Simon Koolstra (25 years old)

June 2010 Graduated Dutch High School

Sept. 2010 - Aug. 2013 Double Bachelor's in Mathematics and Physics

Sept. 2013 - April 2017 Double Master's in Mathematics and Theoretical Physics
Feb - June 2016 Thesis research at Stanford University

Sept. 2017 - Future Data Scientist / Consultant at MIcompany

Today

• A (double) master's in Mathematics and Theoretical Physics

• A (double) master's thesis (in Mathematics and Theoretical Physcis)

• MIcompany - Where you can end up if you do not want to do a PhD (after studying Mathematics and Theoretical Physics)

A master's program in mathematics

• Courses that explore the frontiers of what we know

- Challenging problems and motivated and involved teachers and students
- Mastermath

Mastermath

- Combined program by all Dutch universities for offering master's courses in Mathematics
- Allows students broad access to all kinds of subjects
- Combined expertise from all universities in the Netherlands
- Meeting new teachers and new students

My master's program (190 ECTS)

	Year 1 first semester (30)	Year 1 second semester (31)	Year 2 first semester (29)	Year 2 second semester (34)	Year 3 (+ part of 4) Master's thesis (66)
Mathematics	Representation Theory (6) Seminar Mathematical Physics (6)	Lie Groups (8, Utrecht) Algebraic Geometry (8, Utrecht)) Mathematical Approaches to Quantum Field Theory (6)	Symplectic Geometry (8, Utrecht)	Commutative Algebras (8, Utrecht) Non-Commutative Geometry (6)	Master's Thesis (66): Mock Modular Tensor Categories
Ph5ysics	Statistical Physics and Condensed Matter Theory I (6) + Extension (3) Quantum Field Theory (6)	Statistical Physics and Condensed Matter Theory II (6) Gravitational Waves (3)	Bose Einstein Condensates (6) Particle Physics I (6) Advanced Topics in Theoretical Physics (6, Utrecht)	Particles and Fields (6) + Extension (2) General Relativity (6) String Theory (6)	
Other	Academic English (3)		Critical Thinking (3)		

A regular week as a master's student

	Monday	Tuesday	Wednesday	Thursday	Friday
08-09	08-09 09-10 10-11 11-12			Travel to Utrecht	
09-10		Studying / Homework	09-11 Gravitational waves	09-12 Lie Groups Utrecht University	Studying / Homework
10-11			NIKHEF, Amsterdam		
11-12			Studying / Homework		
12-13		Travel to Utrecht		Travel to Amsterdam	
13-14	13-17 Statistical Physics and Condensed Matter Theory I UvA, Amsterdam	13-16 Algebraic geometry Utrecht University			
14-15					
15-16			15-17 Math. appr. to QFT UvA, Amsterdam	15-17 Math, appr. to QFT	
16-17		Studying / Dinner / Drinks with fellow students			
17-18					

Master's project

Mock Modular Tensor Categories

Hunting for a generalized Verlinde formula

Simon Koolstra

Supervisor: dr. C. N. Cheng and prof. dr. E. Opdam Second examiner: prof. dr. E. P. Verlinde

April 21, 2017

Rational 2D Conformal Field Theory Mathematically described as the representation theory of 'rational vertex operator algebras', which has the structure of a modular tensor category

- 1. Finitely many different particles
- 2. Fusion rules for interactions are finite
- 3. Particle representations are completely reducible
- 4. Vacuum partition functions are modular forms
- 5. Some physically important numbers are rational

6. Tensor product theory exists

Rational 2D Conformal Field Theory Mathematically described as the representation theory of 'rational vertex operator algebras', which has the structure of a modular tensor category

- 1. Finitely many different particles
- 2. Fusion rules for interactions are finite
- 3. Particle representations are completely reducible
- 4. Vacuum partition functions are modular forms
- 5. Some physically important numbers are rational
- 6. Tensor product theory exists

Verlinde formula tells us which 3-point correlation functions can be non-zero!

$$\langle \phi_i \phi_j \phi_k \rangle = \begin{cases} \text{zero} & \text{if } N_{ij}^k = 0, \\ \text{possibly non-zero} & \text{if } N_{ij}^k \neq 0. \end{cases}$$

$$N_{ij}^{k} = \sum_{m=0}^{n-1} \frac{S_{im} S_{jm} (S^{-1})_{mk}}{S_{0m}}$$

1. Finitely many different particles

???2. Fusion rules for interactions are finite?????????

