CHAPTER IV

Composite particles

1 Introduction

The covariant laws of electrodynamics of composite particles will be derived
in this chapter on the basis of the equations that govern the fields and motion
of charged point particles.

The equations for the fields generated by composite particles will be found
by introducing covariantly defined multipole moments, through which the
inner structure of the composite particles will be characterized. As a con-
sequence the field equations will contain in their sources the effects of the
motion of these multipoles. It will turn out that the electric and magnetic
properties then appear in a more symmetric fashion than in the non-relativ-
istic approximation.

The central problem in the derivation of equations of motion of composite
particles in an electromagnetic field consists in defining a covariant centre of
energy. It will be shown how such a definition can be obtained and how it
leads to covariant equations of motion for particles endowed with multipole
moments, at least in the case of weak fields.

2 The field equations

a. The atomic series expansion

Let us consider a system in which the charged point particles {electrons and
nuclei) are grouped into stable entities (such as atoms, ions, molecules, free
electrons), which will be called ‘atoms’ here. The particles will be labelled
by double indices ki, where k numbers the atoms and { their constituent
particles. Then the field equations (IIL.4-5) become:

fa” z ekl ukl(skl>5(4){Rkl(skl) R}dskl (1)
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Here s,; is the proper time along the world line of particle ki, R(s,;) its four-
position, u(s;;) its four-velocity, and ey, its charge. From the form of the
integral it follows that it is not necessary to choose the proper time as the
parameter along the world line. A different parametrization will indeed be
introduced.

Let us now choose a (at the moment arbitrary) privileged world line R
that describes the motion of atom k as a whole, with the proper time s,,. This
parametrization can be carried over to the world lines of the constituent
particles ki by defining the point Rf(s,) on the world line of ki with the help
of the relation:

Rii(se)m(si) = Ri(s)m(si), (2)

where ni(s,) is an arbitrary, fixed time-like unit vector depending on s,.
(Later on we shall make various choices for this unit vector.) Internal atomic
parameters ryi(s;) are now introduced by

ri(se) = Rii(se) — Rilsp)- 3)

Introducing this definition into (1) and expanding the delta function in
powers of r;, one obtains

e3 d; 1
faﬂ Zekl (“k(&)‘*‘ g

) Z( 1) (1 0)"0“V{Ru(s:) ~ R}dsy, (4)

where u;(s,) = dR}/ds, and where the fact has been used that 8/8R} acting
on the delta function is the same as -9, acting on it. The first term on the
right-hand side with the term n = 0 of the series expansion is

¢ Y*(R) = ;ek u(50)8 P {Ry(s) — R}dsy (5)

(with e, the total charge Zie,;i of atom k). This four-vector has com-
ponents @ = Oand o = 1, 2, 3, which are equal to the charge density and the
current density (divided by ¢). Equation (4) can now be written as

P FPR) = ¢! J(R)+0, Z e { —1y fuk A () e

,l

+ Z ( D (dr

CU [ oy 50 @e-Ras. ©)
n= K

One can complete the second term at the right-hand side to the divergence
of an antisymmetric tensor by subtracting a term of similar structure but
with rf; d Rf/ds, instead of (dRZ/ds, )rf;. If this extra term is partially integrated
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and then added to the last term, one obtains
0pf P = ¢+ 0pm™. (7

This equation has already the form of Maxwell’s inhomogeneous equations.
It contains the antisymmetric tensor

n+ 1 o
B (=) f{ Y n ( drf,  drt, ﬁ)}
m™ =) ey r lu — Ut | — i
2 e Z e " ds, ds, k

ki n=1 n!

(re0)"” 15(4)(Rk”‘ R)dse, (8)

which will be called the atomic polarization tensor.

The internal coordinates rg(s,) enter this expression in certain combina-
tions which we shall call the ‘covariant electric and magnetic multipole
moments’, defined as

1

Ay.ln W1 On —

Uomic ™ = - E,ekﬂki R (n=12..),
n! 5

X+ 1 &y
O~ 1 ( Zn dik? rfxn+1 dl” x) (9)
’

A1 -1
04 = C E ees ¥ r ;
(n)k i ¥ kl ki ki ki
(n + 1)' Si ds;

Their dependence on the time-like unit vector mni(s,) is indicated by the
index (n). With the help of these quantities the polarization tensor becomes

<
+1 ot =16,
=Y (-1 f(#?ﬁ)ka Ul = i
k n=1
+ V5 ) 0 8P (R = R)ds,,  (10)
where we have written &, , for é,,0 0., The combination of elec-

tric and magnetic multipole moments which occurs here will be employed
frequently, and will be denoted as

s

S R | - SOy = 10 1y
MO = T (Ul = e T ) (11)

In this way m™ may be written in the compact form

= e 3 (- [ e, SRR (1)
k n=1

The inhomogeneous equation (7) with (5) and (12), together with the
homogenecous one

LT = 0 (13)
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form the atomic equations® for the fields generated by atoms with charges e,
and multipole moments u(;* and ™ (n = 1,2,...). The retarded
solution of (7) and (13) may be writlen in terms of the Green function
(I11.44), derived in the preceding chapter. One finds (cf. (IIL59)):

77 = %[ s = 3 [ Gty + it (19
where the contributions of the charges and multipoles are:

Jiy = = S (i~ P {(R— Ry JOR Ry, (15)

7 o o 2 -1 . n—
fl?(/rix) = z - {m?);)ka aoﬁa; L€ (’——‘ — Uy 0) #M i ﬂaﬁal Oy — 1}
a=1 27 ds;

S{(R=R;)"}0(R—R)—(= ). (16)

Here d/ds, acts only on the electric multipole moment g, Furthermore
0(R— R,) is the unit step function of R®— Ry. The symbol (o, ) indicates the
preceding terms with o and f interchanged. If (16) is inserted into (14), the
second term gives no contribution since the integral over s, may be per-
formed. The reason for retaining it is that (15) and (16) as they stand are
together the multipole expanded form of the integrand of (II1.59) (v. prob-
lem 4). This property will be useful later on.

It will be convenient to split the retarded field in the plus and minus fields
(which are half the sum and half the difference of the retarded and advanced
solutions respectively). The plus fields will satisfy an equation of the form
(7) with (5) and (12), whereas the equation for the minus field will contain
no sources. Since the advanced field has the same form as (14) but with
O(R,— R) instead of 8(R— R,), one finds then for the plus and minus fields

? = 5[ s, = 3 [ (o /i ©
where the contributions of the charges and multipoles are for the plus field

7, € a A LAY
Fie = — Z’;(ukaﬁ —uf 0%)5{(R—Ry)*}, (18)

1 A. N. Kaufman, Ann. Physics 18(1962)264; H. Bacry, Ann. Physique 8(1963)197;
S. R. de Groot and L. G. Suttorp, Physica 31(1965)1713; L. G. Suttorp, On the covariant
derivation of macroscopic electrodynamics from electron theory, thesis, Amsterdam (1968)
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A ~1)'c d
aff — a1...apanf -1 a - Sy Y]
f+k(m) = - m(rix)k O.ai...an_c Uyt 0 - R, Rl
n=1 4z dsk

H{(R=R)*} = (e £), (19)
while the minus fields contain an extra factor e(R—R,) = O(R— Ry)—

O(R,— R) after the delta functions. The partial fields fulfil the equations:

05 Fh 0 = e, ul0(R, — R) + % Ou 06{(R—Ry)*}, (20)
i
n A -1 d )
Op j+k(m) = Z (—=1)c Wi Oy — € — U0
n=1 dSk

| SR R)

z (= 1)'1“1 (H —u .0) p g, __ané{(R—Rka}, 1)

n=l 4r

Tp f fk(e) = ;’r_ aa”k.Oéf (R- Rk) te(R—Ry), (22)
71
aJ%m~Z(? F“ﬁ@)“wm%wRwavam
n=1 T

If one integrates these four equations over s, only the first terms of the right-
hand sides of (20) and (21) give contributions (v. (7) with (5) and (12)).
The inhomogeneous atomic field equations may be written in an alternative
form by introducing the atomic ‘displacement tensor’

P = fob b, (24)
Then equation (7) becomes
0,1 = ¢ 1 23)

which has the same form as Maxwell’s inhomogeneous equation.
Owing to the antisymmetry of 4 equation (25) is consistent with the
law of conservation of charge

0,j" =0, (26)

which may be proved from expression (5) for the four-current.
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b. Multipole moments

The polarization tensor (10) contains the covariant multipole moments ©)
which depend on the atomic internal coordinates r{;, measured in the ob-
server’s (ct, R)-frame. These covariant multipole moments have different
values in different observer’s Lorentz frames. They are therefore not con-
stant properties which characterize the atoms. It is more convenient to
characterize the internal electromagnetic structure of the atoms by means of
parameters that are independent of the velocity of the atoms. This can be
achieved with the help of parameters defined 1n a Lorentz frame in which the
atom as a whole is at rest. Such an ‘atomic frame’ must have a (constant)
velocity v equal to (dR,/d?),.,, (at a moment 7 = #,) with respect to the
reference frame (ct, R) of the observer. Space-time coordinates of the
reference frame (cz, R) and of the atomic frame (c#(%, R(®)) are connected
by a Lorentz transformation.
In the atomic frame the atom may be characterized by internal parameters
1, which at the moment #(® = £{* (correspondingto r = 7, in the reference
frame) are purely spatial vectors, i.e. r{’° = 0. This corresponds to the
choice ¢~ 'ug voor n as follows from (2) with (3). Since the atom suffers
acceleratlons the atomic frame is just a momentary rest frame: only for
= to does the atomic velocity dR{”/dz‘® vanish. Hence one needs for a
description in which the atomic parameters are independent of the velocity all
the time a succession of momentary rest frames. This succession of Lorentz
frames which is not a Lorentz frame itself will be called the permanent atomic
rest frame (denoted by a prime). It coincides at time z, with the momentary
atomic rest frame which has been denoted by (0).
The proper atomic multipole moments are certain useful combinations of
the atomic internal parameters ry;, defined in the permanent atomic frame’.
The electric atomic 2"-pole moment is defined as®

n 1 ' \n
) = 7?‘2 i)’ (n=12..) (27)
and the magnetic atomic 2"-pole moment as:

v = Y ey a A it =1,2,.) (28)
(n+ 1)‘

* A.N. Kaufman, op. cit. (dipole case), S. R. de Groot and J. Vlieger, Physica 31(1965)125
(quadrupole case); S. R. de Groot and L. G. Suttorp, op. cit.; L. G. Suttorp, op. cit.
* For atoms in uniform motion these atomic multipole moments coincide with the space-
space and space-time components of the covariant multipole moments (11) - with the
unit vector »* chosen as uffc ~ in the rest frame. If the atom suffers accelerations the rela-
tion between the covariant and atomic multipole moments is slightly more complicated
(v. appendix II).
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(the powersindicate polyads of three-vectors). The dot indicates a time deriv-
ative defined in a special way as explained in appendix IL

The polarization teasor, which in (10) is given in terms of the covariant
multipole moments, may be written now as a function of the atomic multi-
pole moments. The connexion between the two kinds of multipole moments
foltows from a Lorentz transformation (v. appendix II). With the help of the
relations (A6), (A41) and (A43) one obtains, performing the integral over
sy, for the components m'® = p' of the polarization tensor:

=3 3y (7)) ey u R R

k n=1
(1) B T S A B bR )
p=0 \ P
+:20 (nljz) (li_l)gi_ﬂ Ao{(h ﬁk)p(v £, l)" P 2)’k Oo(yk ﬁk) 2
(") AN ﬁk 5(Rk R)}
(n ; 2) (n—1)08{ (i B (V-2 )P 2)’k 00(v )

R R) | (9)

n—2

p=0

where the triple dot stands for an n- or (n—1)-fold contraction. This ex-
pression contains as exteraal variables the position vector R, of the atoms
(entering only in the delta function), the velocity dR,/dz = B,c¢ and higher
time derivatives. Furthermore we used the abbreviation vy, = (1 — B *and
the three-tensor (U is the unit three-tensor)

o, = U+(rt—1) Pl (30)
k
as well as its inverse
Q7 = Ut (e )”"B" (31)

The three-tensor £, can be interpreted in terms of a Loreniz contraction,
since for every three-vector @ = @, +a, (split into a part parallel and a part
perpendicular to the velocity B, ¢) one has according to definition (30)

Qca = a,+V1—-pia,. (32)

This shows that the longitudinal component of the vector is subjecled to a
Lorentz contraction. In view of this property of @, we eliminate €, ' from
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(29) by means of the identity
" = QBB (33)

which is a consequence of (30) and (31). In the result for the polarization the
atomic multipole moments then occur contracted with the tensor €,. These
quantities will be denoted with underlined symbols:

1
Y = " Y el cria)'s (n=1,2,..), (34)
nl75

n LAY/ Al ¥ T

Zl(c) = Z (1) Qe ("k;/\ i) > (n=12..). (35
(n 1)‘ ¢

According to (32) they represent atomic electromagnetic multipole moments

of which the longitudinal components are submitted to a Lorentz contrac-

tion. With the help of (34) and (35) the electric polarization (29) becomes

finally:

_ R Gt VN Gt V1
P ;nzl pZO qzo (n—1-p)(p—q)!
VI ()" 0 lrE (B (857 = i A BIHID, (R~ R)
B ol S S et G V.

kn=2 p=1 g=0 n{n—1—p)i(p—q)!
Vi T {000 BT HOE O B (4 A BYID, SR~ R). (36)

The nabla opsrator differentiates R, which occurs only in the delta function.
Furthermore the product 8, 'd,, which occurs if p = g in the first sum, is to
be considered as unity. The triple dot stands for an (n—1)-fold contraction.
The symbol D, is defined by:

d 1
D,(R,—R) = Y ——"r
m=0 m'(q )
The magnetization m’ = m'* (i, j, k = 1, 2, 3 cycl.) follows by substitution
of (A41) and (A42) into (10). Then one obtains an expression which is
similar to (36) but with the replacements

95 "{(BV)"6(R,— R)}. @7)

B = w A By,
A B = — v,

(38)

This shows a symmetry between the components p and m of the polarization
tensor m*.
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The polarization tensor obtained so far contains time derivatives of the
delta function as is apparent from (37). They can be expressed in terms of
spatial derivatives, because

9 0{R(t)—R} = — B'Vo{R,(t)—R}. (39)
By means of the chain rule of differentiation one then obtains a sum of
spatial derivatives of the delta function, where each term has a factor in

front of it, which may contain g, and time derivatives of .. For the values
g = 0 and 1 one finds directly from (37)

Dy=1, D;=0. (40)

For dipoles (n = 1) and quadrupoles (n = 2) one only needs these values.

c. The field equations

The atomic field equations (7) and (13) read in three-dimensional notation

Ve = p*~V-p,
—0pe+VAb =jlct+,p+VAm,
o€ il oP (41)
Vb = 0,
Oob+Vae =0

Here ¢! = £ b' = f* p® = j%c, ji = j, p' = —m® and m’ = m™* (i, ], k
=1, 2, 3 cycl.). These atomic field equations have the same form as Max-
well’s equations. Their source terms include the atomic charge density

pt = ; e 6(R—R) (42)

and the atomic current density
j= ;ek Bicé(R.—R), (43)

as follows from (5). They satisfy the conservation law of charge (26) which
reads in three-dimensional notation:
op°

-

+Vj=0. (44)

Furthermore the polarization vector is given in (36), while the magnetiza-
tion follows with the replacement rules (38). They are sums of multipole
contributions of various order n:

p=xp" m=3} m® (45)

n=1 n=1
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of which the lowest orders will be given and discussed in the next subsection.

The sources p°, j, p and m which are functions of R and 7 are all sums
over the separate atoms k. They contain the internal atomic quantities e,
(which are scalars), u{” and v{” (which are defined in the atomic frames).
They also depend on the external quantities of the atoms, which are defined
in the observer’s (cz, R)-frame. The external quantities include the atomic
positions, velocities and higher time derivatives of these. Time derivatives
of the internal quantities p.{ and v{" also occur. The atomic field equations
are still equations for the microscopic fields e and b, in which however the
existence of stable groups of point particles is taken into account. They con-
tain internal and external quantities, all referring to single atoms. Thus the
atomic fleld equations can be said to be valid at the so-called kinetic level
of the theory.

An alternative form of the atomic field equations follows by introducing
the displacement vectors d* = A% and A' = /’*(i,j, k = 1,2, 3 cycl.) that
form part of the displacement tensor (24). The latter definition reads for the
components:

d = e+p, h=b—m, (46)

so that one has for (41):

Ved = p°,
—0pd+V Ah = jle,
0 il (47)
Vb =0,
Oob+Vae=0.

These alternative atomic field equations have the form in which the macros-
copic Maxwell equations are usually written.

d. Explicit expressions for the polarization tensor

In this subsection explicit expressions for a few special cases of the polariza-
tion tensor will be written down. The contributions from the electric and
magnetic dipole moments (r = 1) that follow from (36-40) are:

P = ; (Ex(cl) %A B)S(R.—R), (48)
mD =% (v + 5P A B)S(R,~R). 49)
k

Here the motion of the atom gives rise to two separate effects. In the first
place the electric polarization (48) contains a term due to the magnetic dipole
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moment and similarly the magnetic polarization (49) a term due to the elec-
tric dipole mement. Furthermore the dipoles are subject to a Lorentz con-
traction, since g{" and v{"’ can be rewritten, if use is made of the property
(32) of the Q, tensor:

W = Qe = W+ (50)

stli + \/1 ﬁ?vzfl/’/ , (51)

I

y = Qew?

where p{ and v{" are split into a part parallel with and a part perpendicular

to the velocity cf;.
The terms p® and m® with electric and magnetic quadrupoles (n = 2)

read:
D= ; [— V(? =9 A B =BG (1 — v A B}
— 172 0o(vi B ¥ A B JO(R—R), (52)
m? = Z [= V(o + 17 A B —7i B o (na(? + 17 A B}
+ 49, 0o(ve B) v 10(R. — R). (53)

Due to the motion of the atoms the electric and magnetic quadrupoles are
subject to a Lorentz contraction since we can write:

w?

it

Qi Q, = pi u+\/ 1=Bi(p + ) )+ =B s (54)

and an analogous equation for v{*’. The leading terms of (52) and (53) con-
tain the divergence of the electric and magnetic quadrupole densities. The
second and third terms are relativistic corrections. They contain time deriva-
tives of the atomic quadrupole moments which means that changing quadru-
pole moments contribute in a special way to the polarization tensor. This
effect, which has a relativistic character, may be called the ‘multipole fluxion
effect’. Accelerated atoms carrying quadrupole moments also give rise to a
special type of terms in the polarization tensor. This effect, which again does
not exist in a non-relativistic theory may be called the ‘acceleration effect’.
The order of magnitude of these effects as compared to the main contribu-
tions in the polarization tensor will be discussed in the chapter on macro-
scopic theory.

Higher order multipole contributions may also be derived from (36-39).
We shall not give these expressions explicitly.

The polarization tensor (py, m;) of a single atom k to all multipole orders
takes a simple form in the momentary atomic rest frame (c#(®’, R(?). In fact
P2 and m{® follow from (36) with (37) and (39) (without the summation
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over k) and the corresponding expression obtained with (38), if one puts
B = 0. Then only p = 0 and ¢ = O subsist in the leading term. The other
term in (36) disappears altogether, whereas in m, only its part with ¢ = 0 is
left over. Thus one gets

(O) _ Z ( 1)11——1(v(0))n—1 : ‘L](gn)(S(R](;O)_R(O)): (55)

m](ﬁ()) _ Z (_ l)n~1(v(0))n—1 Vl(cn)é(Rch) _R(O))
n=1
n—1 (_1)11—1(n_1 1 1 . "
33 G R GOy i -R). (56

Apart from the leading terms, which are divergences of multipole densities,
a term representing ihe acceleration effect (with quadrupoles and higher
moments) appears in the magnetization vector for an atom in its momentary
atomic rest frame.

e. The non-relativistic and semi-relativistic limits

In the so-called semi-relativistic approximation one retains terms of order
¢~ 1, treating the atomic multipole moments as parameters characterizing the
atom, without considering whether they contain a factor ¢~ *. Then, if terms
of order ¢~? and higher are neglected in (36) with (37-39) so that y, ~ 1
and £, ~ U, we find:

PR, 1) ~ Zl( LIV (0 = v A B)S(R—R), (57)
R 1) = 3 (1) G0+ ABYRR). ()

These formulae show a symmetry in the sense that p, contains terms due to
moving magnefic multipoles v{™, just as m, contains contributions of the
same type from moving electric multipoles ™.

The non-relativistic limiting case is obtained if one takes into account the
fact that the magnetic multipoles contain a factor ¢~ 1. Then, up to terms of
order ¢™*, one is left with (cf. (I1.34)):

PR, ) = X (~1) 7V WO5R - R) (59)

my(R, 1) = Z( D7V (v 4 A B)S(R—R). (60)

n=1
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The symmetry ot (57) and (58) is lost now, since p, (59) contains no terms
with moving magnetic multipoles.

3 The equations of motion of a composite particle in a field

a. Introduction

To obtain equations of motion of composite particles we shall have to start
from the corresponding equations for the constituent particles. In the pre-
ceding we have written the equations of motion for a set of point particles in
the form (II1.158):

9pt™ = fo. (61)

Here 1/ is the (symmetric) energy—momentum tensor, which is the sum of a
material contribution and a field contribution. The latter contains the fields
generated by the constituent particles. It has been given in (II1.159) as

taﬁ = C Z m; u?uézé(4)(Ri_R)dsi+ 2 (fiayfj’iy_%fiyffj)'s gaﬂ)

LiG#])

S SRS S Sy 5 e 0™). (62)

At the right-hand side appears the force density (II1.160), which is the
sum of the Lorentz forces acting on the individual particles:

fa = Z eifF“Buiﬁ 5(4)(RL—R)dS, . (63)

Starting from the energy—momentum balance given above we shall derive
the equations of motion of a composite particle in an electromagnetic field.
For that purpose we shall first have to define a covariant centre of energy.
Subsequently the equations of motion will be obtained for charged compo-
site particles which carry electromagnetic multipoles®.

! The treatment will follow the derivation given in L. G. Suttorp and S. R. de Groot,
N. Cim. 65A(1970)245; v. also W. G. Dixon, N. Cim. 34(1964)317; 38(1965)1616. A
treatment with a different definition of the centre of energy from the one used inthefollowing
was given in S.R. de Groot and L.G. Suttorp, Physica 37(1967)284, 297; 39(1968)84; L.G.
Suttorp, Onthecovariant derivation of macroscopic electrodynamics from electron theory,
thesis, Amsterdam (1968). Often equations have been postulated, i.e., either obtained from
variational principles ad hoc or generalized from non-relativistic theory, e.g. J. Frenkel,
Z. Phys. 37(1926)243; V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2(1959)
435,
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Part of this programme may also be performed with the use of the alter-
native energy-momentum balance discussed in the appendix of the preceding
chapter. This will be done in an appendix to the present chapter.

b. Definition of a covariant centre of energy

In this subsection we shall be concerned with the general definition of a
centre of energy for systems described by a symmetric energy-momentum
tensor 1/, that fulfils a balance equation:

8,1% = f*, 64)
B

with f* a force density that has a finite support in space-like directions. The
general scheme will subsequently be applied for the tensor #*# of the preced-
ing subsection.

Let us consider systems for which the total momentum p* over a plane
space-like surface ¥ with normal »*

P = —c_lfztaﬁnﬁ d’z (65)

is a finite time-like vector, with a positive time-component (then the
total energy of the system is positive). The tensor ™ will be supposed to
diminish in space-like directions with increasing distances in such a way that
this integral (and those which we shall need later) are (semi-)convergent.
A covariant centre of energy may then be defined* by considering those plane
surfaces 2 of which the normal r* is parallel to p® In these surfaces one then
determines the centre of energy

@ _ 52 R“nﬁ tﬁyny d32

X
s 1y %, 4%

(66)

(In the rest frame of p” this formula reads indeed X = | Rt°°dR/{ t°°dR.)
These centres of energy then satisfy the relation

P.5F =0, (67)

where the inner angular momentum is
s = —c‘lf {(R—XY1¥"—(R - X)P1*"}n, d>z, (68)
z
assumed to be a finite quantity for the system under consideration.

* 7T. Nakano, Progr. Theor. Phys. 15(1956)333; W. Tulczyjew, Acta Phys. Polon. 18(1959)
393; W. G. Dixon, N. Cim. 34(1964)317.
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We shall prove now that the set of centres of energy defined in this way
forms one single world line (or several discrete ones). Consider such a point
X* determined in a plane surface X with normal parallel to p®. One may ask
oneself now if there exists a point X*+5X* (with p, 6X* = 0) in the in-
finitesimal neighbourhood of X% which is likewise a centre of energy, this
time in a plane surface X’ with normal parallel to the corresponding mo-
mentum p®+&p”. In the proper frame of p* one has from (65), (67) and (68)

f f°(R%, R)dR =0  (R® = X9), (69)

f (R—X)°°(R® R)dR = 0. (70)
b
The proper frame of p*+Jp”* is connecled to the proper frame of p* by an
infinitesimal pure Lorentz transformation:

R% = R°+&R, R =R+&R° (71)

for a certain value of &. The time-space point with coordinates (R, X +3X)
has in the new frame the coordinates (R, X' +8X’) which are given by

R = R%+eX, (72)
X' +6X = X+6X+¢R° (73)

up to terms linear in ¢ and 6X. Furthermore the space coordinates of an
arbitrary point in 2’ read in the new frame

R = R+¢R°, (74)
where R and R° are connected by
R = R%°+&R. (75)
From (72), (74) and (75) it follows now that
R® = R°+e(X—R), (76)
R = R'—¢R". (77)

In the proper frame of p*-dp® the space components of the total momentum
vanish (cf. (69)):

f (R, R)dR' = 0. (78)
5
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Using the transformation properties of a tensor one gets
fw{tio(ﬁo, §)+ait°°(R°, R)+sj t9(R°, R)}dl?’ = 0. (79)
Introducing (76) and (77) we obtain (6, = /0R°):

J {£9(RY, R')— R%(0JaR ) (R®, R)+ (X — R')3, (RO, R)
+&'1°%R, R))+¢;t/(R%, R)}R' = 0. (80)

With (69) it follows that the first term vanishes. From (72) and the fact that
R is constant in the integration it follows that R° is constant so that the
second term gives no contribution either. Therefore we have:

f {e(X—R)9, °(R°, R')+&'1°°%(R%, R')+¢;19(R%, R)}R' = 0. (81)
With the equation of motion (64) and a partial integration this becomes
J{a"(X—R) fF(R, R)+&t°°(R%, R)}dR = 0. (82)

The first integral is in fact extended over a finite support since /* has a
finite support. Hence for sufficiently small force densities one has

ef {°°dR

so that (82) cannot be satisfied. The conclusion is that no point exists in the
infinitesimal neighbourhood of X#, which is also a centre of energy; in other
words the set of centres of energy determines a discrete number of world
lines.

The condition (67) thus leads to a situation completely different from that
following from the condition u,s* = 0 (with ¥* = dX*/ds where s is the
proper time). As a matter of fact Meller proved® that the latter condition
does not suffice to determine a world line. Moreover he showed that it
cannot be supplemented by the requirement that p* be parallel to 4* (in the

s-f(X—R) F(R®, R)dR i < , (83)

b C. Moller, Ann. Inst. H. Poincaré 11(1949)251.
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general case /* # 0)!. Nevertheless this condition is sometimes used?, al-
though it leads to peculiar solutions: even in the force-free case a special
type of helical motions is possible. (In order to avoid this difficulty the form
of the derived equations is sometimes® changed ad hoc by means of a so-
called ‘iteration process’.)

The general prescription for the construction of a centre of energy as given
above will be applied now to the case of a composite particle (consisting of
charged point particles) that moves in an external electromagnetic field. As
we saw in the preceding subsection such a sysiem may be described by means
of the energy-momentum tensor (62). In order to be able to apply the con-
struction of the energy centre given above, we must check whether all as-
sumptions used there are justified. To begin with, the energy-momentum
tensor t*# (62) is indeed symmetric and the force density (63) has indeed a
finite support in space-like directions. The next point to discuss is the con-
vergence of the integrals, in particular of (65) and (68) for p* and s™. (The
convergence of all other integrals occurring is determined by the latter two.)
The integrals contain %, which is a quadratic function of the fields f*¥ of
which the beshaviour for small and for large space-like distances follows
from (II1.110,111) and (I11.96,98). The first two formulae show that the
convergence at short distances presents no difficulties (note the presence
of the condition i # j in the second term). The latter formulae indicate that
for large space-like distances the fields diminish inversely proportionally to
those distances, so that the energy—momentum tensor diminishes only with
the square of the distances. As a consequence the integral p* (65) would
diverge if no subsidiary conditions on the fields are imposed. This is a re-
flection of the fact that the total energy stored in the electromagnetic field
would be infinitely great if the particles have been suffering accelerations
from infinitely past to infinitely future times. Here we hit a well-known
difficulty of classical theory. In such a theory a composite particle is not

! For the free composite particle centres of energy have been defined and discussed already
by A. D. Fokker, Relativiteitstheoric (Noordhoff, Groningen 1929) 170; M. H. L. Pryce,
Proc. Roy. Soc. A195(1949)62.

2 H. Hoénland A. Papapetrou, Z. Phys. 112(1939)512; 116(1940)153; M. Mathisson, Proc.
Cambr. Phil. Soc. 36(1940)331; 38(1942)40; H. J. Bhabha and H. C. Corben, Proc. Roy.
Soc. A 178(1941)273; J. Weyssenhoff and A. Raabe, Acta Phys. Polon. 9(1947)7, 19, 26,
34, 46; H. C. Corben, N. Cim. 20(1961)529; Phys. Rev. 121(1961)1833; A. Bialas, Acta
Phys. Polon. 22(1962)499; P. Nyborg, N. Cim. 31(1964)1209; 32(1964)1131; W. G. Dixon,
J. Math. Phys. 8(1967)1591; J. Vlieger, Physica 37(1967)165.

® E. Plahte, Suppl. N. Cim. 4(1966)291; J. Vlieger and S. Emid, Physica 41(1969)368;
S. Emid and J. Vleger, Physica 52(1971)329.
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stable against radiation: as a consequence of the emitted radiation energy
and momentum is lost unrestrictedly. This is a paradox if the total energy
content in the initial state is finite. To obtain nevertheless classical equations
of motion one imposes the subsidiary condition that in the remote past and
future the particles are not accelerated (just as in the treatment of the fore-
going chapter for a single particle). In this way the effects of radiation in the
remote past and future are suppressed.

With the subsidiary condition it follows that for the discussion of the
convergence of the integrals at large space-like distances only the velocity
fields in (II1.96) or (IT1.99) have to be taken into account. These retarded
and advanced velocity fields due to particle 7 are

2
Foli= & s (=) (84)
- dr(uyr;)? ’

where r{ = R*— R;. If these fields are introduced into ¢ (62) it follows that
the total momentum (65) over a space-like plane is indeed a finite four-
vector (which is assumed to be time-like). However the integral (68) for the
inner angular momentum is only conditionally convergent (as follows by
counting the powers of R), so that a (Lorentz-invariant) prescription must be
given for its evaluation. Since the integral is independent of the choice of the
origin of coordinates (because only coordinate differences are involved) we
may choose as origin a point lying in the plane ¥. The conditionally conver-
gent integral splits into a convergent part with integrand X“*" — X%t and a
semi-convergent part with integrand R**"—RPt**. We shall confine our
attention to the latter part. A prescription for the evaluation of this part is
obtained by considering a three-sphere with radius p around a point in the
plane Z. We then evaluate the integral [(R*"’—RPt"7)d>%,. We shall prove
that this integral tends to a finite limiting value if the radius p tends to
infinity. Furthermore we shall show that it is independent of the precise
location of the centre of the sphere.

To start with the latter let us consider a sphere of radius p around the
centre C7 and another sphere of the same radius around C35. The difference
between the integrals extended over the two spheres has an integrand which
is of the order of p~3 (since for sufficiently large p only the velocity fields,
which are proportional to p~2, come into play) and is extended over a
volume of the order of p2. Hence this difference tends to zero if p grows in-
definitely. Since the limiting value of the integral is now proved to be inde-
pendent of the location of the sphere’s centre, we shall choose this centre
as the origin.

In order to prove the existence of the limit of the integral [(R*#*"— R1*)

il
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x d3Z, over the sphere for p — co we have to show that the contribution of
a spherical shell, lying between two such spheres, tends to zero if the smallest
radius tends to infinity. To that end we substitute ¢ (62) withf; , ; (84) into
the integrand so that we get for the field dependent part:

et e (TG ) (B s oy,
' 16n(uyr,)*(upr;) 32w (uyrs)(upry)’ e

i Ji# )

. Z eizcd’JR“ {("?uf—ﬁ“i)(”?“iag‘ Fig ”Z)
i 16n*(u;r;)

B (reus —riuf)r, uye g7
32n%(uyr;)°

} i_dsz},—(a, B, (85)

where we introduced the symbol — at the bar to indicate half the difference
of the retarded and the advanced contribution. The symbol (o, §) indicates
the preceding expression with « and f interchanged. Since we have taken
into account only velocity fields it is consistent to assume that the retarded
position four-vector Rf|, that occurs here is parallel to the retarded four-
velocity 12|,, at least for sufficiently large p, i.e. we write

Rﬂr = ~"c—21'4i"Ri1”?’1-_{'2::?2: (86)

where the factor in front of «¥ is chosen such that the four-vector & is
orthogonal to the velocity (&, u;l. = 0). If the radii of the spheres tend to
infinity, both the left-hand side and the first term at the right-hand side blow
up, while the last term remains finite. Similar remarks apply for the connexion
between the advanced position RY|, and the advanced velocity 47,

Ri|, = _c—zui'Riu?la_{'é?a‘ (87)

If we substitute (86) and (87) into (85) (using the definition 7 = R*—R}),
we find terms which are independent of &* and terms that contain &% By
counting the powers in R one notices that the latter terms give vanishing
contributions if p tends to infinity. The remaining terms of the right-hand
side of (85) read

5 eie.C4JRd{u?(Rqu"n""R'u_,'R'n)_%nﬂ(Rzui.uj_f.uiR'uj)} e
Lt 167° {us(R—R;)}*{u;(R—R))} r
2
iy 6264fR“[uf(Rzui'n——R'uiR'n)"%nﬁ{‘chz‘(R'“i) 1 Bz (a, p),
o 167°{u;(R—R)}° -

(88)
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where we employed the definition d32, = n,d*2 (with n* the normal to
the surface X). Since R as well as the origin are situated on the surface ¥
one has Rn = 0. Furthermore we may use the light-cone equation r? = 0
to eliminate u;R;. Indeed if (86) or (87) is substituted into the light-cone
equation written as (R;— R)* = 0 one gets

U Ryl,. = {usREV (s R)? +R2c2}[r,a ) (89)

where terms containing ¢ have been suppressed at the right-hand side. Then
the denominators of (88) get the form

167 {(usR)* + R*c*}*{(u;*R)* + R%c?}3,

16n*{(u;R)* +R*c*}%. 0

If these denominators are used one finds immediately that the integral ex-
tended over the three-space between two spheres around the origin vanishes
on grounds of symmetry (the integrand changes sign if R is replaced by —R).
Thus we have proved now that the semi-convergent integral for the inner
angular momentum tends to a definite limit if spheres of increasing radii are
chosen as integration domain.

In the course of the proof on the uniqueness of the energy centre as given
in the first part of this subsection we made use in an essential way of the
assumption that the external force density f* can be made arbitrarily small.
In the present case where /* is given by (63) in terms of the external fields,
this assumption is certainly justified since these fields can be made arbitrarily
small. This remark completes the discussion of the validity of the application
of the general centre of energy construction to the special case of a system
described by an energy-momentum tensor ¥ (62) and acted upon by a
force density f* (63). The asymptotic conditions employed are just what one
has to expect in a classical theory in which radiative collapse of bound states
would occur if the particles would be allowed to suffer accelerations in the
remote past (and future).

¢. Charged dipole particles

For a composite particle which satisfies the energy-momentum law (61)
with the energy-momentum tensor t* (62) and the force density (63) the
derivative of p* with respect to the proper time s of the world line X “(s)
is given by 1:

* One may prove from (69) and (70) that for sufficiently small fields the world line is
time-like so that a proper time s along the world line may be introduced (see problem 2).
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-1

A {J t"‘”(R)nﬁ(s%—ds)dsZ—f t“”(R)n,;(s)dsz} , (9D
ds ds \J s(s-+as) 2(s)

where the right-hand side is given by the difference of two integrals of the
form (65) over the surfaces Z(s+ds) and Z(s), divided by ds. To be able to
apply Gauss’s theorem here we must discuss the contribution from the sur-
face X, (s,ds) at infinity which closes the volume between the surfaces
Z(s+ds) and Z(s). Since in the remote past and future the particles suffer no
accelerations, only the velocity fields have to be inserted in the integral

f t’(R)n, 4,(R)A*Z (92)
X o(s,ds)

(with n%(R) the outward pointing normal on the surface X(s, ds)). By
employing the expressions (84) and counting the powers in R one finds that
this integral tends to zero, if the surface tends to infinity. Therefore one may
apply Gauss's theorem to (91), with the result
a -1 pPI(s+ds)

dt_c Fedt, (93)

ds ds v 5(s)
where the integral is extended over the volume bounded by the surfaces
>(s) and Z(s+ds). The volume clement d*¥ may be written as

d*V = J(R, s)dsd’Z, (94)

where the Jacobian J(R, s) is:

IR, s) = — P {l—pﬁ(f;f)ﬂ} (95)

/ 2
v —p

(v. problem 3), with X*, u* = dX*/ds and p* functions of the proper time s.
The equation of motion (93) becomes with (94)

dp*

= { 96
z 6

where §* is the total four-force expressed in terms of the force density f *(R):

(s) = c“IL(S )f“(R)J(R, s)d*z. (97)

For the derivative of the inner angular momentum (68) with respect Lo
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the proper time s one finds

aff -
a7 (R*— X*(s 4+ ds)} " (R (s -+ ds)d°5
ds ds \ 3(s+ds) )

’1&§W“X%BW@W#M%y4mm (98)

again with n* = p*/\/—p?, depending on s+ds in the first integral and on
s in the second. The integrals over X(s) and Z(s+ds) are to be read as the
limits of integrals over three-spheres with increasing radii in the planes ¥ (s)
and X(s+ds). In order to apply Gauss’s theorem we close the region between
the two surfaces 2(s) and Z(s+ds) by a four-sphere of large radius, of which
the centre is the origin of coordinates. (The intersections of this four-sphere
with the surfaces 2(s) and Z(s+ds) consist of two three-spheres.) With the
use of Gauss’s theorem one may write then

(s +ds)
L( 5 O,[{R*— X*(5)}t""— {R? — XP(s) 1" ]d*V

= - f {R*— X*(s)}""(R)n (s +ds)d>2
Z(s+ds)
+ f {R*— X*(s)}"(R)n.(s)d>
3(s)

+ f {R*— X*(s)}*"(R)n, (R)A3E — (2, f), (99)

2(s,ds)

V\fh@f@ the normal 7%, is equal to R*/</R2. The first two terms at the ri ght-hand
side may be written as

ds* «p  poa
cds 1 +u'pf —ufp ), (100)
s

as follows by comparison with (98) and (65). The last term, which extends
over the large four-sphere, vanishes with increasing radius, as may be seen
in the following way. The velocity fields which are to be used in #*# (62) de-
crease with the square of the inverse radius. As a consequence the part with
X*(s) goes to zero as counting of the powers in R shows. As to the term with
R?, it has the same form as (88) with »* replaced by n%, = R*/\/R?. Thus it
vanishes. In this way we have found the change of inner angular momentum

dsaﬂ C~1 Z(s+ds)

= — R » LA 44 V4BY_f /3— Y - « o
ds ds J i) GLR = X)) —{R"—X ()}t ’]d4V—-(u v —ufp ).

(101)
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If one usesthe symmetry of theenergy-momentum tensor 1*F (62), theenergy-
momentum law (61) and the expression (94) for the volume element one
finds the inner angular momentum law

ds*

= = 0 —(up’ —ufp%) (102)
ds

with the total torque
w0) = ¢ [ LR @A)~ (R = XL RVR, I, (109)
2(s)

containing the force density f*(R).
With the explicit form (63) for the force density f*(R) the total force (97)
and the total torque (103) are completely specified:

*(s) = c‘lﬁ F“”(R)Ze "’ 5<4){R( N—R}J(R,5)d’zds’, (104)

W) = [ [ LR X R - (R - X6 R)]
Z(s)

e dde S(R(s")~ R}(R, )£ ds’. (105)

i

(For convenience’s sake we choose a different parametrization of the world
lines of the constituent particles, namely the parameter s, which may be
induced with the help of the surfaces £(s") starting from the parametrization
of the world line of the centre of energy.)

Because of the occurrence of the four-dimensional delta functions only
the intersection points of Z(s) with the world lines of the constituent particles
contribute to the integrals over £(s). Therefore we may perform the integra-
tions in (104) and (105). One obtains then

o) = 71 L e PR dR‘” (106)

8%(s) = 71 X el[{R¥(s)~ X(s)}F{R{(s)}
l oy dRi./.
— {RI(s) = X"()F (R} = (107)
The external fields F** in these expressions depend on the positions R of

the constituent particles. We may expand them in Taylor series around the
centre of energy X*(s) of the composite particle. To that purpose let us in-
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troduce the relative positions

() = RIS - X(s) (108)

of the constituent particles inside the composite particle. They fulfil the
orthogonality relation (this follows from the construction of the centre of
energy. described in the preceding subsection):

ru($)p%(s) = 0. (109)
In the expanded expressions for (106) and (107) the internal coordinates
r7(s) may be grouped in such a way that only the covariant multipole
moments (9) ocecur, with p*//—p? as the time-like unit vector »”. (In the
following we shall omit the index (n) = (p//—p?) of the multipole mo-

ments.) If we limit ourselves (in this subsection) to the contributions of the
covariant electric and magnetic dipoles (n = 1):

lu’a = Z €; 7‘?,

drf drf (110)

e Se(n A ).
: Z’ ds ds

L.e. to slowly varying external fields, we find from (106) and (107)
F°(s) = ¢™ eF P {X(s)}uy(s)
+AFP{X ()M e {ip(s)uy(5) — i (S)W(S)H%(S)]

- % < pe {X©hw(9)], (111)

b9(s) = PN~ W(0)+7(5))
~FXEH e OO+ (112)

where e = Y ; e; is the charge of the composite particle and where the homo-
geneous fleld equations have been used in the second term at the right-hand
side of (111). It will be convenient to introduce the electromagnetic dipole
moment tensor ((11) with two indices oy, o, = o, f):

m#(s) = ¢~ {u () (s) = P (s)u(s)} +v7* (s). (113)

The covariant electric dipole moment may be expressed in terms of this
tensor. If one uses the orthogonality relation (109) and the fact that the co-
variant electric quadrupole moment 1Y ; e;r{rf is neglected in this sub-
section, one gefs:

wi(s) = e (s)py(s)/uy(s)p’ (5)- (114)
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If the definition (113) and the relation (114) are used in the expressions (111)
and (112) for the force and the torque, we obtain:

; d (., !
f* = c—leFaB(X)uﬁ+%{6erﬂ/(X)}mM+ 5 {F H(X)my, ;EI}} , (115)
s &

&

b = F(X)mf — FP(X)my + {uFP(X) =’ F(X ), ;p F (116)

-
5

These expressions are to be inserted in (96) and (102). Together with the
supplementary condition (67) one has obtained then the equation of motion
and of inner angular momentum of a composite particle with charge and
dipole moments in an external field.

In order to discuss them we first consider the field-free case. Then the
equations reduce to

o of
o _ 0 a7 _ pouf — pPuc, (117)
ds ds

5

By differentiating the condition (67) one finds from these equations

p U —pup? = 0. (118)
Hence the four-vectors p* and u* are parallel, so that
p* = mt, (119)
where mz is defined as:
m= —c *pu. (120)
Now (117) reduces to
o aff
d’ o 9Ty, (121)
ds ds

since dm/ds vanishes as follows from (119) and the first equation of (117).
In the case with fields differentiation of (67) and substitution of (96) and
(102) leads to
Pugp’ = wpgp” —s"5,—d%p,. (122)
Hence now p” is not parallel to u® If this relation is multiplied by u, one
obtains the equality

Pt = =" (™) — e 2u, s — e Pu, 0 py. (123)

According to (119) and the condition (67) all terms on the right-hand side
but the first are at least of second order in the fields, since the leading terms
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of {* and b* are linear in the fields. Hence if one wants to confine oneself to
terms linear in the fields the equality (122) may be written as

1 e -
p* = mut —— 4 T H0%y, (124)
me

so that now the total momentum p* is expressed in terms of u*, m, which is
again defined as in (120), s*/, {* and d*#. With this equality the equations of
motion and of spin (96) and (1C2) become’:

d(mu%) = f'—c7? 4 (s"fplm +0"uy), (125)
ds ds
dSal} o£ p ~E _2 ay ﬁ ﬁ'\ o\
o= ATATO” + 7wl — P fm. (126)
s
with the tensor:
AP = A7) = g** + o2 (127)

The force and torque have been given by (1 15), (116) or, if again only terms
linear in the fields are retained, by:

f* = ¢ eF uy+ 3(0°F )my, —c 2 éi— (Fm,,uw), (128)
s

b = F'myd? — FPmiAz. (129)

Introducing these expressions into (125) and (126) we obtain the equations

* From (126) it follows that s‘ll?‘f/,/nz = —(dszl’/ds)u/} up to terms linear in the ficlds. If
one inserts this equality into (125) and (126) onc gets (with the explicit expressions (128)
and (129) for f# and d#8) equations which have been discussed earlier? in connexion with
the condition u, 5% = 0. Owing to the use of this different subsidiary condition it is then not
possible to go back to (125) and (126); this fact is connected with the appearance of un-
wanted helical solutions, even in the field-free case. (In ref. 3, equations of the type just
described were derived on the basis of an explicit construction of a central point and with
the use of the Darwin approximation for the intra-atomic ficlds. Helical motions of
macroscopic dimensions are then excluded.)

2 C. Maoller, op. cit.; cf. papers mentioned in footnote 2 on page 184.

® S.R. de Groot and L. G. Suttorp, Physica 37(1967)284, 297; 39(1968)84; L. G. Suttorp,

On the covariant derivation of macroscopic electrodynamics from electron theory, thesis
Amsterdam (1968).
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of motion and of spin:

d(mu® - _,d , 5
d(mu”) = ¢ 'eFPu,+ H(0FP)my, +c 2 {:AZmﬂ’F}.Eu”—F“ﬁmﬁyu'
ds ds
DA v -29d v
— {c eF g, u”+3(0; F o ym™ —c™* — (Fy, m"sus)ﬂ ,  (130)
m ds
ds™

, P R -
*a; = A;‘Af(F}gm;wm%F;)-i-c 2 ;/1‘ (Sa)llp“sﬂ)u )
- . d .
{c LeF, u* 4+ 38, F)m*—c~? &(F,,C mﬁug)} . (131)

The tensor m**(s) (113) contains the covariant electric and magnetic dipole
moments u* and v*¥, which are defined with respect to the time-like unit
vector n* = p%//—p?. Since we neglected quadratic field terms and since
m* is always multiplied by the field, we may replace them by the covariant
dipole moments, defined with respect to ¢~ 'u” (They will be denoted by the
same symbols.) The latter multipole moments have been studied in detail in
section 2.

The space parts of (130) and (131) will be written in three-dimensional
notation. The four-velocity u* is (yc, yv) with y = (1—=p*)"* and B = v/c.
Furthermore the space-space components of s will be denoted by the vector
s with components s’ = 4¢%s;,. As far as they occur at the right-hand side
of (130) and (131), the space-time components s°° of s may be written as
(B As)" by the use of (67) with (124) together with the fact that we neglected
quadratic field terms throughout. The field F** has the components F =
¢/*B, and F° = E'. The covariant multipole moments occurring in m*
may be expressed in terms of the atomic multipole moments, which are
independent of the atomic velocities. One finds from (A41-43)

10 = ypp®, = (Q—l.ﬂ(l))i’ (i=1,2,3),
Vij = y(g.v(l))k’ (19 Js k = 1,2,3 CyCl.), viO = ——y(v(l)/\ﬂ)i’ (132)
(i=1,2,3),

if only the atomic dipole moments are retained. The £2-tensor is defined as

o=u--"_pp (133)
y+1

If these formulae are substituted into the definition (113) of m* one obtains
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with (A6)!

m? = p' =y QuP+pAvVY,  (i=1,2,3),

- 134
mi = mk = ,))(Q.v(l)wﬁ/\ﬂ(l))k’ (i,j, k = 1,2, 3 cycl.). (134

We may now write the equations (130) and (131) in three-dimensional
notation:

(—% (ymv) = e(E+ B AB)+y~{(VE)p +(VB)-m)

+c7! %[y{pAB—mAE)—,BA(pAE+mAB)}]

7 S G- p Ay E AR ST (139)
g_j_—_ QO WAE+MAB)+yBADAB—MAE)+BA D, (136)

with the inner angular momentum ferms @, given by:
o= PHSA(E+PBAB)—sABBE}
me
1
+ - [s A{(VEyp +(VB)ym}+sA B{(0o E)p+ (0, Byrm}]
m

+ —Lz‘ 78 A 94 {y( — BA M)A B+yEBp}
mec dz

— AR S by BAW)E). (137)
(For convenience the expressions (134) for § and m in terms of the atomic
dipole moments have not been inserted in these formulae.)

The equation of motion (135) contains at its right-hand side the Lorentz
force on a charge e, the ‘Kelvin forces’ on the electric and magnetic dipole
moments #t*) and vV, and three terms which are time derivatives of quan-
tities of which the leading terms are

¢! {,u“’AB— (v(1)~— f-s) /\E}, (138)

mc

! The vector § which is defined here should not be confused with the space part of p* (65).
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as follows with (134). The time derivative of the first term is the electro-
dynamic effect fouad already in the non-relativistic theory (v. (1.155)). The
time derivative of the other terms (which are sometimes called the ‘hidden
momentum’ of a magnetic dipole particle with inner angular momentum) is
an analogous magnetodynamic effect, which contains the vector product of
the electric field and a combination of the magnetic moment and the inner
angular momentum. Such a magnetodynamic effect, which occurs already
in Frenkel’s work, was discussed extensively® in recent years on the basis of
various ad hoc arguments, such as the assumed equality of action and re-
action for the forces exerted by a charge and a magnetic dipole moment on
each other. One finds then only the magnetic dipole term, not the inner
angular momentum term of (138). (The latter is for an stom or a molecule
small as compared to the former since the mass m1 of the composite particle
as a whole is much greater than the electronic masses which contribute to s).
Often the question of the equivalence of a magnetic dipole consisting of
charged particles (or a current loop) and one consisting of two ‘magnetic
charges’ plays a role in these discussions?.

Since the terms given in (138) are of order ¢~ ? the mechanism which leads
to this contribution to the force can be studied already in a theory which
gives all terms up to order ¢~ 2. Such a treatment is presented in the fifth
appendix of this chapter?.

The equation of inner angular momentum (136) shows at the right-hand
side the change of s due to a torque of which the leading term is g A E
+ v A B, as follows from (134).

When one wants to compare the results (135-137) with the non-rela-
tivistic and the so-called ‘semi-relativistic’ ones (see appendix V), it should in
the first place be borne in mind that the expression (137) is of order ¢ 7,
so that it contributes neither in the non-relativistic nor in the semi-relativistic
approximation of the equations (135) and (136). Furthermore one should
also remember that in the non-relativistic and semi-relativistic limit the
magnetic moment v\’ is considered to be of order ¢! and ¢° respectively.
Then if one limits oneself to terms of order ¢~ one finds indeed the equa-

* P. Penfield jr. and H. A. Haus, The electrodynamics of moving media (M.LT. Press,
Cambridge, Mass. 1967) p. 215; Phys. Lett. 26A(1968)412; Physica 42(1969)447; O.
Costa de Beaurcgard, Compt. Rend. 263B(1966)1007, 264B(1967)565, 731, 266B(1968)
364, 1181; Phys. Lett. 24A(1967)177, 25A(1967)95, 26A(1967)48; Cah. Physique 206(1967)
373; N. Cim. 63B(1969)611; W. Shockley and R. P. James, Phys. Rev. Lett. 18(1967)876.
2 v. B. D. H. Tellegen, Am. J. Phys. 30(1962)650. From the present results it follows that
the force on a magnetic dipole consisting of charged particles is exactly the same as that
which is assumed to be valid for a ‘magnetic charge’ dipole.

® S. Coleman and J. H. Van Vleck, Phys. Rev. 171(1968)1370 followed a similar approach.
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tions (1.55) and (I.79) of the non-relativistic theory and (A118) and (A136)
of the semi-relativistic theory (cf. also problems 6-8).

d. Charged particles with magnetic dipole moment proportional to their inner
angular momentum

Let us consider the special case of a charged composite particle without
electric dipole moment and with a magnetic dipole moment proportional to
the inner angular momentum; then

m? = x5, (139)

The equations of motion and of spin have been given by (96), (102), (124)
with (67):

d &x
=T (140)
ds*
ds b —(u’p’ ~u’p%, (141)
a 3 1 afs —2af
p* = mu®+ ;{;is fptc 0 u,, (142)
P57 = 0. (143)

The force and torque that follow from (128) and (129) with (139) are in this
case:

f* = ¢ eF*us+ 3(6°FM)m,,, (144)
aff -5 SO Pany O
b = Fr'mf -~ Ffrmy, (145)

where only terms linear in the field have been retained. If these eXpressions
are inserted into (142) we obtain:

P’ = mu*—c"?

m*F . u’+ —‘-3-5 sPF g u’+ »1-5 s"P(6, Fom.  (146)
me 2mc

From these equations one may prove that the square of the inner angular
momentum s,,5” and the quantity
m* = m+4eFum* (147)

are conserved. In fact, multiplying (141) by s,, and using (143) and (145), one
gets

d
% (55 8°) = 45,5 F'mf, (148)
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which vanishes, as follows if (139) is introduced. Furthermore the time deri-
vative of m (120) becomes with (140), (144) and (146)

_, dF* ~q du
dm ESYSEL i Mgyt 4 duy,
ds ds ds

o s*PFp,u’ — QL s%(8, Fys)m"g} . (149)
m

l By
me
Since du”/ds vanishes in the field-free case, this equality becomes up to first

order in the fields

of
dm o ye> df; M,y = 0. (150)
)

ds
Fmally, if (141) is multiplied by F,; one finds with (139), (145) and (146)

dm*#

Fag = 0, (151)

if again only linear field terms are retained. From (150) and (151) it follows
indeed that m* (147) is conserved.

Since m* is conserved we shall use it mstead of m in (146). With (147)
this expression becomes up to terms linear in the fields:

e
2 ¥ o 1,—2 By, o = 2408 b3 . OB b4
pr=miu—te TF,m Tt —em T mP L u’ m——*c3s Fg,u

1

2m*c?

+ s?(8, F,m™.  (152)

In this expression appears the inner angular momentum s together with the
factor e/m*c coniaining the total charge of the composite particle. We shall
all this combination the ‘normal magnetic moment’

e
me) = —— s, (153)
mc

The total magnetic moment (139) is the sum of this normal part and an
‘anomalous magnetic moment’ m‘z‘f):

m*? = mf@ +mP, (154)

e e
m# = m¥— — 5% = (K—- -——) s, (155)
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For convenience one could introduce (for a charged composite particle) the
‘gyromagnetic factor’ ¢ by means of

(156)

Then we may write the anomalous magnetic moment alternatively in the
form

_(g=2e o (157)

mee =
(a)
2m*e

With (152) and (155) the equations of motion and spin (140) and (141)
with (144) and (145) become:

« du® _ , __dF®#
m™ e = leF“ﬂup+%(5“Fm)mm+%c > o g, u®
s s

® 2

dF 1 d
+e7im@ By 5 (5
ds 2m c

F”) m’, (158)
s

ds™
—— = Fmf = F'm 4 ¢ (umf), —u'm&)F, u
ds @ @

5 570, Faym®u? —s"(8, F ym™u}.  (159)

2m [4
In the last three terms at the right-hand side of equation (158) only the fields
F*P have been differentiated with respect to s, not the polarization tensors
m*, m‘{f), the inner angular momentum tensor s** and the four-velocity u”.
The reason for this is that differentiation of the latter would have given rise
to terms quadratic in the fields. (To see this use must be made of the propor-
tionality of the polarization tensors m*#, m(a) and the inner angular momen-
tum tensor s** together with the equations (121) for the field-free case.)

In the right-hand sides of (158) and (159) the leading terms with the polar-
ization tensors contain the first derivatives of the field and the field itself
respectively, Hence if the fields are sufficiently homogencous the last terms
in (158) and (159) may be discarded, so that we then have the simpler
cquations:

Ldut I —, dFF dFy, .
m* — = ¢ eFuy+ (0 F)my, + 7 —— myut e mE
ds ds ds
(160)
ds™ Yy BYip @ =2(, 0By
— = F'm — Fm+ ™ *(u'mf), —u’m{))F u (161)

ds
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These are the equations of motion and of spin for a composite particle with
charge and magnetic dipole moment (proportional to the inner angular
momentum) in sufficiently homogeneous external fields. The covariant
magnetic dipole moment occurring in m* was defined with respect to the
normal unit vector p*//—p?. As in the preceding subsection one might use
as well the covariant magnetic dipole moment defined with respect to ¢~ 2%,
because quadratic field terms have been neglected.

As in the preceding subsection we may write the covariant equations (160)
and (161) in three-dimensional notation. The four-velocity #* has compo-
nents (yc, yef) with B = v/e, while the field components are F°' = E,
F9 = B* (i,j, k = 1, 2, 3 cycl.). Since the electric dipole moment vanishes
here, one may write the components m® = pland m¥ = m* (i, j, k = 1,2,3
cycl.) of the magnetic moment tensor according to (134) as: p = fam
and m = yQ-v), From the proportionality of the anomalous and total
polarization tensor (V (139) (156) and (157)) it follows that the space-space
component m,, = m (i, /, k = 1,2,3 cycl.) is mf,, = {(g—2)/g}m’, while
the space-time component m(a) is equal to (B A m,)". In this way the equa-
tions of motion and of spin (160) and (161) get the form:

. d_ily.;’) = E+BAB)+y” (VE(BAm)+7" (VB)m
+c™ly g_t {Bm(B—B AE)—mey A(E+ B AB)+m, A BPE}, (162)

f; Y 'MAB+y T (BAM)AE+yBm(E+BAB)—y lm, B-E

—yBpm, BE. (163

(Time and space differentiations in the right-hand sides operate only on the
fields, just as before.)

If the composite particle is momentarily at rest it is described by equations
(162) and (163) with B = 0. Then these equations reduce to:

dv dE
m* — = eE+(VBym—c tm A —, 164
% B (VB m—c g n (164
ds _ mAB. (165)
dt

Equation (164) or (162) contains the ‘magnetodynamic effect’, i.e. ¢~ iy
AdE/dz or alternatively ¢™*(d/dr)(mgy A E) (the difference between these
two expressions is of second order in the fields). Thus this time derivative of
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the so-called ‘hidden momentum’ ¢™'m,, A E contains only the anomalous
magnetic moment.

e. Composite particles in an arbitrarily varying electromagnetic field

In subsection ¢ we derived the equations of motion (125) and (126) with the
expressions (106) and (107) for the total force and torque. By making a
Taylor expansion of the fields and confining ourselves to terms with the
charge and electromagnetic dipole moments we found the expressions (115)
and (116) (or (128-129)) for the total force and torque. If the fields in which
the composite particle moves change rapidly, the limitation to dipole terms
in the Taylor expansion is no longer justified. We must then consider the
complete Taylor expansion of the total force (106) around the centre of
energy X*

2 *12 z e (r:0Y F4(X) (dX/’ + ddr;ﬁ) (166)

where the relative positions r* are defined by (108). This expression may be
written in the form

* = ¢ 'eF*(X)u,

- & 1 Y. S 2,
+e 1’;1 ;1—‘ Zl: e(r0)" " (rlug —ripu”)d, F*(X)

+C_IZ — — LZ {(re 0™ F (X))
n=1n! ds

sty z('”(r%@mﬁmwm (167)
= I(n—i—l)T ds ds

where e = ) ; e, is the total charge of the composite particle. At the right-
hand side one recognizes the covariant electric and magnetic multipole mo-
ments (9) with p*// —p? as the time-like unit vector n”. Therefore by using
the homogeneous field equations (13) and omitting the subscript (n) =
(p/\/:?) of the covariant multipoles, one may write the total force on the
composite particle as:

f* = ¢ eF*u,

F

An~17 Gulnti

w0
~1 a el & [ad TN ST SO’ Y AR AN
Z Z 1 nyy nt 1 —C M 1 -1 n+lu‘1n+val Un I)O"\la(21 . a

o Z ( e “" oyttt ’\’an 1 “n) (168)

n=1ds
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(with @,, ... 0,,_, = 1 for n = 1). This result is the generalization of (111)
to the case of arbitrarily varying fields, where all multipoles are needed.

The multipoles employed here were defined with respect to the normal
unit vector p*// —p?. However, since quadratic field terms are neglected
throughout again, one might as well use the multipole moments defined with
respect to the normal unit vector ¢ ~'u% as follows from (124). The expression

(168) may be written in compact form by introducing the abbreviation (11):
Mt = l(ltaln-anuan'}‘l __ﬂdxn-dn— 1dn+1u0<n) yStelnE (169)
The electric multipole moment occurring in the last term of (168) may be

expressed in terms of this quantity. If only terms of zero order in the fields
are considered, one has

171&1-‘.an+i"{a,,¢1 — __CH“I"'““, (170)

as follows from (9) with (109), (121) and (124). The expression (168) be-
comes n this way

0
a __ ,—1_ paf Z Y4 5. 0
T =c ‘el u/}_{“% (C'.ax-‘.an-x Famanﬂ)nl e

n=1

2 d
—_C—Z o {(aal-“an—l Fin)nlalma"*‘Iuan+11 (171)
n=1 dS
(with @,, . = 0,, ... ¢, ), which is the generalization of (128) to all multi-

pole orders.
In a similar way one may find an cxpression for the total torque (107),
starting from its Taylor expansion
. ~ (dX, dr,
=3 ey (i P =P (S + éz) . an)
s

baB:c—lz 1
S

n=0Hn. i

We find then, as a generalization of (112),

oz
o . .1 A1ty - 10 By
0 ="'y nu (5 Fu,

Lol —1
n=1

oc o
+ C— ! Zz(ﬂ - 1) (;;i ('uo”ma"_Zay)aalu-an-z Fé‘,’_i’. Zl me“,’"m"‘(";alma"_l Fﬂ‘,
n= n=

— Zz(n—1)1’““"""‘2“”“”"‘ﬁai.‘.a,,_,Fﬁv—(% /)7) (173)
n=

The symbol (z, §) indicates terms of the same structurc as written down
explicitly, but with the indices « and f8 interchanged. Instead of the multipole
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moments defined with respect to p*// —p?, we may use those defined with
respect to ¢~ 'u®. If one employs (169-170) and the homogeneous field
equations one gets, limiting oneself to terms linear in the fields:

o]

0
0 = 3 Cuptney Fla W8 = 3 (0= 1)(0s, -, Fo J00
n=2

n=1
P d
+e™? Y (n-1) o Oy Flp J0 0, } = (e ), (174)
n=2 N

which is the generalization of (129) to all multipole orders.

The equations of motion (125) and (126) are now specified by the expres-
sions (168) and (173), or (171) and (174), for the total force and torque
exerted on a composite particle in an arbitrarily varying external field.

f. A set of composite particles in a field

In this subsection the equations governing the behaviour of a system of
composite particles in an external field will be derived. The composite par-
ticles will be labelled by an index k, their constituent particles by the double
index ki.

It is convenient to consider the law of mass conservation before studying
the equation of motion. This conserved mass will be the rest mass of the
composite particle, not the quantity z (120), since the latter is not conserved
in general. (These two quantities are indeed different since 7z includes con-
tributions from the intra-atomic field, as follows from its definition (120)
with (65) and (62).) The rest mass flow density of the system of composite
particles is defined as (cf. the analogous definition for the electric four-cur-
rent density (5))

ey m,’fs‘J up (X, —R)ds;, (175)
k

where the rest mass of composite particle k is n™ = Y, my;. It obeys the
conservation law

0, {c Y me f uf 6D X, —~ R)dsk} = 0. (176)
p

The equations of motion for particle k have the same form as (125) and
(126). From these equations one may obtain local balance equations of
energy-momentum and angular momentum by multiplying them with the
four-dimensional delta function §*{X,(s,)— R}, integrating over s, and
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summing over k. Then one obtains, after a partial integration
clp { ) f my g uf 6P (X,— R)dsk} =cy f fE 89X, — R)ds,
k
19, { Zf(sk Pl 0+ O 11y, Jul 6 D(X  — R)dsk} , (177)
k

fos Pl (X, R)dvk}

k
=c) f (A5, AL D+ 2 (siul) — sP Uiy 0 (X, — R)ds, . (178)
k

The total force and torque f; and d}¥ have the forms (106) and (107). The
field occurring in these expressions is now the combined field of the other
particles / (3 k) and the external field:

FP+FP = % [P+ FZ, (179)
I(#k)
so that one has

TZ = c_l Z ekiF:ﬂ(Rki)ukiﬂ -+ C_ ! Zl(gk)eki flaﬂ(Rki)b!km 5 (180)
biﬂ =t Z €i 7‘ZiF£y(sz)Ukiy+C—l z Z €xi 7':if1m‘(Rki)”kiy“(“a ﬁ)a (181)
7 T I(FR)

where (108) and the notation uf; for dRj;/ds, have been employed (since s,
is the proper time of the central point of k and not of the particle ki one
should note that uf; is not the four-velocity of particle ki.)

The external field F2¥ changes slowly over the dimension of a particle,
whereas the fields /i may change rapidly at the position of particle k.
Therefore we may expand the terms with the external fields in (180) and
(181) and retain only the charge and electric and magnetic dipole moments,
just as in subsection ¢. We then obtain as the external field contributions
fr. and 5% to the total force and torque (cf. (128-129)):

o d

Tke = C_lek FZB(Xk)uk/}+%{aang(Xk)}mk/}y ¢ 5 )’Fdﬁ(XA)mkﬁyuk} (182)

bzg = Fzy(Xk)m;/Afs“(aa ﬁ): (183)

where m}” was given in terms of the dipole moments uf and v by (11).
(These dipole moments may be defined with respect to the unit vector
P/ —p? or ¢”'u?; the difference between these two cases consist in terms
quadratic in the fields.)
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We now turn to the contributions in (180) and (181) with the ficlds £,*
due to the other composite particles. These fields have been found in the
preceding chapter. They read for particle /:

P(R) = f FHR)ds; = f {FHR)+FH(R))ds, (184)
where the partial ‘plus field’ is

JAR) = = 32 (w0~ 096 {(R— Ry} (185)

J

and where the partial ‘minus field’ f* has the same form except for an extra
factor (R—R;;). Since we chose the proper time s; as the parameter along
the world line /j, the four-vector uf; is equal to dRf,/ds, (not the four-velocity
of particle [j, as explained below formula (181).)

If the observer’s point R* is sufficiently far away from the sources we may
make a multipole expansion of the field (184). One then obtains for the fields

(v. (14-19))

I = i+ (186)

where
fz(e) f(f +1(e) +f—l(e))dsl > (187)
(m) - f(f%—l(m) +f-—l(m))dsl (188)

The partial plus fields are here

Tl = = £ @i —ules{(R-X,)), (189)

~ 1 R
f—?—li(m) = Zl ( ) { o anaoﬁal ln

n i

~c72 (di -—ul'a) ey, 08 P OUR=X) Y ~(x, B),  (190)
S

where (170) has been used and where the differential operator d/ds, acts on
1y and u;. Similar expressions (i.e. with an additional factor ¢(R—X;)) may
be written for the partial minus fields.

The contributions of the interatomic fields to the total force and torque
(180) and (181) acting on composite particle k is specified if one inserts the
interatomic fields (184) with (185). If the atoms are sufficiently far apart one
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may perform a double multipole expansion, i.e. an expansion of the form
(171) and (174) and moreover the expansion (186) with (187-190) of the
interatomic field in terms of multipoles of its sources. If the atoms are near
each other such a double expansion is not justified. Therefore we write in the
general case the force and torque as sums of long range and short range
contributions indicated by L and S:

= i (191)
0 = 0P 0. (192)
Here the long range contributions are
= fre + fiteer + Fiecerny + Framy » (193)
oy = D+ 0L +ORE  + Okl - (194)

The external field terms {;, and dj, were given already in (182) and (183).
The next terms contain the contributions from the charges of the various
composite particles. They get the form

k(ee) Z f fk ey 9575 (195)

b,{‘fi) (196)
with
fk il(ee) — ¢ ekflo(lg)(Xk)ukﬂ' (197)
The plus field contribution in
fk Jl(ee) = f+“k;l(ee)+f]1ak;z(ee) (198)

follows by inserting in (197) the partial plus field (189). One finds
-1

o 4 3 A
e = — i e e(uf ol —ul 0 )uyy 6(X1), (199)

where the abbreviations X}, = X; — X" and d,, = /80X have been employed.
In the same way one finds for the last terms in (193) and (194):

k(mm) - Z Jfk s () dsl s (200)

Ilc‘gn/im) = Z fﬁk 1 () ds;, (201)
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with — in view of (171) and (174) — the partial forces and torques:

A o

:L ry e

Tk;?(mm) = _IZ Zl {az.m...an-‘ 1 jl(m)au,-’ln + 1(Xk)}mzl i
n=

0

_C—Z Zl d*s“ [(Ol\m Ay - ;fl(m) an(Xk)}ma! anﬂukanﬂ]’ (202)
n k

Dl{difmm) - Z 'rakm WOy 1 fl(m) a,x(Xk)}mal a"HAkan 41
- Z (l’l - 1){ak11...an_ 1 ﬁ%xxt).an(Xk)}mlealma“

_2 Z (}’l 1) o [{akdl -2 2fl(m) Ay 1(Xk)}mﬂal anukan] (OC ﬁ) (203)

n=2

(with 04y, 4,., = 1 for n = 1). The plus field contributions in particular
follow by inserting (190):

AL 10 — d ~
[ Ftomm) = Z (=)™ im { i G, C g (’— +uk'0k) ! a"”“kan}
47 n m=1 dSk

. . [d
{m?x-nﬁm : lakﬂm_c 2 (_ +ul°al) mflmﬁm‘nulﬂm}
ds;
akm---an—1/71»~~I3m—1(a/5égan+1/3m+1 —akan-u g;m-}-l)é(X,?l)’ (204)

@<

Lap _ c m+ 1 a a1..., o0y ...

it = 2 (=1) {Akdn-rx g O, —(n = )My,
nm=1

d
2(n——l) (d—~ +uye ok) me ey, 1}

Sk

L, {d
{m{f’x---ﬁerxakﬁm_c 2 (E; +7/lz‘5z) mllglmﬁmﬂulﬁm}

4
akalman—zﬁbnﬂm‘ 1(6£ganﬁm+ 1 ggm-i- 1 akan)é(lel) —(OC, ﬁ) (205)

The cross-terms (em) have similar form.
The short range terms in (191) and (192) follow from (180) and (181).
One finds:

= Jf . ds, (206)
l(*k)

95 = fb,f“,ﬂdsl, (207)

1(#)
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with
ﬁ =c! 2 €ri fl (Rkl)uklﬂ fk lee) ™ fk I(emt) fk sL(mne) » (208)

zalﬂ = C 2 €ri L'Al }V(Rki) - rki fldy(Rki)}ukz, g)II:Glzfen'«) biIc‘;alzl(;mm) . (209)
i

Explicitly the plus field parts become with (184) and (185):

—1

S-i(fk = T Z ektelj(ukl ulj sz ulj 2% akl)(s(Rkl lj)
7T i,

- Ifk;l(ee) - fl-;-ak;l(em) - Tl;“k;l(mm) H (210)

~1
Dsfg;z =5 Z € €15 "zfi(uki'“lj afﬁ - l’zﬁj ulci'aki)é(lei,lj) - (Of: ﬁ)
iJj
+k si(em) 61:!—c(lg;l(mm) . (21 1)

In this way expressions have been found for the force and torque that
occur in the balance equations of energy—momentum and angular momen-
tum (177) and (178) for a system of composite particles in an external field
They will form the starting point for the statistical considerations of the next
chapter.

APPENDIX I

Some properties of the tensor @

In this appendix we collect a number of properties of the tensor &(f), which
is defined as

Qp) =

(AD)

where y = (1 —p*)"* and U is the unit tensor. Its frequent use in this chapter
stems from the fact that it describes the effect of a Lorentz contraction. In
fact, if @ is an arbitrary vector one has from (A1):

Qa = a,+./1-p%a,, (A2)

where a,, = pp-a/p* and a, = a-a,, are the components of a orthogonal
and parallel to p respectively. The longitudinal component of the vector a
is thus seen to be subjected to a Lorentz contraction.

The inverse tensor 7~ '(f), which obeys the relation that its product with
() is the unit tensor, is:

2

) = U L= ur Lo (43)

as may be checked directly. The tensor £27* occurs in the formulae for the
Lorentz transformation (with transformation velocity ¢B) connecting the
frames (ct,, Ry) and (ct,, R,):
cty = yet; +yB Ry,
(A4)
R2 = Q—I'Rl +’yﬁc71

On the contrary the transformation formulae for an antisymmetric tensor A
with components X = (4%, 4°%, 4°%) and Y = (423, 431, 4'?) contain
the tensor €. They read

X, = V(Q'Xl‘ﬁ/\ ;)
YZ '}’(Q'YI +ﬁ/\X1).

N0

(A5)



210 RELATIVISTIC CLASSICAL COMPOSITE PARTICLES B CH. 1V

From (A1) and (A3) one derives the properties

Q7! = Q+ypp, (A6)

Q-p =97"8, (A7)

Q~1p =y, (A8)
fArlda = fAra, (A9)
Q-(anb) =y~ {(Q "a)A (Q7"b), (A10)
Q7 (anb) = y(Qa) (D), (Al1)

where @ and b are two arbitrary vectors. The squares of & and Q™! have the
forms

Q* = U- B8, (A12)
Q72 = U+y°BB. (A13)
The tensor £2% occurs in the relation
Q23,(By) = 00 B- (A14)
It may be proved from (A12) if use is made of the identity
B-0oB =y *0, (A15)

which follows from the definition of y. Finally the determinant values of Q
and Q7! are
Q=971 Q71 =y, (A16)

as follows from (A1) and (A3).

APPENDIX II

The connexion between the covariant
and the atomic multipole moments

The covariant multipole moments, depending on a certain time-like unit
vector and defined in (9), contain quantities in the observer’s frame (ct, R).
They still depend on the velocities of the atoms. Therefore we introduced
atomic multipole moments (27, 28), defined in momentary rest frames; they
are thus independent of the atomic velocities. The connexion between these
atomic multipole moments and the covariant multipole moments (with the
four-velocity chosen as the time-like unit vector) will be obtained in this
appendix by studying the Lorentz transformation between the observer’s
frame and the momentary rest frames.

The covariant multipole moments contain the internal parameters ry; (3)
that fulfil the relation (2) with the four-velocity ¢ 'ui(s,) chosen as the
unit vector (s, ) i.e.:

P SUR(5) = — ra(sud (5 + r(s) wlse) = 0. (A17)

This covariant condition means that in the atomic rest frame (where
uP(s,) = 0 at the moment 7 = 7, or correspondingly for s, = 5,4) the
vectors rly) become purely spatial ({0 then vanishes according to the con-
dition) and thus constitute at that moment the atomic parameters, which we
want to employ for the characterization of the atoms.

The frame in which the atom as a whole is momentarily at rest must have
a velocity v equal to (dR,/dr),_,, at the moment ¢ = ¢, with respect to the
reference frame (cz, R) of the observer. Time-space coordinates of the
reference frame (ct, R) and the atomic rest frame (c#‘%’, R») are connected
by the Lorentz transformation (A4):

ct = yet' P+ 98RO,

=1,p(0) (0) (AIS)
R = Q7 R™+yfet'™,

where the tensor (A3) has been used.

Since the atom suffers accelerations, at every moment #, one needs a dif-
ferent atomic rest frame. Every atomic frame is therefore only a momentary
rest frame: only for ¢ = 7, does the atomic velocity dR{®/d¢(® vanish. The

LEE]
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transformation which connects the reference frame to the momentary atomic
rest frame (in which the atom is at rest at time #,) is therefore determined by
the transformation velocity:

ezl (3

Sk = SKk0

with s, corresponding to #,. For the atomic position four-vector R? this
Lorentz transformation reads

Rz?(sk) = Y Rl(cO)O(Sk) + Y ﬁk.Rl(cO)(Sk);

-1, p{0) (0o (AZO)
Ry(si) = ¢ RV (s) + 7, B R (s0)-
Differentiation with respect to s gives
dRY dR{™° dR”
=y -k Y B s
ds, ds, ds;
(A21)

dR, _, dR® dR{®°
— = =+ B .
ds, ds, ds,

Similarly for the internal quantities one has the Lorentz transformation

Ikz(sk) =P (O)O(Sk)‘*‘}’k ﬁk.rlg(i))(sk)’

© (00 (A22)
ru(s) = Qp tr(] (se)+ 7 Beri*(s0)s
and thus for the derivatives
dr, dr{9° dr®
K= Yk —k + 7 B k 5
dSk d k dsk
(A23)
dry, -1, d”l(c?) d’”l(c?)e
= & T =ty by

dSk dSk dSk

In the momentary atomic rest frame the atomic velocity vanishes: dR(”/ds,
= 0 for s, = 8,0. Furthermore, as a consequence of the orthogonality rela-
tion (A17) the internal parameter ry; becomes purely space-like: r{P% =
(0, ¥9) for 5, = s,. These relations can be formulated conveniently with
the help of a coordinate frame in which the atom is at rest all the time. This
frame, which will be called the permanent atomic rest frame (denoted by a
prime) is a succession of Lorentz frames, not a Lorentz frame itself; it coin-
cides at time #, with the momentary atomic rest frame (denoted by (0)). The
permanent rest frame is connected with the reference frame by a Lorentz
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transformation with velocity

B, _de/dsk

 dRY/ds, (A24)

With the help of Bi(s,) we define Q,(s,) analogous to (A1) with 7,(s,)
= {1-B; (sk)}'% In the permanent rest frame the atomic velocity vanishes
identically: (dR,/ds,)’ = O for all s;; moreover (r2) = O for all s5,. From
(A24) it follows that

dR}
'&‘k‘ = C)’k(sk),
% (A25)
dR
—F = C'}’k(sk)ﬁk(sk)~
ds,

Furthermore, (A22) may be written with the help of quantities in the per-
manent rest frame:

7’1(<)i(sk) = Vk(sk)pk(sk)"'llci(sk);

- , (A26)
ru(s;) = Q@ (Sk)"'ki<sk)'
Finally (A23) becomes
0 O '
dg@ = 7(se) ( i) T?k(sk)ﬂk(sk) (d'h)
Sk ds dsy (A27)
((i;s,: = Q; (s) ( o ) + () Bels1) (dr,:) .

Since internal quantities are to be defined in the atomic rest frame, but
external quantities (atomic positions, velocities etc.) in the reference frame,
one needs a few more consequences of the preceding transformation for-
mulae. In the first place we want an expression for the second derivative
of R,io’(sk) with respect to s,. According to the Lorentz transformation one
has

d’R d’R;]
(5) - 260 T —nismin S (a29)
dsy dsy
The second derivatives at the right-hand side follow from (A25):
&,
P =c¢ )’kao(?’kﬁk)
%
42RO (A29)

ko .2,
—&;,?~C 7k 0o Vic -
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Substituting these expressions and using (A6) and (A15) one finds:

d’R,\’
(dszk) = Q;-00(vi Br)- (A30)
%

A second result can be obtained from the invariant condition (A17), which
reads in the momentary atomic rest frame
0)0 (0)
.(0)0 dRz(c ) — (0, dr,
Prg' —— —Fy

= 0. (A31)
ds, ds,

Differentiating this relation with respect to s and taking into account r =0
and (dR,/ds,) = 0, one finds in the permanent atomic rest frame

Oy 7
(91@) = ¢ (s (PRyds?), (A32)
dsk
which, with (A30), becomes finally
drd\’ ,
(l) = Y "ki'gk'ao(yk ﬂk) (A33)
dsy
O R

(0}
R ki

(o)}
tk

©
to

N R(O)

Fig. 1. World lines of atom k and constituent particle ki in the momentary atomic rest
frame.

In the definition (28) of the magnetic multipole moments a time derivative
of the internal coordinates occurs which is the limit of the difference of two
purely spatial vectors divided by the corresponding time difference (cf. fig. 1):

0 0 (0
Voo Rl(ci)(skz)“Rl(c )(Skl)“’x(ci)(sko)
12:(0) 5 1;0(0) 1, — 1o

— lim R{(c(i))(SIcZ)—RI(cO)(Skl)_rl(c(i))(skO). (A34)

Sk177SK0 Sk1 —Sko
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The values s;; and s5,, of the parameter s, are related by (cf. fig. 1)
Ri(s12) = R (s), (A35)
or, with the splitting (3)
R (512) + 145" (s12) = RE(s,,). (A36)

A Taylor expansion of the left- and right-hand sides with respect to Ska
and s, —s,, respectively gives

—Sko

, dr@0) 1
- - <7
Sk2 —Spo = (] +c *‘*“—) (Skl _Sk0)+ PN (A37)
ds;
With the help of this relation, expression (A34) bacomes after expansion of
the numerator around s,4:
(0 00y — 1
S giki) (1 +c‘1 d’[i_f}_)

Fpp = = (A38)
This expression is derived for 5, = s0. Introducing quantitics measured in
the permanent rest frame we get a relation valid for all Sy

= (,df’ﬁ)/{1+c" (ﬁ’ifsz)'}_l, (A39)

ds; ds;

With the use of (A33) this can bz written in the form

(dik’i') = Pl + 7 S 00(v Br)}» (A40)
ds,

which gives (dr,,/ds,) in terms of the internal quantities r; and Py, occurring
in the multipole moments which characterize the atomic structure.

With the help of the results that followed from the Lorentz transformation,
we now write the connexion between the covariant multipole moments N
with the choice ¢~ 'dR}/ds; for n” and the atomic multipole moments (27-28).
To that end we substitute into (9) the transformation formulae (A25-A27),
using also (A33) and (A40). Then one obtains (omitting the index (n) =
(¢7'dR,/ds,)) for the covariant electric multipole moment

/4‘2.4.01',,,4_1“.1',, — {(Qk_ I)H—I"(Ykﬁk)m pin)}i"ﬁ;...in)
(n=1,2,...;m=0,1,...,n), (Adl)

where the indices o, ..., %, have been chosen as zero and the indices Ot 1
“oos %y @S Dyyq ... i, which can take the values I, 2, 3. The symmetrical
character of the covariant electric multipole moment could be used to write
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the zeros first. The covariant magnetic multipole moment has components

Vl(c) Ottt {Vk(ﬂl:l)"“m”«l(yk ﬁk)m V/(c")'ﬂk

nﬁnjﬁ) 2(9 1)" " l(ykﬁk)”ao(ykﬁk) Q. : V("H)Qk
1

n-+

im+ 1t dn-1p

+ 1y (Qk 1)" "o 1(% ﬂk)mao(h ﬂk) Q- P'Wr H A B >

(mn=1,2,....m=0,...,n—1;4,j,p=1,2,3cycl.), (A42)

v](‘) Ol s 1.e..ip-1i0 — { y1¢(Qk l)n m- l(ykﬁk)m (n)

n(n +12) Z(Q ])n m— l(yk ﬁk)"'ao()’k ﬁk) Qk ("+ 1) ﬁ
n+

‘im‘s feeidp—1i

+ nylf(ﬂk_. l)u —m- 1('}’k ﬁk)mao(yk ﬁk)'ﬂk EJ‘,(cn+ 1),91(

n=1,2,...;m=0,...,n—1), (A43)

>

.

where we used (A6-A10) and the fact that the covariant magnetic multi-
pole moment is symmetric in its first n— 1 indices and antisymmetric in its
last two indices.

From these connexionsit is apparent that in the absence of acceleration the
purely spaces-like components of the covariant electromagnetic multipole
moments (the case m = 0) in the rest frame coincide with the atomic electro-
magnetic moments; the mixed space-time components vanish in that frame.
If accelerations are present this needs no longer be the case.

APPENDIX IIT

On equations of motion
with explicit radiation damping

In the main text we carried out a programme to obtain equations of motion
for a composite particle in an external field. The basis of these equations
consisted in the microscopic balance equation (61) with (62-63). Essential
steps were the definition of a centre of energy and the derivation of the
equations of motion and spin in the linear field approximation.

Part of this programme - but indeed only part of it — may be accomplished
as well on the basis of a different form, namely (IIL. A26), of the balance
equation, derived in the appendix of the preceding chapter:

1% = fo (A44)

with the (symmetric) energy-momentum tensor ¢+% (III.A25), which con-
sists of a material part and a field part that accounts for the interactions due
to the plus fields of the particles:

t*aﬁ =c z }nifu?uf5(4)(Ri“R)dsi

+— ) ee; f(u ul+ulu)S{(R,~R,)*}6M(R,— —R)ds; ds;
87[ i J(l-;”:J)

1
+ = Y ee; ff [2u;u (R~ R (R —R)'§ {(R,— R}
87'C LjGE#E D
+{uf(Ri— R +ul(R,— R;)}u’0,6{(R,— R,)*}]
S{R;+(R;—R;)—R}ds;ds;di. (A45)
This tensor has the special property that it vanishes outside the domain
enclosed by the world lines. The force density f** was found to be

¥ = foq Z lei Uiy 5(4)(Ri"R)d5i (Ade6)
LJ

(v. (ITL.A3)). It contains, just as (63), the Lorentz forces due to the external
field, and moreover those due to the minus fields, generated by the constituent
particles j (including the particle i itself ).

A1
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The first step in the derivation is the application of the general definition
of the centre of energy as given in scction 3b to the particular case of a
composite particle described by the energy-momentum tensor 177 (A45)
and acted upon by the force density £** (A46). To that end we have to check
whether all assumptions used there arc indeed justified for the present casc.

To begin with, we notice that the tensor ¥ is symmetric and that the
force f** has finite support. Furthcrmore ths integrals

P e J oy 45 (A47)

for the total momentum (which is assumed to be time-like with positive
time-component) and

g — oot (r(Rz XY (RO X 43 (AdS)

for the inner angular momentum are both convergent sensu stricto because
of the finiteness of the support of the tensor t**. The proof on the unique-
ness of the centre of energy construction is now complicated by the difficulty
that the force density f** (Ad46) cannot be made arbitrarily small by varying
the external fields, due to the occurrence of the minus fields. In this case
one has to assume that the centre of energy construction leads to a unique
central point.

By making use of the balancc cquation (A44) one may derive by applying
Gauss’s theorem (in a straightforward manner since 1**f has ‘local character”)
the equations of motion and spin, which are analogous to (96) and (102):

A L (A49)
ds

dS*aﬁ ><az Rer

N T ) (AS0)

ds™

The total force and the total torque occurring here have the same form as
(106) and (107) but with the sum of the external field and the total minus
field instead of the external field rout court:

5"y = ¢ L el PRGN+ 2 STH{R(s SNk W«w: (AS1)

D¥(5%) = ¢! Y. e {RU(sT) — X (LT (R} + ZJ‘E";{Ri(s*)}]% N
—(2, f). (AS2)
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Since the minus fields are finite at the world lines of the particles (v.
(II1.111)) we may develop them into a multipole series just as the external
field. If one retains the charge and dipole contributions one finds for the total
force (and torque) quantities that are the sum of expressions *(s*) (115)
(and p*(s*) (116)) with X**, 4**, m**# and p** depending on s* instead of
fX “ u*, m*® and p* depending on s, and minus field contributions of similar
orm:

) = P+ ), (as)
o D¥(s*) = b9(5") + 0(s"), (As4)
767 = ¢ 00w {2, L,
(A55)
W) = S O, L ), (A5G
uC

where % is the total minus field Y fﬁ” This total minus field may be devel-
oped into a multipole series in terms of its sources by using the formulae (17)
with (18-19). Retaining only the charges and dipoles, we then get (sup-
pressing the asterisks for convenience from now on):

2 € a jated
FHR) = — ZI7;f(zt 8 —uPo*)S{(R— X)*}e(R — X)ds
c A A 4
t o (m6%6,— m"0°8,)8{(R— X)*}e(R — X)ds. (A57)
In 01jder to. evaluate (A55) and (A56) we have to calculate this minus field
and its derivative at the position of the world line. The minus field due to

the charge at the position of the world line has been found already in (IIL.111)
of the preceding chapter:

x e _ [ T
[ = o C Hud? —ula”). (A58)

where q“ is the four-acceleration du/ds. Its derivalive at the position of the
world line will be calculated in the next appendix. The result is (cf. (A77)):

Ay pafp € 4. —2 .
0fle = on ¢ {@%" + ¢ 2arag™uP + ¢ 2a*g¥a’ — 2¢ " *utal a7
A

—4c™2utd e’ +u(3c™ *aPuta’ — 3¢ 2% — 2 " 2a%")} — (o, B).  (A59)
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It is possible to derive in a similar way expressions for the dipole minus
field and its derivative. Since the results are rather lengthy' we shall give
here only those terms which are independent of the first and higher deriva-
tives of the velocity. These terms (which will be derived in the next appendix)
read

cTd® 3
—2.8
oy = _6_ (m¥ 42¢77 m T, uf —2¢ 2 mP Ty, u®), (A60)
75 @ L@ @ ™ .
Oy = = 1—2——(m"‘euegﬂ’+m“'uﬂ+m“”u’+6c m*u, u’u’)—(a, f), (A61)
n

where numbers above the symbols indicate the number of differentiations
with respect to the proper time. If the expressions (A58-A61) are intro-
duced into (A55) and (A56), one obtains the total minus field contribution
of the force and torque exerted on the composite particle. If again only terms
independent of the first and higher derivatives of the velocity are written
down, one gets

—4 -5 @

P ec
o= - mPuy+ —— (mmy,
on 12n

4 . ) . 2 4)
+m*#m,, u’—u“mﬂ’mﬂ"—& wmPlu, utmg,)

c 34 (® o G P’
i {(m“”+2c m “u, uf —2¢ " 2utmPu)my, —w} , (A62)
6n ds uy r
e 3 [€)) .
b = o m“ym +2¢ 7 m™u, u'mf
n
P -2 ;
{(m’” +2¢” n”eu W =2 PP I~ —2¢7 P, m)
g p

- (“7 ﬁ) (A63)

The equations of motion (A49) and (A50) are now completely specified if
one substitutes (A53) and (A54) with (A62) and (A63). They contain ex-
plicitly terms that describe the radiation damping. Owing to this fact these
equations do not reduce, for the field-free case, to such simple forms as
derived in the main text. The problem of their solution requires the consider-
ation of runaway solutions (just as in chapter III).

1 S. Emid and J. Viieger, Physica 52(1971)329.

APPENDIX IV

The minus field of a charged dipole particle

In this appendix expressions will be derived for the minus field of a charged
dipole particle at the position of the particle itself in a way similar to that of
section 2e of the preceding chapter. We start from formulae (14-16) which
give the general expressions for the retarded field. Combining it with the
expression for the advanced field, one gets

J = ot = “f (" —u"a")3{(R— X)*}0{ +(R — X)}ds

o f (n7%6%0, — ™% )3 {(R— X)10{+(R— X)}ds,  (A64)

with e the charge and m* the covariant dipole moment (11) of the particle.
Performing the integration, one finds

[ =7 i o {(5‘2)!”} (2, ), (A65)

€ oy [(m?
A La(m) = 2,; gc, {(E)}rya} —(% B), (A66)
with 7* = R*—X?, where the suffixes r and a at the bar indicate that one
should take the retarded and advanced expressions. The differentiations
with respect to R may be performed by making use of the equation (II1.94)
that follows from the light-cone equation.

The charge minus field that may be calculated from (A65) has been ob-
tained already in section 2e of the preceding chapter. There we have found
for the minus field at the world line (v. (IIL111)):

fa (e) — =™ _4(u“dﬂ—u”da). (A67)
on

We are also interested (in view of the equation of motion) in the space-time
derivative of the minus field, i.e. in 07f%%,,. By making use of the projection
operator 4% = g* 4 ¢~ 2u"/’, one may split this derivative into two parts:

67_(6) = A10 =" Puute, 2, (A68)
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namely into a part which gives the derivative in a direction orthogonal to
the four-velocity and a part that specifies the derivativein a direction parallel
to . The latter part may be calculated directly from (A67), since

d L.

€ _4r 4. . . y
ud, f24, = — fe = o Ha®d? +ud® —aPar—uPd”).  (A69)
ds T

To evaluate the former part one has to consider the minus field at a position
R* = X*(s;)+en® (v. (IIL101)) with fixed s; and space-like unit vector 7*
orthogonal to u*(s;) and then take the derivative with respect to ¢r*. To be
able to perform this programme one has to push the series expansions in ¢

as given in (II1.103-109) one step further. The extension of (II1.103) with
one more term leads to an extension of (IIL.104) of the form:

- - - - —3.,3,2
5,.—5; = Fe e[l —de 2arme+ (3¢~ *an)® —Fg¢” *a® +{c *anle

- 3 -6 PR S
+{—Fs¢”(arn) +55¢" %arna* T4 Parnan

—ilzc_d'd"n iEIZCW Sa-d}g3 +.. } (A70)

Furthermore one has to calculate the extensions of (II1.105-108). This leads
to the series expansions:

u(s)r(s) = Fee[l+3c *ane+ {—3c Han)’ +4c*a? Fic an)e?

+{fsc”an)® — ¢ arna’ £ 4c Parndon
+ic *anFic Carale®+.. ], (AT1)

a(syr(s) = g{a.”$chl(d'n~—}~%chla2)g

s - . - —2 . -3 e N2
+(Fic }ara—%e *alarn+ic Fan i Yarndn)e + ., (A72)

P (s)— r(s)u(s) = e(n*u’ +(Fe~ 'na’ =L *uta")e
+(+4c arnn’a +1c7 %P +ic *arnuta® £4c” *ud”)e?

+[{Fac 3 (an) e %a? — ke~ *anin®a’ — ¢ *arnnd’

=3 aa -6 2,01 =6 2-=1.=54..3,,%.8
Tl 2n%d’ + {—Lc™an)? +54c " a* FhePanjuta

Fic Sanutd’ — e tutd’ —d5e a1 + . ) — (o, ), (A73)
(s)a’(s) — r(s)a’(s) = e(n*a’ £~ wtal +(Fe n*d’ Tic arnu’a’

asf B

- . - -2 a. -4 g
—c 2utdMe+[ £ e Carnn®d’ + e 0@ 4 ¢ farnuta
-3 s -3 s -5 2 1 =52

+ic P 117307 + (£ 3¢ (an)* T4 a

+ie tanjuta® 1+ )~ (2 B). (AT4)
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I these expressions arc substituted into (A65) and half the difference of the
retarded and advanced field is taken, one finds for the minus field in the
neighbourhood of the world line

-4
ec . — . f—

ffﬁ((,) = - 20’ (¢ Paran"u® + ¢ 2a*ntd”
127

—26'2d'nu“aﬁ-4c_2a'nu°‘a'ﬁ—n°‘dp)8+ = (2 ). (AT5)

(Indeed the limit ¢ - 0 gives back (A67).) The derivative of the minus field
in a direction orthogonal to the four-velocity follows by taking the derivative
with respect to en™:

. 1 . ¢ ec™*

;A : : A2, -2

A() O‘fzp(e) =S llm - Aé N Afiﬁ(e) = A({)(C Za.agatsllﬁ+c azg“‘saﬂ
£=20 & CHy 127

—2¢7%d%%a" —4c™*a’u"a" — g?it) —(, B).  (AT6)
Combining this relation with (A69) according to (A68) one finds

2

ny € _4¢.a B - . - - -
O'ffﬂ(e) = — ¢ Mi" ¢ ¢ ParaguP + ¢ T 2aPgVa’ — 27 2wl @

127
—4¢™ M@ a +u'(3c et utal — 3¢ uti = 2¢ T 2a%d)) — (o, B),  (AT7)

which is the expression (A59). This formula shows that the derivative of the
minus field, just as the minus field itself at the world line of the particle, dis-
appears if no accelerations are present, i.e. if the particle moves uniformly.

We now turn to the dipole field given by (A66). It is possible to calculate
(in an analogous fashion as used for the charge field) the general expression
for the field and its derivative at the world line. The results are lengthy® and
will not be reproduced here. Much more simple results are obtained if one
retains right from the beginning only those terms which are independent of
the first and higher derivatives of the velocity. Then formula (A66) becomes
upon using (II1.94)

gy C Ui ? 2 P 2w 3w, e
ra(my — L T “zl - - - 2
7 (ur) usr ur ur (u-r)
e 2m™u, u’ N 3m*u, )2/’(:2 3m¥r, L;’}cz + 3m¥r, ;;pcd'

ur (ur) (ur) (u-r)
m*e?)’
ML p). (AT8)
wr | ea

* Harish-Chandra, Proc. Roy. Soc. A185(1946)269; J. R. Ellis, J. Math. Phys. 7(1966)
1185; S. Emid and J. Vlieger, Physica 52(1971)329.
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Its value near the world line, i.e. at a position R* = X*(s)+en* follows by
making use of formulae of the type (A70-A74). In particular, since we
limit ourselves here to terms without accelerations, the equation (A70)
now reduces to

S,a—S; = Fe le (A79)

Furthermore one finds then
u(syr(s) = Fee, (A80)
ri(s) = en"+c ™ leu” (A81)

and expressions for m*(s) and its derivatives that follow immediately from
the Taylor expansion around s, . If these expressions are inserted into (A78)
one obtains for the minus field in the neighbourhood of the world line up to
order e:

af ¢’ s =20 8 20
Sy = — (M +2¢ 7 m™u, uf —2¢7*mPu u®)
on

& (4
— S(m"‘"u n +m°"n uf —mPu,n O L u"). (A82)
127
From this formula one finds directly, by letting tend ¢ to zero, for the field
at the position of the particle

-3 ® 3) (€]
I = .6- (0 +2¢72m™u, uf — 2¢ 7 mPu, u%) (A83)

and for the derivative of the field in the direction orthogonal to the four-
velocity,

-5 4) (4}
A3 = — i—é— Ay(m“u g° "+m“‘5 b_ nﬁgu8 g —-mPu®).  (A84)

Furthermore it follows from (A83) that the derivative in the direction of the
four-velocity is
-3 (4

(4)
uto, [,y = ~6- (m? +2¢” m""u uf —2¢7 2wy u), (A85)

where again accelerations have been neglected. Then, according to (A68),
we find from (A84) and (A85)

_5 (4)
Tf ey = — E—(m”u g”’+m‘”u”+m“’3u +6c” m u,u’u?)~ (2, B), (A86)

which is the final result for the derivative of the dipole minus field at the
position of the particle (at least for the terms without accelerations).

APPENDIX V

Semi-relativistic equations of motion
for a composite particle

1. The semi-relativistic approximation

In the relativistic treatment of a composite particle in an external field equa-
tions of motion and of angular momentum have been found. They contain,
as compared to the corresponding non-relativistic treatment, a number of
relativistic effects. Amongst these figure in particular terms of order ¢~2,
which contain an explicit factor ¢ ™' and the magnetic dipole moment, which
is itself of order ¢~*. Hence these are the terms which would survive in the
so-called semi-relativistic approximation (v. section 2¢) in which one con-
siders the magnetic dipole moment to be an atomic parameter of order c°
and subsequently retains only terms up to order ¢~ . It is possible to give
a theory in which all these semi-relativistic effects are included, without going
through the complete relativistic treatment. In this way some insight is
gained about the origin of these terms, in particular about the so-called mag-
netodynamic effect, that contains the vector product of the magnetic dipole
moment and the electric field. In the following we shall carry out this pro-
gramme by first developing the theory up to order ¢~ 2 (which includes the
use of some notions of relativity) and then taking the semi-relativistic limit of
the resulting equations.

2. The momentum and energy equations

a. The equation of motion

In non-relativistic theory the equation of motion for a particle in an electro-
magnetic field contains the time derivative of mass times velocity. In a theory
which includes all effects up to order ¢~ 2, again the time derivative of the
momentum appears. However, the momentum now contains not only the
ordinary rest mass, but also a mass which is equivalent to the kinetic energy.

The equation of motion for constituent particle i of the composite particle
reads then

% {m,(1 +%C_2R?)Ri} = e;{e(R;, 1)+c" 'R, ADb(R;, 1)}, (A87)
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where e, is the charge, 77 the mass, R,(r) the position and R (7) the velocity of
the particle 7. The right-hand side is the Lorentz force, just as in non-relativ-
istic theory. The total electromagnetic fields ¢, and b, contain the fields due
to the other particles j (# /) and due to external sources. The electric and
magnetic fields are needed up to order ¢~ 2 ! respectively so as to
describe all effects up to order ¢~ 2.

Since we are interested in the motion of the composite particle as a whole.
we shall define now a privileged point X which describes the position of the
atom as a whole. In non-relativistic theory the centre of mass has been
chosen as such a point. In relativity one should like to include beside the
rest masses also internal kinetic and potential energies in the definition. This
would lead to an energy centre, defined, up to order ¢™2, as

and ¢~

xt = Ll e mR AT Y e e fSTIR - RDR, g0
Si(mi+ie T m R ¢ > icen €ie;/8nIR,—R}|)

Such a definition, however, is still not convenieat, since in this way the
privileged point X* would depend on the velocity of the observer with respect
to the compesite particle, and is hence not invariant. To overcome this
drawback, let us consider the coordinate frame in which the composite
particle is momentarily at rest, i.e. a frame which moves with the velocity
X* with respect to the observer. If we now determine the energy centre in
this momentary rest frame, we find a point X (different from X*). By re-
peating this procedure for each time 7 one obtains a world line of energy
centres X(#) . From this construction we shall now derive the relation that
determines the privileged point X in terms of the positions R;.

t One may ask whether this construction is the ¢=2-limit of the relativistic definition of the
centre of energy. In the relativistic case one takes the energy centre in space-like surfaces.
As a weight function one uses the time-time component £°° of the energy-~momentum ten-
sor (62). If one evaluates up to order ¢~ 2 the expression ¢~ 2 ftOORdR one finds indeed
the numerator of (A88) (v. problem 7). What remains to be checked is that the relativistic
construction, in which one takes space-like surfaces normal to the total momentum p?,
reduces to the present one, in which different space-like surfaces are employed, namely
surfaces orthogonal to the four-velocity corresponding to X*. From (124) it follows that
the space-components of ¢ times the normal unit vector i.e.: ¢p?/+/ = p2 differs from the
space-components of «* = dX*/ds by terms which are of order ¢~2 and smaller. In the
course of this appendix it will turn out that the velocity X differs from the velocity X* by
terms which are also of order ¢~2 and smaller. Hence ¢ times the space components of
the normal unit vector of the relativistic definition differs by terms which are of order ¢~ 2
(and smaller) from X*, which is used here. Since the construction given here will show
that not the precise form (A88) of X* is relevant, but only the fact that its ¢%-terms give the
non-relativistic centre of mass, it follows that the construction given here is indeed the
¢~ ?-approximation to the relativistic definition.
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Let us consider the points of the world lines R;, X and X* which have the
same time coordinate ¢’ in the coordinate frame (indicated by primes) which
moves with the velocity X*(z*) with respect to the observer (see fig. 2). In

’

R

Fig. 2. The construction of the semi-relativistic energy centre.

the observer’s frame these world points have the time components ¢;, ¢ and
t* respectively. The relative position vector in the primed frame

ri(1) = Ri(t)—X'(1) (A89)
of particle / with respect to the energy centre X fulfils the relation

[ingt 3o 2m, R (1) + ¢ ~~~-6Le—’¥—~} r(1) = 0. (A90)
2 e ) f(;i) snlri()—riOl )

13

In fact this is the defining formula of an energy centre up to order ¢~ 2 (cf.
(A88)). We now want to find what follows from this relation for the relative
positions

ri(r) = R()—X(1), (A91)

in the observer’s frame. From the fact that the world points (R;(#;), #;) and
(X(1), 1) have the same time components in the primed frame, it follows,
with the help of a Lorentz transformation, that, up to order ¢~ 2, one has

ti—t = ¢ 2XF(F)ri(D), (A92)

where (A89) has been used. In the same way it follows that t*—¢ is of order
¢”?, so that (A92) may be written as

ti—t = T2 (D), (A93)

up to order ¢~ 2. The first terms of a Taylor expansion of R(t;) around R(7)
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become with the help of (A93):
R(t}) = Rt) +c > X*(1)ri(DR(0). (A94)
The same Lorentz transformation which has led to (A92) also yields with
the notation (A89):
R(t)—X(1) = ri(1)+ 372 X*(0)ri()X* (1), (A95)

where in the transformation velocity X*(¢) the time 7 has been written in-
stead of 7%, since the difference between these times is of order ¢~ 2 only.
From (A91), (A94) and (A95) follows the relation

r(t) = () +1¢ T 2XH () (X () — TP XF () (OR(D). (A96)

2

Its inversion, up to order ¢~ *, reads

ri(1) = r(0)— e XA (OX O+ XA O ROR(). (A7)

Apart from #}(7), which has now been found, the quantity R}(7;) also occurs
in (A90). It may be written, up to order ¢°, as

Ri(1) = R(1)—X*(1") = R()—X*(1), (A98)
where the fact has been used that both #,—¢ and *—¢ are of order ¢~ 2

Inserting (A97) and (A98) into (A90) we obtain now up to order ¢~ ?:

. . _ e ¢e;
m+4e P m(R— X*) +¢7? ___',‘,_}
Z{ e & ) j(Z#:i) 8nfr;—r

(ri—4c 2X 9, X*+ 72X 1, R) = 0, (A99)

12

where the arguments ¢ of all quantities have been_ suppres_sed. From (AEE%)
and (A99) it follows that the difference between X* and X is of ordex; 2c .
This permits us to write (A96) and (A99) with (A91), up to order ¢™*, as
¥ =rl =47 Xer X —c T Xorli (A100)

i

and

Y (m,-ri+~§—c_2mit‘i2ri+c"2 Y _ Gl r,-—i—c"zm,.X'riii) =0. (A101)
i(F 8nlr;—r;|

i

The last relation defines a privileged point of the composite particle in a
unique way. In fact if there would exist two different points X and X+4X,
one would have, apart from the relation (A101) as it stands, a relation like
(A101) but with X+ 4X and »;— 4X instead of X and r; respectively. Then

. - . -4
from these two relations together it follows that 4X is at least of order ¢~ ™.
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Hence it is negligible in the framework of the present treatment, in which
only effects of order ¢™? are considered. One may still ask whether the defi-
nition of the privileged point is biased by the original choice of the (R, 7)-
frame as a starting point. Suppose in fact that one had started from an (R, 2)-
frame which moves with a velocity ¥ with respect to the observer to define
the ancillary point X*. Then one would have arrived at a privileged point
X(#) and relative positions

P(1) = Ri(D)—X(3), (A102)
which satisfy a relation like (A101) but ‘circumflexed’. The Lorentz trans-
form of the point (X(1), ) in the (R, #)-frame is the point (X(2), ) in the
(R, ) frame. One may now ask which relation is satisfied by the relative
positions r(¢) = R,(r)—X(t) with respect to the newly defined privileged
point X(7). They are connected to the 7,(1) by a relation which may be
derived in the same way as (A97), and which reads

B = r(0) =17 Ver (W + T 2Ver(OR(0). (A103)
Substitution of this relation and the transformation formula X =X~V

into the circumflexed (A101) gives

Z {mi "i—%c—zmi Ver, V+ c_zm,- Ver, Ri+%c"2m. P2,

ittt
i

+c7? Y G ri—i—c_znqi(X~—V)-rifi} = 0. (A104)
iFo 8xnlr,—r)|

With R; = X+, the third term splits, such that the second part of it cancels
together with the last term. Furthermore the first part of the third term and
the second term are both of order ¢~ %, as follows because > im;r; is of
order ¢™2. As a result one is left with a relation of the same form as (A101).
Since there is only one point which satisfies (A101), as was shown above, the
choice of the (R, ) frame as a starting point does not cause a bias.

The relation (A101) will be used to derive an equation of motion for the
atom as a whole. In fact by summation over 7 of equation (A87) and the use
of (A91) and (A101) one gets an equation of motion with at the left-hand
side the time derivative of the quantity
(m+ie?mX*+4c72 Y m D)X+ Y ¢ m, P X+ Y 1e " m; P

i i i

[ S 4

—C“Zé{Z(%mﬂ‘?rﬁ W ri+miX‘rif'i). (A105)
ti

iFn 8alr;—r;

This is the extension up to order ¢~ 2 of the non-relativistic momentum mX
p
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(the mass of the composite particle is m = Y i ;). If the time derivation in
(A105) is performed, one obtains — amongst other terms — second derivatives.
These may be rewritten with the help of the zero order equations of motion

m; R, = e;e(R;, 1),

) (A106)
mX = Z eiet(Ria t)>

which follow from (A87). In this way (A105) becomes
(m+ic ?mX*+3c7 2y m; iHX—c72Y [i‘i' {ei e(R;, 1)

e; ¢ {"s* ("i_”j)'(’;i”“’;j)’fj}

,ri'—rj|2

m;
-~ e;e(R;, t)} rt+ Y,
mj FED) 875!'%—"1‘[

+ T Y e;e(R;, t)r,; o+ Xer, {ei e(R;, t)— @Z eje(R;, t)” . (A107)
m5 m;

where the last term between the brackets may be omitted, because it is of
order ¢ ™%, since Y, m;¥; is of order ¢~ 2.

The total electric field e,(R;, 7), occurring in (A107), consists of the intra-
atomic field, generated by the constituent particles j (5 £) of the atom itself,

and the field E(R;, r) from outside the atom. Up to order ¢° we have thus

eRi, ) = ¥ =) g, o). (A108)

ED) 47t[ri—rj|3
Substitution of this expression into (A107) yields

(m4+3c*mX>+1c72 Y miH)X
g

-2 €€ f,-.‘ o+ (ri—r)(ri— "j)’Ri}

1,50 ) 8mlr— | ' lF—r?

-

Fj

-7 Y e EN E(R;, )+ E(R;, Or;+ X1, E(R;, z)} . (A109)

l”?

where we introduced the non-relativistic inner angular momentum

5 = Zmiri/\i’i. (A110)

The time derivative of expression (A109) constitutes the left-hand side of
the equation of motion for the composite particle. The right-hand side is the
sum over all constituent particles i of the Lorentz forces which appear in the
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right-hand side of (A87). In these forces the total fields arc sums of intra-
atomic fields and fields from outside the atom (cf. (A108)). Up to orders

¢™%and ¢’ the electric and magnetic fields are given by (v. (I11.72))
e . Y 2 . . 512
aRi) = Y e, [' i e TR 30 (G Ry
i(=n dn|r,—ri 87[[}‘14-—1‘j|3 8l —r;l”
_e2 i)k R ] CER. 1
) YOV LER, ), (Al
énlri—rj]3 8nlr—r| ( ) ( )
b(R;.t)=c"'5 e, Rin(ri=r)) +B(R;, 1),

7’ drlr;~r) 3

wherc (A91) has been used. With those expressions for the total clectro-

magnetic field the right-hand side of the equation of motion for the compo-
site particle gets the form

N A W= )

dt Lijives 8nlr;—r) U l;a—;:.g[&ﬁj

+ 2 e {ER;, )+c 'R AB(R;, 1)}. (A112)

The equation of motion for the composite particle up to order ¢ 2 follows
finally by equating the time derivative of (A109) and expression (A112):

d o _ 0. .
@ {(m+‘zc ZmX*+Le 2;r11i1‘iz+c_2 > ~—§~e—1~»—)X‘

i 5 8mlr—r ]

=) e{E(R;, )+ 'R, AB(R;, 1)}

s _d 5
dr m

L AR, z)ﬂ . (A113)

m

+c {: Z e; {t"i-E(Ri ,OF+ Xor E(R;, 1)+

In the left-hand side one recognizes the time derivative of the velocity of
the atom times its total energy divided by c2 (its ‘total mass’). At the right-
hand side appears, apart from the sum of the Lorentz forces, a (total) time
derivative of order ¢~ 2. The last term of the quantity between brackets may
be written in a compact form:

s .
Set ABR. ) =5nK (A114)
ioom
by using (A106) and (A108) (cf. the remark after eq. (126)).
In the case without fields E and B the right-hand side of (A113) vanishes,
so that then the bracket in the lefi-hand side is conserved. According to
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equation (1.63) the time derivative of the factor between l?rqckets (t‘he ‘total
mass’) is in this case at most of order ¢~ * and hence negligible. This means
that the velocity X of the atom as a whole is conserved, as one would expect
in the field-free case.

Let us now consider the equation of motion (A113) for a composite par-
ticle in an external field (E, B) that changes slowly over the dimensions of the
particle. Then the right-hand side of the equation of motion may be qpan@ed
in terms of the relative positions r; (A91). In that way one may obtain a series
expansion containing the non-relativistic multipole moments (I.IS~1§) of
chapter 1. These non-relativistic multipole moments however are not inde-
pendent of the motion of the atoms in a theory in which all terms up to
order ¢~ 2 are taken into account. Therefore we want to introduce rest frame
multipole moments, as in section 2b of the present chapter, which read

w0 = Ly, (n=01.2)
15
nl (A115)
!
v = " S epma l (n=1,2,.0).
(n+1)izi ¢

The connexion (A100) between r; and r; allows us to express the right-hand
side of the equation of motion in terms of these rest frame multipole mo-
ments. If we confine ourselves to the contributions of the electric charge
1 = e and the electric and magnetic dipole moments p'’ = p and
v = y, and if we make use of the homogeneous field equations for the
external fields

V'B=0, ¢ '6B/ot+VAE =0, (A116)

we obtain as the equation of motion up to order ¢~ * for a composite charged
dipole particle in an external field

d - — .12 -2 €;€;
Sl mtde tmet 43 2 Y mit e Y )
de i 1i# ) 8nlr; —rj

= e(E+c "o AB)+(VE)(p—1c *vop—c v Av)+(VB)(v+c ' pav)

3
+c¢ ! di(y/\B)——c_l(% [V/\E~c_1v'yE—c ! - /\{eE+(VE)'y}} ,
t
(A117)

where the fields depend on the position X and the time ¢ and where we hav‘e
written v for the velocity X. This equation, which is indeed the ¢ 2 approxi-
mation of the relativistic equation (135) with (137), may be compared to the
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non-relativistic equation (55) of chapter I. At the left-hand side three addi-
tional terms appear, which describe ¢~ 2 corrections to the inertial mass.
At the right-hand side in the second term the Lorentz contracted electric
dipole moment p +(1—~%c™*0?*)u;, up to order ¢ appears (the dipole
moment has been split into components orthogonal to and parallel with the
velocity) and moreover a term due to the moving magnetic dipole moment.
The last time derivative contains in the first place a magnetodynamic effect
with v A E analogous to the electrodynamic effect with g A B of the penulti-
mate time derivative. The third contribution to the last time derivative has
the same form as the first contribution but with the ‘normal magnetic dipcle
moment’ ¢ es/m instead of the (total) magnetic dipole moment v, and with
the opposite sign. Hence effectively only the ‘anomalous magnetic moment’
couples with the electric field (as has been found already in the relativistic
treatment). For an ordinary atom the anomalous magnetic moment is nearly
the same as the total magnetic moment v, since the atomic mass # is several
thousand times greater than the masses of the particles which contribute to
the inner angular momentum.

In the preceding all effects of order ¢~ 2 were taken into account. The equa-
tion of motion is simplified if we consider the semi-relativistic approximation.
The latter has been defined in section 1 of this appendix as the approximation
which results if one retains terms up to order ¢~ ' only, considering the mag-
netic dipole moment as being of order ¢°. In this way we get from (A117)
the semi-relativistic equation of motion for a charged particle in a slowly
varying external field:

mi = e(E+c” v AB)+(VE)(p—c™'vAv)+(VB)y(v+c pAv)

¢! ac—i-(ﬂ/\B—V/\E). (A118)
t

The dipole terms in this equation are symmetric with respect to electric and
magnetic phenomena. This was not the case in the non-relativistic equation
(1.55).

A semi-relativistic equation of motion has been given also by Coleman
and Van Vleck!, starting from the Darwin Hamiltonian (v. problem 6 of
chapter III). They employ the point X* (A88) as the centre of energy. This
means that the relative coordinates with respect to the privileged point satisfy
a relation like (A101) but without the fourth term. It follows however from
the discussion leading to (A104) that such a definition is biased by the choice
of the observer’s frame: in other words such a definition of the centre of

* S. Coleman and J. H. Van Vieck, Phys. Rev. 171(1968)1370.
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energy is not even covariant up to order ¢~ . Using this centre of energy
they find an equation of motion up to order ¢~ 2 which has a form similar to
(A113) but with an extra term ¢~2(d2de* )Y mXer#;) at the left-hand
side. Making a multipolc expansion and taking the semi-relativistic limit, cne
arrives then at an equation like (A118) without the term — ¢~ (VE)'(v A v).
Coleman and Van Vleck limit thcmselves to the case of a magnetic dipole
in an electric field and thus find for the force only the term — ¢~ ' (d/d#)(v A E).

b. The energy equation

The energy equation is obtained by multiplying the equation of motion
(A87) with R; and summing over i

Z §Z {m(1+%c*R)R IR, = Z e;Rre(R;, 1). (A119)

If the relative positions #; (A91) are introduced. and the relation (AI01)
is used, one gets as the left-hand side the time derivative of the quantity

2 -2 a4 .2
ImX*+ 3 PmX 4 Y Ty F
i

——c_ZZ{X'dg(%mi;‘fri—k > Mﬁi’m«lt +m; Xor; r)
i t

(= 8l
—3m, 2K — 2 (P X ) — S e X — % mit’f'} . (A120)

If the time derivative in the fourth term is performed, and the equations of
motion (A106) up to order ¢® are employed, one obtains:

ImX?+3c *mX* 4 szl), +c7? 2 [4171L12X2+ L (7 -X)? +m, i X

_f_%mi,;’f‘-M Z A A f,;i.X__ i J) (' J)V X\

i 8nfr—r ] | ]ri-—rjlz

KX 4R {e,. e(Re, )~ "5 e;e(R;, t)}

m; . o
— X 2 eje(R;, 7)}] . (A121)
m i
The third term is the part of order ¢ of the internal kinetic energy in the
observer’s frame. We want to introduce the kinetic energy in the rest frame
of the composite particle, since this is an invariant quantity. Instead of using
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the total time derivative of r;, which would be obtained from (A100), it is
more convenient to use the time derivative of r} at constant transformation
velocity. It follows from (A96) or (A97) by taking X *(#) constant. Moreover
we want to take into account the fact that time differentiations in the ob-
server’s frame and in the rest frame differ by a factor 1 —41c™2{X*(2)}2. In
this way we are led to the introduction® of the quantity #; by means of

Fpo= ¥ _”%C_ZXZ’;; +%C_2X";iX_CnZX";i Ri"C—ZXv'l'iR.ia (A122)

where we used the fact that X* and X differ by terms of order ¢~2 only.

From (A122) and the equation of motion in zeroth order (A106) it follows
that

Im ¢t = 2. Imi2—c7? Y (dm P X2 4 Ay (¢ X )

+m;i2ieX +e, reXive(R;, 1)} (A123)
Substituting this expression into (A121) and using (A101) we obtain as the
left-hand side of the energy equation the time derivative of

1 ¥2 1 3,—2, v4 1 .12 -2 222 .
bmX 3T I mX b Y mE P ey [ém,-riX +3m; ¢
i i

e;e; . o (Fi—r (- F LX .
— —t X — LWJ)_(,_L)'_} —e; ri.X(X_}'zi'i)'et(Ria D)

iF0 8nlr;— ¥ ' lry—r;|?

m; S .
+ - (rXF—iXr) ) eje(R;, t)] . (A124)
J

In the right-hand side of the energy equation (A119) we now substitute the
expression (Al111) for the total electric field. Then we obtain

d ¢ U Qi) i(ni—ry)¥
- el B B [A TP T T
dt l,_}(lz*,]) 8|, —r | ( ¢ it 2 e
ey L Gk

2 Il ok (0 " (r )X])

+ Z e RPE(R;, ©). (A125)

The equation of energy (A119) becomes finally with (A100), (A110), (A122),

! Earlier in this appendix we did not need to make a difference between r,; and r; since
they only occurred with factors ¢! or ¢~ 2. The quantity r; introduced here is the ¢~ 2
approximation of (A34).
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(Al124) and (A125)

d . . .
— . — . - <74
P il S S CLOTAS S S e S Lty
i

i O )

+ Y l:1+ Ie
(%)) 87r]i —rjl : \ ]ri—-rj]

=Y ¢, RyERR;, 1)+c™? §~ [Z e {i ANE(R;, 1)
i t i m

+2¢E(R;, O)r+Xr, E(R;, t)} X} . (A126)

This is the energy equation up to order ¢~ for a composite particle (cf. the
equation of motion (A113)). It shows which corrections of order ¢~ 2 arise
as compared to the non-relativistic equation of chapter 1. If the fields from
outside the atom are slowly varying, we may perform a multipole expansion
and introduce the multipole moments (A115). Just as for the equation of
motion we shall confine ourselves to the contributions of the charge and the
dipole moments. Moreover we introduce again the semi-relativistic approxi-
mation, as in the preceding subsection. We then obtain from (A126), usmg
also the field equations (A116), and the notation v for the atomic velocity X:

4 (Jz-mvz+ Y dmiit+ Y *“fiﬁw)
dr 7 1,i(# i) 87|r; — 1]
= evE+v(VE)(p—c "vAv)+v(VB)(v+c 'pnv)
d - - -
+ {E (u—c lvx\v)‘ ‘E—(v+c ly/\v)'(:TB +2¢7! (;i {(vAv)E}, (A127)
i t t

J

which is the semi-relativistic energy equation for a charged dipole particle in
an external field. (It might have been obtained by taking the limit of the
relativistic equation.) As compared to the non-relativistic equation (1.67)
various new terms with magnetic dipoles in motion arise here.

3. The angular momentum equation

The angular momentum equation for a composite particle is obtained by
multiplying the equation of motion (A87) with the position R; and summing
over the index 7 that labels the constituent particles:

R,.A - {0m, 1+4c 2RAR,) = " e R {eR 1 +e R AB(R,, 1))
. j X
| (A128)
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The left-hand side is the time derivative of the expression:
Z m{1+4c?RH)R, AR, . (A129)

We introduce now the relative positions #; (A91) and use the centre of energy
condition (A101). This gives, up to order ¢~ 2, for (A129):

mX/\X—{-E—!—c_Z(%mXZ_{.% Y mif‘iz)X/\ X
+e7? Y m(3X 4 XeF 1) AR —c A EAX) A X
—c"2 Z A7 l‘i/\X-l-X/\f‘i Ll; J)(r J)X/\r}
1,5 ) 8nlr;—r | i~

=72 Y m X A(FeF o+ Xor o+ Xor ), (A130)

where the non-relativistic inner angular momentum § (A110) has been in-
troduced. The accelerations in the last three terms may be eliminated by
means of the equation of motion (A106) up to order ¢°. For the electric field
which then appears we write expression (A108). In this way we get as the
left-hand side of the angular momentum equation the time derivative of the
expression

mXAX+5+c T (GmX2+1 Y m )X A X
+c7? Z M 3X? + X+ LD, A F—c MEAX)AX
~c7? Y eXA {i;E(Ri, t)ri—[-X'riE(Ri, )+ s AE(R;, 1‘)}
i m

e 3 G a K xai CTRXACER) ()
LiG* ) 8lr;— ¥ ] [r;~r; f

The right-hand side of the angular momentum equation (A128) contains

the total electromagnetic field, for which we substitute the expressions

(Al11). In this way one finds for the right-hand side

R e T e ]

Lia#n dt L8nlr,— )| lr;—r;|?

+ Y e, R A{E(R;, ) +c 'R,AB(R;, 1)} (A132)
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The angular momentum equation (A128) becomes with (A131) and (A132):
4 [mX/\X+§+c‘2 (—%m}zz-{—% Y mit+ Y ~~~—€—i-e~j-) XAX
dt i L,i@# ) 8mlr;—r
+¢72 Y mGAX2 4+ XF A+ D) AR —c 2 EAX)AX
by s (g Cernen
|
J

+c
fri—r

i,ji# ) 8mlr—F

= Z eiRi/\ {E(Rl, t)‘[’"c_lRi/\B(Ri, t)}

o d
dt

+e liz e, X A {ﬁi'E(Ri, O, + X, E(R;, )+ L AE(R;, t)}] .
; m

(A133)
This equation still contains the position X of the composite particle. It may

be eliminated with the help of the equation which results if the equation of
motion (A113) is multiplied (vectorially) by X. Then we get

g— {E-Fc_z S mAX2+ Xb + 3D A —c T3 AX)A X
t i

-2 e e; . (r—r)Rr AT
_ &g {"i/\"j— P V)R AT
¥l

+c
l"i“‘"j!z

i,i(i#j) 8mlr; —
=Y e;r; A{E(R;, t)+c 'R, AB(R;, 1)}

+eT2Y e X A {i'i-E(Ri, i+ Xr, EQR;, )+ — AE(R;, t)} . (A134)

m

The non-relativistic inner angular momentum § (A110), which occurs here,
has been defined in terms of r; and #;. If we eliminate these quantities in the
left-hand side in favour of r} and #}, with (A100) and (A122), we obtain as
inner angular momentum equation

ad~ [Z mL+3e %2 AF =3 H(S mri AR A XA X
t i

! ’ .7 ! ’
2 ee; {rf/\ﬁ(— (ri—rj)rjri/\rjﬂ

1
+c
Y r{—ri|?

L)) 8mlr; — 1)
=Y e;r; A{E(R;, {)+c 'R, AB(R;, 1)}
+e7? Y eiXA {;’;E(Ri, t)rﬁf(-ri ER;, )+ s AE(R;, t)}
7 m

+eo? (% (3 esreXr AE(R:, 1)) (A135)
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If the external fizids are slowly varying we may perform a multipole expan-
sion of the right-hand side and limit ourselves to dipole terms. Expressing
the results (with the help of (A100)) in terms of the dipole moments (A115).
and refaining onlyterms up to ¢! (consider.ng magnetic dipole moments as
being of order ¢®) we obiain the semi-relativistic inner angular momentum
equation:

d
d(Z mrf AF) = pA(E+c "vAB)+vA(B—c TonE). (A136)
to

Here we have written v for the velocity X of the composite particle. This
equation (which may be found also from the relativistic theory namely from
(136)) shows a symmetry between electric and magnetic phenomena, which
was absent in the non-relativistic equation (1.79).



PROBLEMS

1. TItis possible to prove directly the covariance of the dipole contributions
(48) and (49) to the polarization tensor (although the manifestly covariant
derivation of these formulae guarantees their covariance already). To that
end consider first the Lorentz transformation from the momentary atomic
rest frame (ct(?, R(®) to the observer’s frame (cz, R) which transforms the
coordinates (c#‘9, R\ (+)) of a point of the world line of atom k into
(cty, Ri(2,)), where in general ¢, differs from 7. (The transformation velocity
is cBi(#,) = dR,(1,)/dt.) Show from the transformation formulae that

clte—1) = VOB (R~ R} +..., (P1)

where a Taylor expansion has been performed and where the dots stand for
terms of higher order in R, () — R. Prove then, again using the Lorentz trans-
formation formulae, that

RO —R® = Q') {R()—R} + ..., (P2)
where Q™' has been given in (A3). Show from the latter formula that
SRV(# ) =RV} = 3 (3{R(1)— R}, (P3)

where (A16) has been used.
Show with (P1), (P3) and the transformation property (AS) of an anti-
symmetric tensor that one obtains the formulae (48) and (49) starting from

the formulae
Pio)(R(0)> Z(O)) — p,ﬁ”(t(o))é{R,ﬂo)(t(o))—R(O)},

(P4)
mO(R, () = y{O(£)S{RO(1) — RO},

which are the atomic rest frame cases of (48) and (49).

2. Prove from (69) and (70) that, for sufficiently small forces, the world
line determined by the centre of energy construction of section 34 is time-like.
To that end consider the world line points (R®, X) and (R°+6R°, X +6X)
in the proper frame of p* corresponding to the first point. The second point is
a centre of energy in a plane surface £’ with normal parallel to p*+dp®. The
proper frame of p”+dp” is connected to the proper frame of p* by relations
like (71). The point (R°+6R®, X +0X) has in the new frame the coordinates
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(ﬁo’, X'+6X"). Prove that in the present case one gets
R® = R°+0R%+&(X—-R)),
R=R-¢R°

in the same notation as in (76-77). Show then with the help of the equation
of motion (64) that one has the relations

f[{a'(X—R)+5R°} F(R®, R)+&t°°(R°, R)]dR = 0,

f[(SXtOO(RO, R)+(X—R){e(X—R)+R°} f(R% R)]JdR—cens = 0,

where (68) has been used. From the first of these relations it follows that ¢
vanishes if no forces are present, so that for small forces one has

[ %dR

& =

up to terms linear in the forces. Prove by substitution of this expression
into the second relation that the infinitesimal change X of the centre of
energy and the change of time ¢ " 16R° are related as

ax g:ff(R__X)fodR_ ’ (fde) AS,

0
dR m m?

where we introduced 7 = ¢™? [ /°°dR as an abbreviation (v. (120) and
(123)). This formula shows that dX/dR® tends to zero if the forces tend to
zero, so that the world line is time-like if the forces are sufficiently small.

Discuss the connexion between the last formula and (124) (together with
(120) and (123)).

3. Consider two plane surfaces Z(s) and X(s+ds), one through the position
X?(s) (in the same notation as used in § 3¢) and with normal n*(s), and the
other through X*(s+ds) and with normal #%(s+ds). Their equations are
therefore n*(s){R,—X,(s)} = 0 and n*(s+ds){R,— X,(s+ds)} = 0. Prove
now that the volume d*V of a parallelepiped with basis d3% in Z(s) at the
position R*, with edges parallel to r*(s) and top in Z(s+ds) is

d*V = —n,u* {1
n,u’

} d*xds,

where n”, X* and v* = dX*/ds all depend on s.
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By choosing for #” the veetor p?// —p? one recovers formula (94} with (95).
(If one chooses for n” the vector ¢™ '« one finds back the expression given
in the {ootnote of chapter Il after formula (129).)

4. Consider, as in section 2a, a composite particle consisting of point
particles with charges e; (we omit the index &, which labelled the composite
particle). Prove, by making a multipole expansion around a central world
line X*(s), the identity

> euif(R) = ew’f(X)
+ i (ILLUi...7,1le_l“a1.;.7”—]al{au+Cv7]....7n(2)(:\‘ax'“0:n f(X’)

“ d
Y W, SO
S

n=0

Ti.edn XY dn

where / is an arbitrary function and u and v arc the multipole
moments (9); s is the proper time along the central world line X* and
= dX¥/ds.

Apply this formula with f(R;) = 6*(R;~ R) and find then (7) with (5)
and (10). Show furthermore that (15) and (16) are the multipole expansions
of the integrand of (I11.59).

Finally, by application to (106) with f(R;) = F™(R;) one may oblain
(168) by making use of the homogeneous ficld cquations (13).

5. Prove that, under the same circumstances as in the preceding problem
one has for an arbitrary function f(R;) the multipolc cxpansion

Z‘ell u?f(R,)

= 3 )+ T =) S, ()

n=1 n=2

+ Y ==y e gyt G s J(X):
n=1}
Apply this formula to (107) with f(R;) = F*’(R;) and find (173).

6. Prove from the definition (120) of m by evaluating it in the rest frame
of p” (65) with (62) that one has up to order ¢~ *:
e e

m =y ml+4e 2it)+c7? .
] ti(i= ) 8mlr;— x|

Hint: The fislds occurring in £ (62) follow from (II1.72).
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7. In the rest frame of p* the definition (66) of the centre of energy reads
X = [ Rt°°dR/[ t°°dR. Prove that, up to order ¢~ 2, this expression reduces
to

_ 2im(I+3eTPROR+ 7Y e sy (ere,/87IR,— )R,
Liml+3c 2R +¢2 Y, sy (e e;/8n|R;—R;l) .

Hint: the denominator follows along the same lines as in the preceding
problem, and so does the material part of the numerator. For the field part
of the numerator one finds first 3¢ ™% [}, ;4 ;) e;7¢; RdR with ¢; and e, the
Coulomb fields, due to particle / and j. With the help of a partial integration,
the application of Gauss’s theorem and the integration prescription of section
3b (according to which one has to integrate over a spherical volume of un-
boundedly increasing dimension) one obtains the last term of the numerator.

8. Show from the definition (68) with (62) that up to order ¢~ 2 the space-
space components of the inner angular momentum tensor s* are given by

=[Zm i1+ %) — 2{(Zm IAF)AXIAX

sty (g )

1,i(i% J) 8n|r —r] | lr{—r}lz
(with k,7,m = 1,2, 3 cycl.) in the same notation as in appendix V. The
material part of this expression follows directly from the material part of
1 (62), if one employs the defining relations(A100) and (A122) for r} and
#;, and the transformation formulac (A5) for the antisymmetric tensor s%.
To find the field part, one should use the expressions (IIL.72) for the fields
up to order ¢~ or rather the expressions (I1.70) with (ILL83) for the fields
in terms of Coulomb gauge potentials. Furthermore one should employ here
the integration prescription, as explained in § 35 (i.e. integrating over a
sphere of increasing radius around the origin).

9. Prove from (A112) and the first line of (A106) with (A108) that one may

write the sum of the total Lorentz forces on a set of particles i with mass m;,

charge e;, position R, velocity R;, acceleration R, as

Y ete(Ri, )+c 'R AB(R;, 1)}

-2 éf- ( €; ej Ri
de* \i G 87|R;— R

)— ~2d(szRR)

+ Z e{ER;, )+ RaBR,, )} + o {3 e.RER;, OR}.  (PS)
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Prove by insertion of this expression into (A87) (with a summation over i)
that one obtains:

¢ {Z (m +ic P mRi 472y m—eifﬁ——) R}
d* \ 5 P o i(#n 8n|R;— R '

13

=Y e{E(R;,)+c 'R,AB(R,, t +c‘29~ e; R'E(R;, )R;}. P6

Check that one recovers the equation of motion (Al113) by employing
(A91), (A101) and (A106).

Remark. At the right-hand side of (P6) two terms with the external fields
E and B appear: the ordinary Lorentz force and an extra term. The latter
has a form analogous to the term

o2 g (Y eiER:, 0)r.),
i

which appears in the semi-relativistic equation of motion (A113). This term
led, via the multipole expansion, to the term

d
—c¢ ' Z(vAE
dz( )

of the dipole equation of motion (A117), i.e. to the ‘magnetodynamic effect’
associated with the total magnetic moment. Some discussions (e.g. H. A.
Haus and P. Penfield Jr., Physica 42(1969)447) about the magnetodynamic
effect limit themselves to the derivation of (part of) the terms given at the
right-hand side of (P5), namely the terms with E and B. The problem of
deriving an equation of motion which involves the definition of a proper
centre of energy is not solved then. The conclusion that also inner angular
momentum terms appear in the equation, so that effectively only the anom-
alous magnetic moment contributes, is then missed.

10. Prove that the time-component of the equation (160) reads in three-
dimensional notation:

m* v do _ y~ 4 [eE'yv—m' (glf —BA glj) :
dt ot ot
dB dE dE dB
+2m-(—~~/\—~)~~2 /\ma-<——+ Am)]
vm s TP ) Al (G A

Compare this result with that of proble}n 6 of chapter VIIL
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