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CHAPTER V

Covariant statistics:
the laws for material media

1 Introduction

In order to find the covariant macroscopic laws from the corresponding
microscopic equations one has to introduce a covariant averaging procedure.
To that end covariant distribution functions will be employed that describe
the statistical properties of collections of world lines in Minkowski space.
In connexion with this, several covariant distribution functions of a particular
type will ensue: ‘synchronous’, ‘retarded’ and ‘advanced’ distribution func-
tions, which are useful to describe averages of certain microscopic quantities.
The first of these is a direct generalization of the non-relativistic distribution
function, while the latter have no non-relativistic counterparts.

With the help of the covariant averaging procedure we then derive the
Maxwell equations, the energy-momentum and angular momentum balances
and the thermodynamical laws. All macroscopic quantities occurring in these
laws will be found as statistical expressions in terms of microscopic quanti-
ties. In particular we shall obtain in this way an expression for the macro-
scopic energy-momentum tensor of a polarized medium in the presence of
electromagnetic fields. It will be shown that two ways of splitting the tensor
in so-called field and material parts present themselves in a natural way.
This result throws light on the much discussed controversy on the ‘correct
form’ of the field part of the energy-momentum tensor. In fact this problem
1s not well posed if one does not bring into the discussion also the expression
for the corresponding material energy-momentum tensor. Only the sum
of the two parts of the tensor is physically significant. Nevertheless it is
sometimes convenient to introduce a definite splitting to discuss certain
physical properties of the system. The situation is analogous to the one en-
countered in the non-relativistic theory, where we found various expressions
for the ponderomotive force density in a polarized medium, each with its
corresponding material pressure tensor.

248



246 RELATIVISTIC CLASSICAL STATISTICS B CH.V
2 Covariant statistical mechanics

a. Covariant distribution functions

Asystem of N point particles7 = 1, 2, ... is completely specified by giving their
world lines R{(s;) in Minkowski space. (The world lines are parametrized
by means of their proper times s;.) The number of world lines that intersect
a three-surface clement d*X (with time-like normal »%, 1#° > 0) at the posi-
tion R, is given by

20 m: Ry = Ri(5:) - tr, - Rygsiy =0 d’z. 1)

1

The bar. with the equation n*{R;—R{s;)} = 0, indicates that one has to
take in the delta function the proper times §,, which are the solutions of this
equation. The delta function employed here is the generalization of the
ordinary delta function 6{R{—R(s;)}: in fact it is equal to it if n* is purely
time-like: (1. 0. 0. 0). In the general case it is defined by writing

S (x) = 6%(n; x)5(nx), @

where x* is an arbitrary four-vector. If one wants to specify also the four-
velocity and higher proper time derivatives as lying in the intervals (R{%
R4 d* R etc. !, one gets for the number of world lines crossing d®X:

AN = ¥ 6D {n; Ry —R(510)}0P (R —RWs,0)} ... d°Zd*R{T... (3)

where RM7%(s;) = d"Ri(s;)/ds!. By addinga factor §[a*{R; — R,(s;)}] and an
integration over n*R (s;) one obtains after introduction of the new integration
variable s;:

dN = — Z {5(4){1{{1~Rf<5i)}71'REIJ(S,~)(5(4) (RVI—REI(s ).
ds;d*zd*RV... (4)

We may write this as
dN = —c¢ 'R (DA Zd*RIT. (3)

with the abbreviation
OERD) j SOLR, —Ry(s)}6P{RYI—RM(s))} ... ds;, (6)

* The upper indices between squarce brackets indicate the number of differentiations with
respect to proper time. The four-velocity dR%/ds; for instance is indicated as RI'¥(s;).
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where the argument 1 at the left-hand side stands for the set of variables

%, R This distribution function, which is a measure for the density
of world lines, is an invariant with respect to Lorentz transformations and
moreover independent of the normal vector »n”. If the system contains many
particles one may replace the discontinuous function (6) by a distribution
function which is a smooth function of R} and the independent components
of Ri¥, etc. Formally such a coarse graining is achieved by employing for
the one-point distribution function a weighted average of the right-hand side
of (6)

H()y=cXw Y f SR, =R, (s)}0{R =R (s)) ... ds;,  (7)
b )

with Y, w, = 1.
From (6) and (7) it is apparent that the distribution function vanishes if
the R{'% R . do not satisfy simultaneously the set of relations

RULRIT 4 =0,

i - g
Z(%)R§l+1].REJ_L+1] =0, (] =1,2, ) ( )
i=0

The components of R{', R*¥ ... are thus not all independent. In other
words the distribution function is the product of a number of delta functions
with as arguments the left-hand sides of the above relations and a function
which is smooth after the coarse graining has been performed.