- 3. Particle representations are completely reducible
- 4. Vacuum partition functions arrack modular forms
- 5. Some physically important numbers are rational

???6. Tensor product theory exists?????????

Can we find a Verlinde (like) formula for mock modular 2DCFTs?

But in the end...

-O So after your master's.....

-O What do uber, amazon and netflix have in common?

Digital business models are powered by Analytics

- Technology infrastructure is not differentiating in itself
- It's the intelligence that drives it which leads to competitive advantage

NETFLIX

- Predict the success of new series (House of Cards)
- Predict your preferences (content recommendation)
- Predict how movie cover design (graphics) influence view response

- Predict demand, provide advise to drivers of where to go
- Dynamic (surge) pricing
- Predict traffic

 Predict consumer needs and preferences; allegedly 30% of Amazon's revenue is driven by recommendation algorithm

Today's Recommendations For You

Here's a daily sample of items recommended for

Introducing Micompany

ULES ADVISED

A A A BALL

1. Ja

SATURA

D SUSTA HAS LE DROWTH THROUGH ANALYTICS

-O Micompany serves leading companies across industries

-O A day in MY life as MIcompany data scientist

	Monday – Thursday @ Client Office		
08-09	08-09 Travel to Client office		
09-10	09-11 Doing data collection and transformation work		
10-11	Tools: SQL, R, Python		
11-12	11-12 Meeting client managers to discuss way of working and progress		
12-13	12-1230 Lunch		
12-13	1230-15 Analysing data, building statistical models		
13-14	Tools: R, Python (a bit of Excel sometimes, maybe)		
14-15			
15-16	15-16 Meeting MIcompany project leader to get input on progress and results		
16-17	17-1730 Visualising results and creating a story		
10-17	Tools: Excel, PowerPoint, ThinkCell		
17-18	1730-1830 Go home		

Friday @ MIcompany office

0830-09	Travel to MIcompany office
09-11	Doing some more work on case.
Tools:	SQL, R, Python, (really not that much Excel though, I promise)
11-12	Meeting coach or project lead to discuss personal development
12-13	MIcompany Lunch Meeting
13-15 Project meeting with whole MIcompar project team	
15-16	Some time to do case work and drink coffee with colleagues we haven't seen all week
16-17 afternoor	Probably some very important Friday meeting, in which we can all focus
17-when	ever Friday drinks

COMPANY

-O Why start your career with data and analytics?

MIcompany and the MIacademy are the best place to kick-start your career if you're interested in (big) data & analytics, but also aspire to making business impact

- Jump-starting career choice
 - Big Data: high-demand and exciting field
 - Build future-proof skill set
- Impact with Analytics
 - High-end consultancy for renowned corporations
 - Deep data and analytics expertise and technology
- Steep and continuous learning
 - 3-year flagship Academy program for analysts
 - On the job learning apply theory in practice
 - Apprenticeship model coaching & mentoring

— Micompany & miacademy going abroad

O The miacademy data analytics Talent program is aimed at rapidly developing analytical OR technical talent

▲ BUILDING DATA ANALYTICS CAPABILITIES

COMPANY

— There are different career tracks that guarantee broad learning

Simon Koolstra Data Scientist @ MIcompany SKoolstra@MIcompan

FIND OUT HOW YOU CAN BECOME A LEADER IN DATA ANALYTICS FOR AN AMBITIOUS ORGANIZATION WITH MIACADEMY:

