlying the symmetric space. Such multivariable integrals often
admit generalizations beyond the representation theoretic context. They provide the prototyp-
ical examples of hypergeometric integrals associated with root systems.

Let us focus now more closely on the structure of such integrals. Suppose R is an irreducible
root system in Rn, and fix a choice R+ of positive roots. The co-weight lattice P∨ of R is
the lattice in Rn dual to the Z-span of R. For the classical root systems we take the usual
realization of R = R+ ∪ (−R+) in Rn with respect to the standard orthonormal basis {ei}

n
i=1

of Rn. Concretely, R+ = {ei − e j}1≤i< j≤n for type An−1, R+ = {ei ± e j}1≤i< j≤n for type Dn,
R+ = {ei ± e j}1≤i< j≤n ∪ {2ei}

n
i=1 for type Cn, and R+ = {ei ± e j}1≤i< j≤n ∪ {ei, 2ei}

n
i=1 for type BCn.

Let kα ∈ C be parameters that only depend on the Weyl group orbit of the root α ∈ R
(equivalently, kα only depends on the root length ‖α‖ of the root α ∈ R). The prototypical
example of a classical hypergeometric integral associated with R is∫

AR

wk(x) dx, wk(x) :=
∏
α∈R

(
1 − e2πi(α,x))kα (1.2.11)
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with AR ⊂ R
n a fundamental domain for the translation action of P∨ on Rn, x = (x1, . . . , xn),

dx = dx1 . . . dxn and k := {kα}α∈R the collection of the parameters kα (here the kα should
satisfy appropriate conditions to ensure convergence of the integral). Remarkably the integral
(1.2.11) admits an explicit evaluation as a product of Gamma functions. The resulting identity
is known as the Macdonald constant term identity (see Theorem 8.4.2(i)). It gives the volume
of the orthogonality measure of root system generalizations of the Jacobi polynomials, also
known nowadays as Heckman–Opdam polynomials, see Chapter 8 for a detailed discussion.

Of particular interest is the special case that the root system R is of type BCn. In that case
the Macdonald constant term identity reduces after the change of variables z j = sin2(πx j) to
the well known Selberg integral [71]∫

[0,1]n

n∏
i=1

zα−1
i (1 − zi)β−1

∏
1≤i< j≤n

|zi − z j|
2γ dz =

n−1∏
j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + ( j + 1)γ)
Γ(α + β + (n + j − 1)γ)Γ(1 + γ)

with parameters α = kε1 + k2ε1 + 1
2 , β = k2ε1 + 1

2 and γ = kε1−ε2 , which in turn is a multidimen-
sional generalization of the beta integral. There are many applications of the Selberg integral,
for instance in the theory of integrable systems (Chapters 8 and 9), in conformal field theory
(Chapter 11) and in random matrix theory; see the overview article [19].

For basic hypergeometric integrals associated with root systems a similar story applies.
The role of Lie groups and root systems are taken over by quantum groups and affine root
systems, although this time the representation theoretic context came later. The affine root
system associated to an irreducible reduced root system R is denoted by R(1) and consists of
the collection of affine linear functionals a : Rn → R of the form a(x) = (α, x) + m (α ∈ R and
m ∈ Z). The role of wk(x) is now taken over by

wk,q(x) =
∏

a∈R(1); a(0)≥0

(
1 − qa(x)

1 − qka+a(x)

)
=

∏
α∈R

(q(α,x); qα)∞
(qkα+(α,x); qα)∞

,

where ka = kα if α is the gradient of a ∈ R(1). Macdonald [43] conjectured an explicit evalua-
tion for the basic hypergeometric integral∫

AR

wk,q(x/τ) dx, q = exp(2πiτ) (1.2.12)

associated with R, which was proved in full generality by Cherednik [7] using the theory of
double affine Hecke algebras. The evaluation formula gives the volume of the orthogonality
measure of the Macdonald polynomials, see Chapter 9. The integral (1.2.12) and its evalu-
ation generalize to arbitrary (possibly non-reduced) irreducible affine root systems and with
milder equivariance conditions on k = {ka}a∈R(1) . In case of the non-reduced affine root system
of type C∨Cn this leads to Gustafson’s [25] multivariable analogue of the Askey–Wilson in-
tegral which depends, apart from q, on five additional parameters. It gives the volume of the
orthogonality measure of the Koornwinder polynomials, see Chapter 9.

A very general elliptic analogue of the Selberg integral and of Gustafson’s multivariable
analogue of the Askey–Wilson integral was conjectured by van Diejen & Spiridonov [11,
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Theorem 4.2] and proven by Rains [60, Theorem 6.1],

1
(2πi)n

∫
T n

∏
1≤i< j≤n

Γ(tziz j, tziz−1
j , tz

−1
i z j, tz−1

i z−1
j )

Γ(ziz j, ziz−1
j , z

−1
i z j, z−1

i z−1
j )

n∏
k=1

∏6
i=1 Γ(tizk, tiz−1

k )

Γ(z2
k , z
−2
k )

dz1

z1
· · ·

dzn

zn

=
2nn!

(p; p)n
∞(q; q)n

∞

n∏
m=1

Γ(tm)
Γ(t)

∏
1≤i< j≤6

Γ(tm−1tit j)

 , (1.2.13)

with T the positively oriented unit circle in the complex plane, Γ(x1, . . . , xr) := Γ(x1) · · · Γ(xr)
a product of elliptic Gamma functions, and parameters t, ti ∈ C satisfying |t|, |ti| < 1 and
t2n−2t1 · · · t6 = pq. The integral (1.2.13) is an example of an elliptic hypergeometric integral
associated with the root system of type Cn. For n = 1 it reduces to Spiridonov’s elliptic beta
integral [74]. It is a special case of a family of transformation formulas that relate elliptic
hypergeometric integrals associated with type C root systems of different ranks [5]. The basic
analogue of (1.2.13) is a multivariable analogue of the Nassrallah–Rahman integral [50],

1
2πi

∫
T

(
z2, z−2, Az, Az−1; q

)
∞∏5

j=1
(
t jz, t jz−1; q

)
∞

dz
z

=
2
∏5

j=1
(
At−1

j ; q
)
∞(

q; q
)
∞

∏
1≤ j<k≤5

(
t jtk; q

)
∞

, |t j| < 1 (1.2.14)

where A := t1t2t3t4t5 and
(
a1, . . . , ar; q

)
∞ :=

∏r
i=1

(
ai; q

)
∞. Just as (1.2.14) gives the Askey–

Wilson integral for t5 = 0, its multivariable analogue yields Gustafson’s integral [25] by the
same substitution. The identity (1.2.13) and some of its degenerations give the volumes of
(bi)orthogonality measures for important families of multivariable (bi)orthogonal functions,
see §1.4.

The multivariable elliptic integrals appearing in [17, 18] as coordinates of vector-valued
solutions of qKZB equations are associated with the root system of type An. Their semiclas-
sical limits, which provide solutions of the KZB equation, as well as their degenerations to
the basic and classical hypergeometric level, are discussed in Chapter 11.

A further rough division of hypergeometric integrals associated with root systems involves
the notion of types. Multidimensional integrals are said to be type II basic (resp. elliptic) hy-
pergeometric integrals associated with the root system R if the integrand contains a factor of
the form

∏
α∈R

(
Γ(q(α,x))/Γ(qkα+(α,x))

)
with Γ(x) the basic (resp. elliptic) Gamma function. It is

called type I if it contains a factor of the form
∏

α∈R Γ(q(α,x))−1. Similarly, a multidimensional
integral is said to be a type II classical hypergeometric integral associated with the root sys-
tem R if the integrand contains a factor of the form ∆k(x) or

∏
α∈R

(
Γ(α, x)/Γ(kα + (α, x))

)
,

with Γ(x) the classical Gamma function (and a similar adjustment for type I). The examples of
multidimensional integral evaluations highlighted so far, are type II. In Chapter 5 and Chapter
6 many examples of type I and type II multidimensional integral evaluations and transfor-
mations are discussed. Note that there are also hypergeometric integrals of mixed type, see
(6.2.3) for an example.

