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SYNOPSIS

The effect of the finite width of a beam on its radiation pressure is studied. To that end the
appropriate Fresnel relations are used in conjunction with the balance equation for the momentum
flow at the fluid-metal boundary. An explicit expression is obtained for the radiation pressure that
is exerted by a wide beam of Gaussian shape.

1. INTRODUCTION

In the preceding paper [5] we have studied the radiation pressure due to a
plane wave, which impinges through an electrically polarized fluid on the
boundary with a metal. In the course of the treatment the pressure distribution
in the fluid was needed. In particular, its value near the boundary was related to
its value at a field-free position . Strictly spoken the latter position does not
exist if the incident wave has an infinite width. In practice waves have a finite
extension, so that this paradox does not really occur. In a more consistent
approach waves of finite width are to be considered from the beginning.

In this paper the effect of the finite extension of the wave on the radiation
pressure is studied. For simplicity we confine the discussion to waves of normal
incidence.

2. FRESNEL RELATIONS FOR FINITE WAVES AT NORMAL INCIDENCE

An electromagnetic wave, propagating through a polarizable medium of
refractive index n = Ve, may be described by a Hertz vector II(R, #) from which
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the fields follow as [4]:
E=VA(rAD),

M B=n22 v AIL
ot

The refractive index »n is assumed to be constant, so that electrostriction
effects are neglected. The Hertz vector satisfies the wave equation

) AN - n20211/012 = 0.

A solution of this equation, which describes a cylindrically symmetric wave of
finite width is

3) M=e,Jy(kr sin @)ekz cos 0-iwt,

It propagates in the z-direction with wave number k& cos € and frequency
w = k/n. The Bessel function J, confines the wave effectively to finite values of
r=(x*+y?)?; the width of the wave is of order (k sin §)~!. The polarization of
the Hertz vector has been chosen in the x-direction as denoted by the unit vector
e,. A general cylindrically symmetric solution of (2) with finite width, frequency

w and polarization in the x-direction is obtained from (3) by multiplication with
a weight function g(sin 6) and integration over sin §=¢:

@ T=e, | deg(@othre)eleVi-8 o,
4]

An alternative form of (3) follows from the integral representation of the
Bessel function

2n
5) Jolkr sin ) = L § dpeikr sin 0cos o
21 0
Substitution into (3) gives, with the change of variable ¢—¢ — arctan (y/x):

2n
©  M=e - | dgelr i,
2n 0

with k a vector with spherical polar coordinates (k, 6, ¢).
The fields (1) corresponding to (6) have the form:

2n
E 1 § dokn(kney)e® R-iwl
2n

0

™) 2
B= nk [ dpkneet R-ior,
2n o

We shall utilize fields of this form for the description of an electromagnetic
wave of finite width, which impinges perpendicularly on a metal surface with
normal n pointing into the metal in the z-direction. The reflected and trans-
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mitted waves will follow from the Fresnel relations for the plane waves out of
which the fields are composed according to (7). These Fresnel relations are
different for transverse electric and transverse magnetic waves (called E- and
M-waves, respectively, in the following). The plane of incidence of an
elementary wave as given by the integrands of (7) is determined by the vectors k
and n. Since the angle between these vectors is 6, the normal to the plane of
incidence is kAn/k sin 6. A unit vector orthogonal to k in the plane of incidence
is kA(kAR)/(k2 sin @). As a consequence the E- and M-components of the
electric field of the elementary wave, contained in (7), have the forms

@®) AR (1cAn)-eelkR-ior,
sin® 6
KA(kAR) R
O)  sin o ™k

For the E-component the incident electromagnetic fields are according to (7)
and (8):

E£ = 1 25" dony Eje’xn R-iof
Y20 ! ’
(10) K 1 o . '
Bf = 5 d(pni/\noEiOelkn,»R—zwt’
w?n o

where n; is a unit vector with polar angles (8, ¢) (and hence in the direction k)
and n, the unit vector mAn/sin 6, with polar angles (37, ¢ — 4m). Furthermore
E, is the amplitude of the wave given by

(11) Ey=k*ng-e,=k? sin ¢.

The integrands of (10) are of the general form of an incident plane E-wave as
given in (I.1). The reflected and transmitted waves can therefore be deduced
from (I1.2) and (1.3):

2n
g 1 o
Er =2_7_T S dwnoEroe’k“'“ iwt W,y
0

(12) k1 2 . o
Bf = - | domAngE e Rl iv,
w2n o
Ef:—l— 25" d(pnoErOeik’n,~R—k”n~R—iwr~iux,,
27n 0

(13) . i
. B{fzi 25 d¢,<k_“;i’k_“>,\n0Eroefk'n,‘R—k"n-R—iwt—iw,’
2m b w

where the unit vectors n, and n, have the polar angles (7 —0, ¢) and (6,, ¢),
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respectively. The angle 6, and the wave numbers £’ and k” follow from (I.4) and
(I.5) (with 6, replaced by ). The amplitudes E,, and the phases y,,, with u=ror
t, have been given in (I.7) and (1.8) as the combinations f%=(E/E;) exp
(—iy,). In the integrals (10, 12, 13) only the unit vectors ny, n, and n, depend on
the angle ¢.

The integrals over ¢ can be evaluated by means of the identities of the
appendix. As an example we consider E,E which reads according to (10):

(14) EIE — kzeikz cos 8- iw! L 25” d(p sin (p[sin @, —COoS @ O]eik sin B(x cos ¢ + y sin @).

21 o ’ ’ ’
the parentheses [ , , ] enclose the three cartesian components. The right-hand
side follows from (A6) and (A7). The other electromagnetic fields may be
obtained likewise. The results are

1% E:E= kzeikf cos o—in[Ff, FZEf 0], -

BY = nk2eike cos 0-iwt| _ FE cos 6 FF cos 6,iF% sin 6],
(16) { E, = ke iz cosd-iwfEIFY FY 0],

Bf = ni2e k= cos 0-iwt fEIEE (5 g — FY cos 6,iF% sin 6],

EtE = k2eik'z cos 9,—k”z—iwtfﬂFlE’ Ff, 0],
17 Bf = nke'k'z cos ,~ k'z—iwt
SEL-FE(k’ cos 6,+ k™), FY (k' cos 6, + ik"), iF5k’ sin 6}].
The dependence on x and y is contained in the three functions:

~

E x? —yz . 1 .
Fi(x,»)= Yo Jo(kr sin 6) + LJy(kr sin ),

a8 < Fixy) :’;—{ Jy(kr sin 6),

FE(x,y) = —% J,(kr sin 6).

~

The transverse magnetic components of the incident field follow by using (9)
instead of (8). For later convenience we define the E- and M-components by
writing

{E”=Ef+cos0E2”,

19 B, =B/ +cos 0 BY

for the incident, the reflected and the transmitted fields (u =i, r, ¢, respectively).
On a par with (10) the incident fields are found as
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2n

E} = { dongAn;Bigeni R,
0

=8

1
2n
2n

BY = 51- [ donyBgem R-i!,
T o

(20)

The amplitude By, is given by

n;-e,

(21) BiOZ _nk2
sin 6

—nk? cos ¢.

After integration over ¢ the complete set of M-fields reads:

Eﬁ\/’:kZeikz cos {)—iwl[Fll\’l cos 6, _F}2\4 cos 0’ I.F13\/1 sin 9],
M j —i M M
Bi = nk2eikz cos 0 lw([FZ ’Fl ’0]’

22) i

M i it gMy M M
EY = k2e ik cos O—iwigM1 _ M o5 9, FM cos 6,iF} sin 6],
i’ D By

B = nk2e ke cos 0-iwtpMIEN FY 0],

23) [

—FY(k’ cos 6,+ ik"), iIFY'k’ sin 6],

2 .
By:nk (w+io) o

Vo't ol

ik’ —k"z—i MM M
ik'z cos 8, - k"z lwtfl [FZ’F ,0]

2
E?’Iz__n_k.__, eik'z cos 6[~k”z—iwrf/[\4[F11V1(k/ cos 0, + ik”),
I/ w+a
(24)

The functions F¥ have the form

M x? —y2 . .
F{(x,y)=— e Jo(kr sin 0) + +Jo(kr sin 0),
I
25) FY(x,y)=F5(xy)=F)x),

Fé”(x,y) = —% Jy(kr sin 6).

The relative amplitudes f 24 , with y=r or ¢, have been given in (I.16) and (1.17).
We have found now the E- and M-components of the incident, the reflected
and the transmitted waves, generated by the Hertz vector (3). A generalized
cylindrically symmetric solution of the Maxwell equations with boundary con-
ditions follows by multiplying (19) and hence (15-17), (22-24) with a weight
function g(sin ) and integrating over sin @ as in (4).
A different set-up to find waves with a finite width starts from a different
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Hertz vector IT* which yields the fields [4]:

E- -2 (Al
26) ot

B=VA(VAIT¥).

The Hertz vector IT* again fulfils the wave equation (2). In analogy with (3) we
take as a solution

27) M *=e,Jy(kr sin G)eiks sin 0-ivr,
The corresponding fields are then found as

~ E | oM
{ E,=n"!(cos 6E, +E;),

(28) _ E | pM
B,=n"!(cos § B; +B,)

with the same E- and M-components as in (19). A linear combination of these
solutions arises by multiplication with a weight function g*(sin ) and an inte-
gration over sin . Combining the generalized II- and IT*-solutions, obtained in
this way, is equivalent, in view of (19) and (28), to combining the E- and M-
solutions with weight functions

E _ —1 *
29) [g g+n-lcosfg*

gM=cos Qg+nlg*

The electromagnetic fields describing waves of finite width then have the form:

E,= | deIgE(OEL + gM(OEL,
(30) ,
B, =] degE(&)BE + gM(&)B)

with ¢=sin 8 and u=1, r, t for the incident, the reflected and the transmitted
fields, respectively.

3. THE RADIATION PRESSURE FOR FINITE WAVES AT NORMAL INCIDENCE

The radiation pressure may be found from the momentum-balance equation
of which the time-averaged form has been given in (I.18) with (1.19). Since the
fields are non-uniform, we wish to concentrate on the total radiation force Fr29,
which is the integral of the radiation pressure over the surface of the boundary
between the liquid and the metal. Upon integrating the momentum-balance
over a thin slab of infinite width lying symmetrically on both sides of the
boundary, we get with Gauss’s theorem

{ jdSn-[P,—D,E,~B/B,+ }EF+BHU] =

@31 = {dS n-[P,—E,Ey—B,B,++EZ +B3)U]
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as a generalization of (1.20). Here F_’f and P, are time-averaged pressure tensors
in the fluid and in the metal, both near the boundary. Likewise the electro-
magnetic fields pertain to positions near the boundary. As in paper I the iso-
tropic fluid pressure tensor Pf=pr may be connected to the pressure py, at a
position where the fields are negligible. Since the incident wave has a finite
width one may choose any position that is sufficiently far from the centre of the
beam. Neglecting electrostriction effects as before we have

(32) Pr=pro+ 1P, E.

Likewise the metal pressure tensor P, may be related to the pressure P,,, deep in
the metal, where the transmitted fields have been damped out. In fact the right-
hand side of (31) becomes upon applying the momentum-balance equation in
the metal and taking account of the finite width of the transmitted wave

(33)  [dSn-Py,.

The perpendicular radiation force follows now from (31-33) as
(34) Fad = s as nn:(P,,,O——pfOU)=%-§dS(n2Eﬁ//—n2Eﬁ 1 +Bf,//—Bf’ J_)

with // and 1 denoting the components parallel and orthogonal to the bound-
ary. The fields in the fluid, which are the sums of the incident and the reflected
fields, have been given in (30) with (15-16) and (22-23). Upon insertion of these
expressions into (34) one encounters integrals over products of the functions F{"
(withm=E, M and i=1,2,3), which have been defined in (18) and (25). If use is
made of the identity

@5)  Jdr I (krE)I(krE) = k=2E-16(E ~ &)

0

for non-negative integers /, the integrals become

§ dS FUOFT (&) =ink 267120, + 1)(E - &),
(36) f dS Fy(&)Fy(E) =4k =26~ 16(¢ - &),
§ dS FA(&)F5 (&) =nk~ 218,06 &),

where A and A’ can stand for E or M. In this way the radiation force (34) gets the
form:

G7)  F=inn’k? 5) d¢ & A -8 PA + IfF 1)+ 1M + IFY ).

The total energy current impinging on the boundary may likewise be obtained
from (30) with (15), (22) and (36):

1
(38) Smt=%ﬂ’lk2(§]d5€_ll/1*5(|8E|2+|gM|2),
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so that the reduced radiation force Fr2d = Frad/s, | is:
1
(5) d& &A=k PA+ IfFD+ e + Y]]
1 :
a8 & y1-8(" 1P+ g1
If the width of the incident wave becomes large, the weight functions g€ and gM

strongly emphasize the value £=0. Since both |fZ| and |f¥| then reduce to
| £+ (see (I1.31-34)) one ends up with

(39) Frad=p

@40 Fi=n(l+|f* Y,

as found in (1.30).
The effect of a finite beam width on the radiation pressure may be studied by
adopting as a model for both the weight functions a Gaussian distribution

@)  g=ylEgh)e e

with A=F or M. Here y is a small width parameter (y<k?), while g*(£) are
analytic functions of £2 in the interval 0 < ¢ <1, with Taylor expansions around
£=0 of the form

42) gr &) =cil +cler+ ).

The expressions for the incident fields corresponding to tﬁese weight functions
follow from (30) with (15) and (22). For E, one finds for instance

1 _ .
(@3)  E=y K dg geiel - nion i W gEpE 4 gy T 2F Y.

Introducing the new integration variable E= y~1k¢ and expanding subsequently
the function (1 — &%)t = (1 — yk~2£2)* into powers of p, one gets

E,= | d& Eeia=io!—¥(1 — 4ipk~ 1282 4 ...)
(44) ‘ .
[GFFY + gM(1 — k282 + . )FY].

The functions F} as defined in (18) and (25) contain Bessel functions J, with
arguments y*rg. The integration over E can be carried out by means of (A8) and
(A9) of the appendix. The field E| is then found to be the sum of a function that
falls off like a Gaussian for large r and a function that is proportional to r~2.
The latter function drops out if c5 = ¢}/ =c¢,. For that choice the field E, —and
also the other components of the electromagnetic field — become Gaussian, as is
suited for a wave of limited width. In fact the field E, gets the form

{ E,=e*e-iot=0rc (1 4 yk=2[(1 — $pr?)(— ikz— 4+ cf +¢}f)

R R Y e ) PR

The terms between curly brackets are ordered in increasing powers of y; the
combinations yx? and yy? are considered to be of order unity, since the width of
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the wave is y~*. The other components of the electric field are found to be
46)  E,=eksmior= b [yk =2y +cf — i) + ..,
(47)  E,= —ek-iot=3jcopk=1x{1 — 2pk=2(1 — dpr2)(ikz — 2¢)") + ...

The magnetic fields B,, B,, B, follow from the electric fields E,, E,, E; by means
of the substitutions x<y, ¢f < ¢} and addition of a factor n.

The leading terms of the expressions (45-47) for the electric field (and their
counterparts for the magnetic field) agree with those given by Peierls [3] for the
special case of normal incidence.

The reduced radiation force caused by an incident wave of finite width, as
described by the fields (45-47), follows by inserting (41) into (39). If use is made
of the expressions (I.31) with (1.37) for |f}|? at small angles of incidence, the
integral in the numerator of (39) becomes

@8) 4y 21+AL) e [dE 61 -+ e+ e
0

Here A, has been defined in (I1.34). Similarly, the denominator of (39) may be
written as

49 2r7%cl? i dE ET=E1 +(cF + e+ ..Je 7',

The integrals in (48) and (49) can be evaluated by introducing as before, the new
integration variable &=y~ *k¢. The reduced radiation force is then found to be

(50)  Frd=2n(1+A,) '[1-4yk~2+..],

up to first order in the width parameter y.

The expression (50) may be compared to (1.30) with (I.31) for the reduced
radiation pressure of an infinitely wide wave. The effects of the finite width
have led to the factor between square brackets in (50). The difference of this
factor from unity is determined by the ratio of the wave length and the beam
width, as could be expected. In the measurements performed up to now [2] the
second term of this expression is of the order 10~7-10~8, and hence within the
experimental uncertainty. Nevertheless, the evolution of the radiation pressure
for beams of finite width is of interest from a theoretical point of view, for
reasons mentioned in the introduction.

APPENDIX. INTEGRAL RELATIONS FOR BESSEL FUNCTIONS
An integral representation for the Bessel function of order zero is:

1 2n .
(A.1) P (j) do e" ¢ = Jy(r)
for r=0. Writing ¢ — ¢, instead of ¢ one gets:

2n

(AZ) 2_17-[ (s)' d(p ei(x cos ¢+ y sin @) =J0(r)
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with x=r cos g and y =r sin @, so that r=(x*+ y3)t. Upon differentiation with
respect to x and y we obtain:
1 % » . ix
(A3)  — | dpcosgexcosorysing =— J(r),
2w 0 r

2n 7
(Ad) = dpsingetceosorysna 2 )
2 o ) r

By differentiating twice one finds from (A2):

1 2 i(x cos p+y sin @) o ___y2 1
(A.5) o g dpcos? g e orysing) = oy Jor) + I (),
1 H i(x cos ¢+ y sin @) Xy
(A.6) o (5) dy sin ¢ cos g e prysing) = — = Jo(r),
1 2 ) . XZ __y2
(A.7) > (S) dp sin? @ e/x cos ¢+ sing) - > JH(r) + 3Jo(r).

In deriving the fields for a Gaussian wave we used integrals over a product of
a Gaussian and a Bessel function. These integrals follow from the formulae [1]:

(A 8) Td x2n+m+l —asz (b — nto” —%bz/aLm b_2

: s X e m x)_2m+lan+m+le "\da/)’
* 1 2 12 2

A9 dx xe=**J,(bx) = — (—+—>e""’ g =,

(4.9) (5) /2(bx) 2a b b

valid for non-negative integers m, n and positive @, b. The functions L/ are

associated Laguerre polynomials.
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