Next we turn our attention to multivariable hypergeometric series. For a given root system
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R, we can define a Weyl type denominator by

∆(x) :=
∏
α∈R+

h
(
(α, x)

)
with h(z) =


z (classical hypergeometric type),

1 − qz (basic hypergeometric type),

θ(z; p) (elliptic hypergeometric type).

In the basic hypergeometric case ∆(x) is the Weyl denominator of the semisimple Lie algebra
associated with R, while in the elliptic case ∆(x) is closely related to the Weyl denominator of
the affine Lie algebra associated with R(1), see §6.1.2.

Multivariable classical, basic and elliptic hypergeometric series
∑

k∈D f (k) (D ⊆ Zn) are
said to be associated with the classical root system R if f (k) contains the factor ∆(y + k)
for some fixed y ∈ Cn in a nontrivial way. First examples of multivariable classical hyper-
geometric series identities appeared in the work of Holman, Biedenharn and Louck [28] on
6 j-symbols for SU(n) (the associated root system is of type A). An important nontrivial ex-
ample of a multivariable basic hypergeometric series identity is Milne’s [49] fundamental
theorem ∑

k∈DN

∆(y + k)
n∏
`=1

q(`−1)k`
n∏

i, j=1

(
qβi+y j−yi ; q

)
k j(

q1+y j−yi ; q
)
k j

=

(
qβ1+···+βn ; q

)
N(

q; q
)

N
∆(y)

with DN :=
{
k ∈ Zn

≥0 | k1 + · · · + kn = N
}

and ∆(x) =
∏

1≤i< j≤n(1 − qxi−x j ) the Weyl type de-
nominator for the root system R of type An−1. An elliptic generalization is the elliptic Jackson
summation formula (6.3.1a) due to Rosengren [64, Theorem 5.1].

For classical root systems, identities and transformations for multivariable hypergeomet-
ric series naturally arise from related multidimensional hypergeometric integral identities and
transformations through residue calculus. In this process, the Weyl denominator ∆(k) arises
from the integrands of the multidimensional hypergeometric integrals through the formula
(6.1.3). The residue calculus typically involves iterated small contour deformations per coor-
dinate, avoiding at each step the poles of the factors of the integrand that do not depend on a
single coordinate x j. This technique was developed in [76] where it was applied to type II ba-
sic hypergeometric integrals associated with Koornwinder polynomials. When applied to the
elliptic Selberg integral (1.2.13) one obtains a type C elliptic hypergeometric series identity
(see (6.3.6)) that reduces for n = 1 to the Frenkel–Turaev elliptic summation formula [20]

N∑
m=0

θ(aq2m; p)
θ(a; p)

(a, b, c, d, e, q−N ; p, q)m

(q, aq/b, aq/c, aq/d, aq/e, aq1+N ; p, q)m
qm

=
(aq, aq/bc.aq/bd.aq/cd; p, q)N

(aq/b, aq/c, aq/d, aq/bcd; p, q)N
(1.2.15)

for bcde = a2qN+1, where (x1, . . . , xr; p, q)m =
∏r

i=1(xi; p, q)m. In this way, many of the hy-
pergeometric series identities and transformations associated with classical root systems as
discussed in Chapter 5 (classical and basic hypergeometric) and in Chapter 6 (elliptic hyper-
geometric) can be viewed as discrete versions of multidimensional hypergeometric integrals.
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1.3 Multivariable (bi)orthogonal polynomials and functions

1.3.1 One-variable cases

The class of one-variable (bi)orthogonal polynomials and functions splits up into various nat-
ural subclasses, each subclass having its distinct features that are vital for the construction and
study of its multivariable generalization.

(a) General theory of orthogonal polynomials [78].
(b) Classical orthogonal polynomials.
(c) Classical biorthogonal rational functions.
(d) Bessel functions [55, §10.22(v)] and Jacobi functions [36].

By classical orthogonal polynomials we mean (more generally than in Chapter 2) the one-
variable orthogonal polynomials belonging to the Askey or q-Askey scheme [34, Ch. 9,14].
They are characterized as the orthogonal polynomials that are joint eigenfunctions of a suit-
able type of second order differential or (q-)difference operator. The corresponding classifi-
cation results are called (generalized) Bochner theorems [24, 31, 80]). Prominent members
are the Jacobi polynomials [78, Ch. IV] and their top level q-analogues, the Askey–Wilson
polynomials [2]. By classical biorthogonal rational functions we refer to the generalizations
of classical orthogonal polynomials due to Rahman [58, 59] and Wilson [81], and their elliptic
analogues due to Spiridonov and Zhedanov [74].

Classical orthogonal polynomials and biorthogonal rational functions are expressible as
ordinary, basic and elliptic hypergeometric series. The various classes admit (bi)orthogonality
relations with respect to explicit measures whose total masses are the outcome of important
integral evaluation formulas. For example, for the classical Jacobi polynomials the integral
evaluation is the beta integral∫ 1

−1
(1 − x)α(1 + x)β dx =

2α+β+1Γ(α + 1)Γ(β + 1)
Γ(α + β + 2)

, α, β > −1,

with Γ(x) the classical Gamma function, for Rahman’s [58] biorthogonal basic hypergeo-
metric rational functions it is the Nassrallah–Rahman integral (1.2.14), and for Spiridonov–
Zhedanov’s [74] elliptic biorthogonal rational functions it is Spiridonov’s [73] elliptic beta
integral (the n = 1 case of (1.2.13)).

1.3.2 Multivariable generalizations

The subclasses (a)–(d) of one-variable (bi)orthogonal polynomials and functions generalize
to the multivariable case as follows. Note that the one-variable subclass (b) generalizes to two
subclasses (b1) and (b2).

(a) General theory of multivariable orthogonal polynomials [15] with respect to orthogonality
measures on Rd. This is discussed in Chapter 2.

(b1) Multivariable orthogonal polynomials expressible as (non-straightforward) products of one-
variable classical orthogonal polynomials and elementary polynomials, see Tratnik [79] and
Gasper & Rahman [22] for the continuous cases. Examples are in Chapter 2.
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(b2) Root system generalizations of classical orthogonal polynomials. Prominent examples are
the BC-type Heckman–Opdam polynomials [26] (see Chapter 8) and Koornwinder poly-
nomials [37] (see Chapter 9), which provide multivariable generalizations of the Jacobi
polynomials and their top-level q-analogues in the q-Askey scheme (Askey–Wilson poly-
nomials), respectively.

(c) By the extension of the class of classical orthogonal polynomials to biorthogonal ratio-
nal functions, one arrives at a class of one-variable special functions that generalizes to
the elliptic hypergeometric level as well as to the multivariable level. In the one-variable
setup these are the biorthogonal elliptic rational functions from Spiridonov & Zhedanov
[74]. The multivariable generalization is due to Rains [60]. This is discussed in Chapter 6.
The Macdonald–Koornwinder polynomials associated with classical root systems are limit
cases of Rains’ elliptic biorthogonal rational functions.

(d) Root system generalizations of Bessel functions and the associated Fourier transforms [14]
are discussed in Chapter 7. Root system generalizations of Jacobi functions and the associ-
ated harmonic analysis [57] are discussed in Chapter 8. These functions can be thought of as
non-polynomial generalizations of the Heckman–Opdam polynomials so that they may be
called Heckman–Opdam functions. Their basic hypergeometric analogues (Cherednik [8],
Stokman [77]) are not discussed in this volume.

In the next section we briefly discuss for these five subclasses how these multivariable exten-
sions came about, and what techniques are used to study them.

1.4 Multivariable (bi)orthogonal polynomials and functions,
some details

Class (a): General theory of multivariable orthogonal polynomials

Important topics are the development of multivariable versions of Gram–Schmidt orthogonal-
ization and of three-term recurrence relations (Favard’s theorem). Much of the general theory
deals with the space Vn of orthogonal polynomials of degree n in d variables x1, . . . , xd, de-
fined as the space of all polynomials of total degree ≤ n which are orthogonal to all polyno-
mials of total degree ≤ n− 1 with respect to a fixed inner product on the space of polynomials
in x1, . . . , xd. The subspace Vn does not have a canonical orthogonal basis. In particular, the
monomial basis of Vn, consisting of the polynomials in Vn of the form xα + Qα(x) (α ∈ Zd

≥0
multi-index of degree n) with Qα(x) of total degree ≤ n− 1, is usually not an orthogonal basis
of Vn. Still any basis of Vn, in particular the monomial basis, admits another basis which is
biorthogonal to the first basis. If the subspaces Vn are the eigenspaces of some second or-
der partial differential operator L then the orthogonal polynomials are said to be classical.
For two-variable examples, see §2.3.4. Remarkably, while the factorizable multivariable or-
thogonal polynomials (class (b1)) are usually classical, the root system generalizations of the
classical orthogonal polynomials (class (b2)) are usually not. In both cases, for q = 1, there is
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a se cond order differential operator around, but in the second case its eigenspaces are usually
not the full spaces Vn.

Class (b1): Factorizable multivariable orthogonal polynomials

For two-dimensional regions like the disk and the triangle with obvious weight functions
generalizing the ultraspherical or Jacobi weight function, the monomial basis and the basis
biorthogonal to it were already explicitly given by Appell in the late nineteenth century. These
bases were expressed in terms of Appell hypergeometric functions. Explicit orthogonal bases
for these cases were given much later, although they have a very simple factorized form. See
a survey in [35, §3.4]. These bases usually came up in close connection with various kinds
of applications. Very noteworthy are the disk polynomials of Zernike and Brinkman [82],
motivated by optics and still having important applications there.

The factorized orthogonal polynomials were extended to higher dimensions d (ball and
simplex). In addition to the second order operator L mentioned under class (a), there are d − 1
further partial differential operator generating together with L a commutative algebra of which
the orthogonal polynomials are the joint eigenfunctions.
These orthogonal polynomials also occur [35, §3.5], [12], [33] in connection with spherical
harmonics, see also Chapter 2. Furthermore, these polynomials naturally arise as coupling
coefficients for tensor product representations of SL2(R), while multivariable basic hyper-
geometric orthogonal polynomials arise as coupling coefficients for tensor products of the
associated quantum group [62, 63].

Class (b2): Root system generalizations of classical orthogonal polynomials.

Restrictions of zonal spherical functions on compact symmetric spaces to the torus provide
multivariable root system generalizations of Jacobi polynomials depending on special discrete
parameter values, which come from the root multiplicities of the symmetric space [27, Ch. V,
§4]. Heckman–Opdam polynomials [26] provide generalizations without restrictions on the
parameters. The techniques from geometric group theory now fail. Initially the only alterna-
tive was laborious analytic work, but the early nineties brought the great insight that there
is another Lie type setting for these polynomials, namely representation theory of degener-
ate affine Hecke algebras [57] in terms of Heckman–Dunkl differential-reflection operators
[26], which generalize the Dunkl operators [13] treated in Chapter 7 (see also Cherednik’s
[6, pp. 429–430] slight variants of the Heckman–Dunkl operators). As mentioned already in
§1.2.3, the total mass of the orthogonality measure of the Heckman–Opdam polynomials is
evaluated by the Macdonald constant term identity. A significant difference with multivariable
orthogonal polynomials in class (b1) is the fact that explicit hypergeometric series expressions
of the Heckman–Opdam polynomials are not available. However, there is a binomial formula
in the BCn case, see [38, (9.1), (11.5)], as we will discuss for the elliptic case in §1.4, Class (c).

All key properties, including orthogonality and norm formulas, need representation theo-
retic tools involving the Dunkl type operators and related operators, such as intertwining and
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shift operators. The Heckman–Opdam polynomials are joint eigenfunctions of a commutative
algebra generated by d commuting partial differential operators, where d is the rank of the as-
sociated root system. It includes the explicit second order differential operator L arising as the
radial part of the Laplace–Beltrami operator with the root multiplicities taken continuously,
see Chapter 8. An important application and source of further applications is the fact that
they produce the eigenstates for an important class of integrable one-dimensional quantum
many-body systems in theoretical physics called quantum Calogero-Moser systems, see [56].

In the q-case the Macdonald [46] and Koornwinder [37] polynomials provide multivariable
root system generalizations of the Askey–Wilson polynomials (the top level in the q-Askey
scheme) and its subclasses of continuous q-Jacobi and continuous q-ultraspherical polynomi-
als (only for root system of type BC all three classes generalize). Just as for q = 1, they relate
for special parameter values to harmonic analysis on quantum compact symmetric spaces
[52, 42] (although in this case it was not the original motivation for introducing these polyno-
mials). Many properties of the Heckman–Opdam polynomials as described above generalize
to Macdonald and Koornwinder polynomials, with the role of differential operators now taken
over by q-difference operators. The deeper study of these polynomials involves Cherednik’s
theory on (double) affine Hecke algebras [9, 67, 47], see Chapter 9.

Prior to the Macdonald polynomials for arbitrary root systems, Macdonald [44], [45, Ch. VI]
introduced a version of these polynomials which is related to the general linear group (they
relate to the Macdonald polynomials for root system of type A as, for q = 1, the Jack polyno-
mials relate to the A-type Heckman–Opdam polynomials). These GLd Macdonald polynomi-
als are homogeneous symmetric polynomials in d (or countably many) variables depending
on two parameters q and t, which generalize various important classes of symmetric functions
such as Jack polynomials, Hall–Littlewood polynomials, and Schur functions. Their important
role in modern algebraic combinatorics is discussed in Chapter 10.

Class (c): Biorthogonal rational functions

From the q-Askey scheme of classical basic hypergeometric orthogonal polynomials and their
biorthogonal rational extensions, only Rahman’s [58] biorthogonal rational functions have
been generalized to the elliptic regime (Spiridonov and Zhedanov [74]). Multivariable gener-
alizations in the class (b2) were introduced by Rains [60]. The associated explicit evaluation
formula of the total mass of the biorthogonality measure is the type II elliptic hypergeometric
integral associated to the root system of type C given by (1.2.13). The elliptic variant of the
theory of interpolation functions, which goes back to work of Kostant and Sahi [40, 41], has
been particularly useful in the development of Rains’ multivariable elliptic biorthogonal ra-
tional functions. These are classes of multivariable polynomials defined by explicit vanishing
properties, and serve as a kind of monomial type basis within the theory. In particular, one can
write down explicit series expansions of the elliptic biorthogonal rational functions in terms
of interpolation functions. These so-called binomial formulas (earlier given for Koornwinder
polynomials by Okounkov [53]) are for the moment the closest to explicit elliptic or basic
hypergeometric series expressions one can get. See also §6.4.
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The elliptic generalization of the double affine Hecke algebra is currently in development
[61] from the point of view of algebraic geometry.

Class (d): Root system generalizations of Bessel and Jacobi functions

The discussion about class (b2) largely applies here too. For special parmeter values Jacobi
functions relate to zonal spherical functions on noncompact Riemannian symmetric spaces
and multivariable Bessel functions to spherical functions for Cartan motion groups. The non-
symmetric versions of multivariable Bessel functions are called Dunkl kernels, and it is there
that the Hecke algebraic approach, mentioned before in the discussion of class (b2), first arose
with Dunkl’s invention of a commuting family of differential-difference operators serving
as deformations of directional derivatives. These operators are nowadays known as Dunkl
operators, see Chapter 7.

It remains puzzling that nonsymmetric Jacobi functions and nonsymmetric Jacobi poly-
nomials associated with root systems do not seem to live, for special parameter values, on
Riemannian symmetric spaces, as symmetric Jacobi functions and polynomials do. However,
partial interpretations of nonsymmetric special functions are known in connection with repre-
sentations of affine Lie algebras and p-adic groups, see [70, 29, 30, 4].
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