The distribution function (6) fulfils a continuity equation, which may be
derived by writing the identity

¢ ZJ% [5(4>{R1 —Ri(si)}5(4){R51]—REI](Si)} .. ]ds; = 0. ©)

The differentiations with respect to s; follow by applying the chain rule.
Then one gets for (9)

(R[lll. \,_a_ +R[12]. g

oR, oR{H
which is the continuity equation. If the distribution function depends on a
finite number of variables, i.e. f;(1) = 1 (R, ..., RY?), the continuity equa-
tion gets the form

+ ...)fi(l) — o0, (10)

0 0
[ ° ni, n
(Rll] 6R t o +RE] aR[n—l])fl(Rlo 9R[1 ])
i 1

a n
2RI, R R <0, (11
1
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where we supposed that RI"* '3 was independent of the other variables?.

The continuity equation was derived here starting from the representation
(6) of the distribution function. The smoothed distribution function (7) will
satisfy the same conservation law, since coarse graining, 1.e. adding a summa-
tion with weights w,, will not change the proof.

In a similar way one derives that the joint probability (normalized to
N(N—1)) to find a world line crossing a surface element d>2; with normal
n’ at the position R? and four-velocity R{'* etc. and a different world line
crossing d*X, with normal n% at R and RY'* etc. is:

¢ *nR{n, RYIf,(1, 2)d* 2, 3%, d*RUIA*REN. ., (12)
where /5 (1, 2) is the two-point distribution function. Here (1, 2) is given by
fH(1L,2)y =Y w, (Z ) SUOUR, — Ry (5:)}0 ™ {RY TR ...

PR
(R, =R (s} {RYI- RN )} ... ds;ds;. (13)

In the following we shall frequently use the two-point correlation function
¢,(1, 2), which is defined as

c2(1,2) :fz(laz)”fl(l)fl(z)~ (14)

The generalization to particles with structure and to mixtures of different
particles is trivial. The distribution function will then depend also on the
internal variables and will be labelled by an index numbering the species.

b. Definition of macroscopic quantities

The microscopic quantities for which we want to define average values with
the help of the covariant distribution function of the preceding subsection
are sums of one-particle or two-particle quantities. The one-particle quanti-
ties have the form of integrals along world lines, so that their sums read

a(R) = Z f a{Ry(s), R¥(s;), R¥X(sy), -..; Rids;, (15)

! If however the R"*11* is dependent on R, ,..., RI", the integration in (11) may be
performed with as a result the continuity equation

0 ) s
v i RIn+1D [n]
{Rl or, T T e g N (R, -..r RYY)
fi(Rys s RYY) = 0.

This is the case which occurs in the kinetic theory of gases, where n = 1.
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where R¥(s;) is the position four-vector of point particle i with proper time
s;, RU¥(s) = dRY/ds; its four-velocity, RIP¥(s;) = d2R¥/ds? its four-
acceleration, etc. The average value of such a quantity follows by taking the
weighted average

A(R) = <a(R)) = gw./ ;foc{R,-y(si), RUY(s), ...; R}ds; (16)

with the weights w, which have been introduced in the preceding subsection.
This average may be written in terms of the distribution function (7):

A(R) = c_lfoc(l; R)fi(1)d1, 17)

where the argument 1 stands for the set of variables R} R{'¥, ... and where
d1 stands for d*R,;d*RU... .
Likewise for a sum of two-particle quantities

aR)y = Y | a{Rys), RM(s), -, R(s;), RE(s;), ...; R}ds;ds;  (18)

i ji#Jj)

one obtains in the same fashion the average
A(R) = {a(R)) = c‘lfaa, 2; R)f,(1,2)d1d2, (19)

where the two-point distribution function f,(1, 2) has been defined in (13).
Since the distribution functions f;(1) and f,(1, 2) are Lorentz invariant,

as was shown in subsection a, the averages A(R) (17) and (19) have the same

tensorial character as the microscopic quantities ¢(R) (15) and (18).

From the expressions (17) and (19) it is obvious that the average of a deriv-
ative of a quantity ¢ with respect to R” is equal to the derivative of the
average quantity 4 = {a):

0,ay = d,{ay = 0, A. (20)

This commutation property will be used frequently in the derivation of the
macroscopic laws.

The covariant averages (17) and (19) may be cast in a particular form if the
microscopic quantities have special properties, as will be shown in the fol-
lowing subsection.

c. Synchronous, retarded and advanced distribution functions

Let us consider first a physical quantity of the form

a(n, 1) = ;foc{Ri(si), .. }o{nRy(s;)+ctids;, (21)
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where n* is a time-like unit vector (n° > 0) and where 7 is an arbitrary real
number. (The charge-current density is an example of such a quantity.) In
such a quantity only those points of the world lines of the particles / contrib-
ute that lie in a plane three-surface n*R+ct = 0. In particular if the normal
n* has the form #* = (1, 0, 0, 0) this equation for the plane reduces to ¢ = 7,
i.e. only ‘synchronous’ points of the world lines contribute.

The integral in (21) may be performed by introducing the integration
variable #:R,(s;) instead of s;:

a(n, 1) = — lz“,{ﬁfﬁ‘?il:;:;} i (22)

nRE(s) Ry +er=0

where the suffix means that s, is the solution of the equation in question.

One often encounters physical quantities of the form (21) or (22) with « depending also
explicitly on R and the parameter 7 equal to —c¢~'#-R. Moreover space-time derivatives of
quantities of this type occur, for instance

Oy ZJOC{Ri(s,.), -3 R}o[n{Ry(s;)— R}]ds;. (23)
i
(The polarization tensor is a quantity of this type.) Such a quantity may be written in a

form that shows that it is of the same ‘synchronous’ type as (21). To that purposc we use
the identity for an arbitrary function f(x) and an arbitrary four-vector o#

2, I {R(s)— R} = = "% v = fLn{Ry(s) R} (24)
nv  CR;
for the special choice f(x) = 6(x) and v* = RU¥(s;). Then (23) becomes
ZJ [0,0{R(s;); -.-; R}]o[n-{Ri(s;)— R} ]ds;
— ZJULR (S [1?“) a-‘" 5[1? {R (S) R}]ds (25)

After a partial integration one obtains

ffrren s () oo

so that it becomes apparent that the space-time derivatives (23) of ‘synchronous quantities’
are themselves synchronous quantities of the type (21). Thelatter fact could also have been
seen from (22) with © = —c~!n-R since differentiation of that function with implicit

dependence yields
n{Ri(sy—Ry=0 ]

= [ ) #{R(s), -5 R}
acLR (s) 4R}

n-RM(s,)
— |y ]‘ , (1
[Z‘ an(s) Rt~ Ry =0 7
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where the differentiation df stands for

) n d
=0, e & 28
iz " :
neRM(s;) ds; @)
The right-hand side of (27) shows again that the quantity under consideration is of the
synchronous type. (As it should be, the right-hand side of (27) may be shown to be equal
to (26).)

The average of a quantity of the type (21), which according to (17) is

Aln, ) = ¢! {1(])5(H'R1 +c1) f1(1)d1, (29)
may be written as
_ A1) poon
A(n, 1) = -f ;;}iET] (1 n, 1)dl, (30)

where we introduced the synchronous distribution function
P n, 1) = —c 7 neRIS(R - cr) £, (1), (31)

From (30) it is apparent that the average of a ‘synchronous” quantity in the
form (22) may be obtained by replacing RY(s;), RF'¥#(s,), ... by the variables
Ry RV multiplying by the synchronous distribution function and
integrating over all variables. From (31) and (5) the interpretation of
(12 n, 7) follows immediately: f3(1; #, t)d1 is the number of atoms with
position four-vector satisfying the relation n*R,-+ct = 0, that lie in the
volume element d1 = d*R,d*RU'7... .
Let us next consider a ‘retarded quantity’ of the form:

a(R) = 3. J 2{R(s), - JO{R —R{s)I[(R—Ry(s)1%]ds:. (32
(The four-potential due to a point charge is a quantity of this type.) The com-
bination of 0- and J-function sclects indeed world line points which lie on
the negative light-cone with R* as top. If R¥(s;) # R* for all  and s,, one
may perform the integration in (32) by introducing the integration variable
{R—R(s;)}* instead of 5,. One obtains then:

2R (s ..}
a(R) = AN ZA AP ! 13
( ) Zi:zRP](Si)'{Ri(Si)—R} rcia ( )

where the suffix ret denotes the fact that one has to take s, as solution of the
equations {R—R(s;)}* = 0 and R°—R?(s;) > 0.
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Apart from quantities of the type (32), there occur also quantities which are space-time
derivatives:

0, ZfocLR (5, -3 RYO{R~R(s)}0[{R—R(s;)}*1ds;. (34)

(The four-potentials due to electromagnetic multipoles and the electromagnetic fields are
of this type). For R* £ R¥(s;) such a quantity may bewritten in a form which shows that it
is a retarded quantity of the type (32). To this end one must use an identity valid for an
arbitrary function f and an arbitrary four-vector v*:

R 27 - _ (R=Rs)ju . 0 —Rs)V?
O SR = R(s:)}"] = IVR R(s) . aR, SUR=R(s)"] (39

If this relation for the choice f(x) = d(x) and v* = RU¥(s,) is used in (34) for R* £ R¥(s;)
and a partial integration is performed one gets

) f {a ag 9 [ (R=Ry)yo ﬂ O(R—R)S(R—R)}ds:,  (36)

ds; [RM(R—R,)

so that for R* 5= RI(s;) the quantity (34) is indeed of the retarded type (32). This could
also have been seen by differentiating, for R* 5= R¥(s;), the implicit function (33) with
respect to Rﬂ:

R a{R{s;), ...; R} | et {R(s:), -3 R} §

0, I:Z m__{il_f(__)_u S § ] _ {Z dzut 1[1]( ) Ny ] (37)
2R /(R (S ) R} jret i 2R R (S ) R}

where the differentiation df! is (for R¥* 5= R(s:))

{R—R(s; d
dift = 0, + - R=R{s)}u (39)

RUY(s)- {R—Ry(s)} ds;
The right-hand side of (37) shows again that the quantity involved has retarded character
for R* 5= RE. (One may prove that the right-hand side of (37) is indeed equal to (36).)

The average of the quantity (32), which reads according to (17)

AR) = ¢ [0pR-RYSIR-R VIS, (39)
may be written as

A(R) = f A e Ry, (40)

2RY(R, —R)
Here we introduced the retarded distribution function® defined as
S5 R) = 27 RYH(R —R)O(R—R)S{(R—R,)’}f1(D). (41)

* Such a distribution function, but in its threc-dimensional form (56), has been introduced
by S. R. de Groot and J. Vliieger, Physica 31(1965)254 and in four-dimensional form by
L. G. Suttorp, thesis, Amsterdam (1968).

§2 COVARIANT STATISTICAL MECHANICS 253

(It would seem from (40) that the integrand has a singularity for R* = R*,
but the denominator appearing in front of /1 is compensated by a factor in
1 itself.) From (40) it appears that the average of a ‘retarded’ quantity
Wthh is given by (33) for Rl(s;) # R* may be obtained by replacing
Ri(s;), RM'M(s,), ... by the variables R*, RI ... multiplying by the re-
tarded distributlon function and integrating over all variables. From (41)
and (5) follows the interpretation of f/{*(1; R), namely: fr*(1; R)dl is the
number of atoms with position four-vector R{ satisfying (R—R,)* = 0 and
R® > RY, that lies in the volume element dI = d*R,d*RIM ...
We may treat in an analogous way the average of an ‘advanced quantity’

a(®) = 3 [ aR(s). - ORI~ RUTR-R(s) N ()
which may be written for Ri(s;) # R* as

af{Ry(s), -} |
a(R) = [EATACHY £ S | , 43
®) ;2R§13(si)'{R—Ri(si)} \adv #3)

where the suffix adv indicates that s; is the solution of the positive light-cone
equations {R—R,(s;)}> = 0 and R)(s;)—R° > 0. The average of such a
quantity (42) reads according to (17)

AR = ¢ [o(0oR, ~RIO(R-R VIS (40

It may be written as

A(R) = J‘ZRU]U(%)_‘R_) ddv(1 > R)d1> (45)

with the help of the advanced distribution function
fi%(15 R) = 27 RYMR—R)O(R, —R)S{(R—R,)*1fi(1 . (46)

The retarded, and likewise the advanced, distribution function may be
written in terms of the synchronous distribution function. To that purpose
we write first the identity valid for a four-vector x* (# 0):

6(:)5(:*) = ‘%ﬁ'ﬁ @7)

where we used the property of the delta function

W) =Y

8(x—x;) (48)
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with x; the (non-degenerate) roots of f(x) = 0. One may obtain the co-
variant form of (47) by noting that

2= —(nx) 2+ 4,x]% (49)
where #* is a time-like unit vector (n° > 0), 4¥ = g*" +n*n” and |y| =
J(3y) for a space-like vector y*. If one substitutes (49) into the left-hand
side of (47) and then uses the property (48) one obtains

_ o(nx+]4,xl)

0(x)o(x") = — T , (50)

where the right-hand side is the covariant generalization of the right-hand
side of (47). We now use relation (50) with x* = R*—RY in the expression
(41) for the retarded distribution function. Then by comparison with the
expression {31) for the synchronous distribution function one finds for
RE s RY:

M1, R) = — -~ VYt 1 n, —c 'neR—c7 M4, (R—R))]). (51)
(1:R) = n(R—=R)n R[” ; (R=R,
In particular if one chooses the unit vector n* as RY'/c one obtains unity

for the factor in front of /77", A different choice of #»* which is often conve-
nient, is n* = #* = (1,0, 0, 0). Then (51) gets the form (for R* # RY)

G R) = k()P (158, t—¢ ' [R—Ry ), (52)
where we used the abbreviation

w(1) = 1 PrR=R)) (53)

and the fact that c—ct; = [R—R,], since R} — R" lies on the negative light-
cone. (The quantity B, = R{'/R{"? is the particle velocity divided by the
speed of light.)

The synchronous, the retarded as well as the advanced distribution functions,
given in (31), (41) and (46) respectively, depend on the four-vectors Ry,
Rk RV of which not all components are independent. In fact the
velocity and the higher derivatives satisfy the relations (8). Moreover the
synchronous distribution function vanishes, unless #°R; 4+ ¢t = 0, whereas
the retarded and advanced distribution functions vanish unless (R—R,)*
= 0 and R°—R{ > 0 or < 0 respectively. Therefore it is often convenient
to introduce distribution functions which result from the functions discussed
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above by integrating over the time-components of the four-vectors. Using
then also the three-velocities, three-accelerations etc. instead of the space-
components of the corresponding four-vectors, one writes the number of
particles with position Ry, velocity cf,, acceleration ¢?0,f, etc. at time ¢
as

TRy, By CoBys - T)AR AP dOG B -, (54)
where
o( RE”, R[,ZJ, )

O(ﬂl 00 By s -

where a Jacobian appears and where #* is the vector (1, 0, 0, 0). This shows
that the synchronous distribution function is the generalization of the
ordinary distribution function of non-relativistic theory.

Likewise one may write the number of particles with position R, , velocity
B, . acceleration ¢?d, By, etc. at a time, related to the observer’s time ¢ by
the light-cone equation #; = r—c *|R—R,|, as:

FER By 0By s R, 1)AR, BB, ... (36)

TRy, Brs BBy iT) = )ff‘yn(l ;71, )R ARY.., (59)

where
P RU] R[2]
SRy By 0By s Ret) = SRR ) iy pyareartie. (s7)
6By, 0By, )Y
The advanced distribution functions may be treated in a completely similar
way.
The connexion between retarded and synchronous distribution functions
in the form (52) may now be translated (for R* # RY) into:

;et(Rx Bis 0By, 3R, f) = ’\(l)fwn(Rx sBi-Go By T“C%1|R_R1|>>
(58)

as follows from (55) and (57).

3 The Maxwell equations

a. Derivation of the macroscopic field equations

The atomic field tensor /* which has been given explicitly in (Iv.i4) is a
quantity of the form (15), i.e. a sum of integrals along world lines of the
atoms of the system. Therefore one may define the average in the way as
defined in formula (17) of the preceding section:

F = (7 (59)
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with components (F®!, FO2 F°3) = E and (F?3, F3!, F*?) = B. Since the
atomic fields /™ are retarded quantities, one may alternatively write the
macroscopic flelds in terms of retarded distribution functions, as discussed
in the preceding section?.

The atomic charge—current density vector and the atomic polarization
tensor which have been given in (IV.5) and (IV.8) are again quantities of the
type (15). So again the average of these quantities may be defined as in
formula (13):

J = <.ja>> (60)
M = (m™y, (61)

with components J° = co°, (J', J2, J) = J, (M°', M°?, M°3®) = —P and
(M23 M31 MIZ) =M.

The equations which govern these macroscopic quantities are obtained by
averaging the atomic field equations (IV.7,13). This gives

617 = 7D+,
CEP7y+ @+ (T = 0.

Since differentiation and averaging commute according to (20), one may
write these equations as

OS> = ¢TI +m™,
ST+ S+ = 0.

Now from these equations, with the notations (59), (60) and (61) for the
macroscopic quantities, one obtains

(62)

(63)

0, FF = 1 J*+ 0,M",

64
FP+ 0P F"+0'FY = 0. ()

These are precisely Maxwell’s equations

VE = ¢°~V-P,
~0,E+VAB = ¢ YJ+,P+VAM,
0] 0 (65)
VB =0,
do0B+VAE = 0.

One can also introduce the macroscopic ‘displacement tensor’ (cf. (IV.24)):
H" = F*— M (66)

1 S. R. de Groot and J. Vlieger, op. cit.
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with components (H®', H°?, H°¥) =D and (H*,H*,H'*) = H. In
other words (66) reads

D =E+P,

H=B-M. &

Then the equations (64) become

0 H? = 717,

(68)

OFP+ P F 4+ 0 F = 0,
or in three-dimensional notation:
VD = ¢,
—~0oD+VAH =c'J,

(69)
VB =0,

SoB+VAE = 0.

The covariant nature of the Maxwell equations has now been obtained
as a consequence of the covariant nature of the microscopic field equations.
It needs no longer be postulated as in the traditional expositions of the
Maxwell theory 1.

Finally one may derive the macroscopic law of conservation of charge by
averaging the atomic conservation law (IV.26). One finds then, using the
fact that differentiation and averaging commute and the notation (60):

9,J% =0, (70)
or

(3}

v =0 (71)
ot

in three-dimensional notation.

! Earlier, incomplete attempts to derive Maxwell’s equations in a covariant way are due to
Ph. Frank, Ann. Physik 27(1908)1059; H. Minkowski and M. Born, Math. Ann. 68(1910)
526; A. D. Fokker, Phil. Mag. 39(1920)404; W. Dallenbach, Ann. Physik 58(1919)523;
J. Frenkel, Lehrbuch der Elektrodynamik II, (Springer, Berlin 1928); S. R. de Groot and
J. Vlieger, Physica 31(1965)254. For a discussion see: W. Pauli, Theory of relativity
(Pergamon Press, London 1958); L. G. Suttorp, thesis, Amsterdam (1968); S. R. de Groot,
The Maxwell equations (North-Holland Publ. Co., Amsterdam 1969).
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b. Explicit forms of the macroscopic current vector and polarization tensor

The atomic four-current density given in (IV.5) is an example of a syn-
chronous quantity of the type (21). Its form (22) with »* = 1" = (1, 0, 0, 0)
and t = f was explicited in (IV.42) and (IV.43). Therefore according to
(30) the average may be expressed in terms of the synchronous distribution
function /77"(1; i, ¢) given in (31). Instead of this synchronous distribution
function depending on the position and velocity four-vectors it is convenient
to introduce the three-dimensional functions of the type (55). This gives for

the macroscopic charge and current densities:

¢ = X e VR, ~ R (R R,
a (72)
J=c Z eafﬁl 5(3)(R1 —R)f7" (R, By )R, dB,,

(where we added a summation over different species a) or

¢° =Y e SRy 1),
’ (73)
= Z eafﬁl figyn‘a(Ra ﬁl ; t)dﬂl ¢

The polarization tensor, given in (IV.8) is likewise a synchronous quantity.
this time of the type (23). Its form (27) with »” = 5" = (1, 0.0, 0) and
7 = ¢ has been evaluated in (IV.36-39). The average may thus be expressed.
according to (30), with the help of the synchronous distribution function (31)
or its three-dimensional form (55). In particular one finds with (IV.48) and
(IV.49) for the dipole contribution to the polarization tensor

P = f(gﬁ”—zﬁ”A BOSTR, Brs 1SV, v 0)dB, dudUdvi?,
(74)
MY = f(zﬁ’“rﬂﬁ” ABDST R, Brs 1D, vi: 1)dBy duiVdviD.

The underlined quantities have been given in (IV.50. 51) as:

1) 1 1 T a2 (1
B = Qu) = @+ 1B al) 73)
!(11) = Ql'v(ll) = v(lfi—i-\/l — f‘v(ll.)/,

where the electric and magnetic dipole moments u{"? and v{*) have been split
into parts perpendicular and parallel to the atomic velocity 8.
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The formulae (74-75) show the effects of the atomic velocity 8, c.
Relativistic effects are a: the Lorentz contractions of the parallel components
of both the electric and magnetic dipole moments, and furthermore b: the
last term of P, which describes the effect of moving magnetic dipoles on the
electric polarization vector. Such an effect has been observed experimental-
ly'. It forms the basis of the so-called unipolar induction machine in which
a cylindrical permanent magnet with magnetization parallel to the axis is
rotated around this axis. Then a potential difference arises between the
mantle and the axis which can cause a current if the material is a conductor,
as is the case for the iron used in such machines.

In fluids under ordinary circumstances 3, is of the order of the sound
velocity divided by the velocity of light, that is of the order of 167°. The
vibrations in solids may have circular frequencies @ of about 3 x 10!%s~?
(optical branch). The atomic velocity R; is equal to about R, w with R, of
the order of 1078 c¢cm. Thus f, = R /c is then about 107 °. The Lorentz
contractions are then negligibly small, because /(I —f7) differs from unity
only by an amount of the order of 107 *? for fluids, and 1071° for solids.
The effect of moving magnetic dipoles is not so small since it is proportional
to f3;. Its magnitude compared 1o the main term is f5; v{"’/u{". (Since we
are concerned with upper limits on the orders of magnitude of the various
effects, only absolute values are considered and no attention is paid to the
vectorial character of the quantities.) The proportion v{"’/u{" is, according
to (1V.27) and (IV.28), of the order of 107* (the fine structure constant).
So the effect of moving magnetic dipoles has a relative magnitude as com-
pared to the leading term of 1078 for fluids and 1077 for solids. (The cor-
responding effect of moving electric dipoles in the magnetization, which is a
non-relativistic eflect, is of order 10~ for fluids and 1072 for solids.)

I all atoms have the same velocity, say fc, then the polarization may be
expressed in this velocity and the macroscopic electric and magnetic dipole
densities, defined as

20 = [ Wp @ i
(76)
A = JAv(Il)ffy“(R, Vi )dvih,

Indeed with these definitions and B; = B, one gets for {74), using also the
first equalities of (75):

! H. A. Wilson, Phil. Trans. A 204(1904)i21; H. A. Wilson and M. Wilson, Proc. Roy.
Soc. A 89(1913)99.
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PO = Q.0p1) /[(UAB

(77)
MY = QU+ D A B,

where the tensor Q = U+(y~' —1)BB/B> with y~! = /(1—B) contains
the common velocity fc. These formulae may be applied to the case of rigid
crystal lattices, where all carriers of electromagnetic moments have the same
velocity if the vibrations are neglected.

The contributions from electric and magnetic quadrupole moments to the
polarization tensor (61) become with (IV.52-53)

PO = v [ Py AR, 15 1)1
f[mfl Bo{yi(ui” =y A B} + 171 0o(y1 B v AB ISR, 15 1)dl,
M* = —v- f( P+ AB)R, 15 1)dl (78)

~f D’l ﬁx'ao{)’l(vlz)+u(2) A ﬁl)} 3 00(?1 B ) V(IZ)]nyn(Rs L; Z)dl’

where 1 stands for the atomic quantities occurring in the integrands. The
underlined quadrupole moments follow from (IV.54) as:

V= Qe = ufl V- B, )+ (1= DR,
2
(12) = QL'V(IZ)'Ql = V(l%ii'*—\/l —Bi (V(le// v /)ldt)'*‘(1 ﬁl)"n,// i

This formula shows that the electric and magnetic quadrupole moments
suffer a Lorentz contraction.

The first term of P and the first two terms of M occurred also in the non-
relativistic theory (chapter II), but with the non-relativistic quadrupole
moments £ and ¥{*. Thus relativistic effects of four different types appear
in the expressions given here. [n the first place two effects similar to those
found for dipole substances occur:
1°: the Lorentz contractions of the longitudinal components of the quadru-
pole moments (¥ and v{¥. Under common circumstances, the effects are
quite small, for the same reasons as explained in the dipole case.
2°: the effect of moving magnetic quadrupoles, described by the second term
of P. Its relative magnitude as compared to the leading term of P is (again
under normal circumstances) of the order of 10~ 8 for fluids and 1077 for
solids.

=

(79)

<
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Two more relativistic effects, which were absent in the dipole case, are
encountered in the expressions of P and M:
3°: the multipole fluxion effect, which is connected with the occurrence of
time derivatives of the quadrupole moments.
4°: the acceleration effect, which is due to the presence of terms with the
atomic acceleration d, 8, .

The effects depend on the magnitude of the atomic velocities and accelera-
tions. Let us give some numerical estimations of the various effects in systems
under normal circumstances. Let us first consider a solid with atomic vibra-
tions in the optical branch. As mentioned above w =~ 3x10'3s~! and
By =~ 10 ®, The V1brat10n acceleration is R; ~ R, w? and therefore So 1
= Ryw’c™? ~ 107% cm™ . The time derivative of the electric quadrupole
moment J,u{? is of the order ey;r,;#,/c or 10%,,;r7 (since r,; ~ 1078 cm
and 7;/c is of the order of the fine structure constant) or 10°4(?). Similarly,
since roughly 7y;/#; = #,,/r,;, the time derivative of the magnetic quadrupole
moment 0, v{>’ is of the order 10°v{?). These numbers will allow us to estimate
the relativistic effects in the polarization tensor. Just as in the dipole case the
effects 1° and 2° are small compared to the leading terms which they accom-
pany. Let us therefore consider here the other effects. The main terms in P
and M, including the non-relativistic effect, contain gradients. Their magni-
tude, if compared to the dipole terms, depends thus on the inhomogeneities
of the material. A very rough guess is obtained in the following way. Let the

electric quadrupole moment 1{* be of the order of 10~% cm times x{", be-
cause it contains one more factor r,; than the dipole moment w4V, Let the
‘inhomogeneity length’ be 1072 to 1 cm. Then the magnitude of the (non-
relativistic) V-u{* effect expressed in the (" effect is 107 to 1078V,
The relativistic effects are more interesting because they do not contain
gradients and are thus independent of the inhomogeneities. The multipole
fluxion effect in P is B;dout® ~ 107 74{V. The acceleration effect in P is
(6o B )VP) B, . 1t contains the magnetic quadrupole moment which is about
1077 (the fine structure constant ~ Fi/c) of the electric quadrupole moment.
The acceleration effect becomes of the order 1071740,

Similarly in M the main (non-relativistic) term with V-v{?) becomes (with
the use of the same figures as above) 1078 to 107141, the multipole fluxion
effect ;35 v*) becomes 104" and the acceleration effect (3, ;) (note
that this effect contains the magnet1c quadrupole moment both in P and
M) becomes 10™"24$"). The conclusion can be that all quadrupolar effects
are very small, if compared to dipolar effects. But if a substance is studied
which contains quadrupoles, but no dipoles, then the quadrupolar effects
can only be compared amongst each other. The conclusion which one may
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draw from the figures given above is then that the relativistic multipole
fluxion effect may exceed the non-relativistic effects under favourable physical
circumstances.

The preceding concerned the case of a solid. In fluids 8, is about ten times
smaller and the collision frequency is perhaps a hundred times smaller.
The relativistic effects are then exceedingly small.

If all atoms have the same velocity  and acceleration dq f, the polarization
can be expressed in terms of these quantities and of the macroscopic quadru-
polar densities:

20 = [ W@ w0,

(80)
M = j V(R VP dv P,
Indeed with (79) and the abbreviations
2 = 0200 = PRNI-FEL PP

D = QoD = MR AN T = B+l D)+ (1 — )t

it follows that the quadrupole contributions to the polarization tensor (78)
get the form

PP = V(PP — P A B)—Bdo ()PP — M AP}
~30(yB) (P A B). (82)
MP = —VA(l D+ PP A )= 9Bdo AP+ PD AP+ 10008y 4,

where d, = 0, + -V isthe substantial time derivative. It should be remarked
that in M the acceleration effect subsists even if the velocity f = 0.

4 The conservation of energy—momentum

a. The conservation of rest mass

The atomic conservation law (IV.176) of rest mass contains the mass flow
four-vector, the average of which is, according to (17) with (15):

nff“]u"j 3P(X, —R)f(1)dL. (83)

Since this is a time-like four-vector it may be used to define the macroscopic
four-velocity U* (with U, U? = —c?) and the macroscopic rest mass density
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¢’ by writing
o' U* = m’f“f u S(X —R)f,(1)d1. (84)

From the atomic mass conservation law (IV.176) it follows immediately,
with (20), that
00’ U%) = 0, (85)

which is the macroscopic law of mass conservation.

b. Energy-momentum conservation for a fluid system of neutral atoms

The conservation law of energy-momentum will follow by taking the average
of the atomic energy-momentum law (IV.177):

cdy < > fmk uy ufé(4)(Xk—R)dsk>

k

= < Zf fZ5(4)(Xk—R)dsk>
k
—c718, < Zf (SZ)'fk.;/771k+D§>'le7,)u{fo‘(4)(Xk—R)dsk> ) (86)
k

The total force and torque f; and di” have been given in (IV.191-192) with
(IV.193-194) and (1V.206-207). We shall confine ourselves in this subsection
to systems of neutral atoms, since we are interested in the effects due to elec-
tromagnetic multipole moments. In the following we shall show that (86)
may be cast into the form of a conservation law, i.e. as Oy T%% = 0, where
T* is the energy—-momentum tensor.

At the left-hand side of (86) appears the divergence P T(ff)l of the tensor

T, = f myu§ uf SP(X,— R)f,(1)d1 (87)

as follows from (17) with (15). This relativistic generalization of the kinetic
energy and momentum densities and flows forms a first contribution (index
[) to the macroscopic energy—momentum tensor. In particular, in view of its
form. it is said to contribute to the material part of the energy-momentum
tensor (denoted by the index (m))'.

! Of course the characterization of (87) as being purely material does not cxclude the fact
that its value will depend in general on the macroscopic fields, since the distribution
function will depend on these quantities. The classification by means of the index (m)
for material, and later on (f) for ficld parts of the energy—momentum tensor is made only
for convenicnce. The physical laws contain the rotal energy—momentum tensor, which will
be specified in the following.
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The right-hand side of (86) contains the total force and torque f; and b}’
which have been split into long range and short range parts in (IV.191-192).
We shall consider first the long range part which is obtained by introducing
the total long range force and torque, specified in (IV.193-194). One gets
thus the sum of external field and interatomic two-particle contributions.
The latter, which contain the two-point distribution function f5(1, 2) (13),
may be written as the sum of an uncorrelated term with f;(1)/;(2) and a cor-
related term with ¢,(1, 2) (14). In this way one obtains in the first place the
uncorrelated long range part of the right-hand side of (86). It contains the
Maxwell fields (59) and reads

sz‘(aaFﬂy)mlﬂy (3(4)(X1 _R)f!(l)dl
—c_zéﬂj [(F"""ml./‘g uf — ATy Fuy )uf

45 {g-(a,F JmE—c? i(me%u, g)} ufJ IM(X, —R)f,(1)d1, (88)
m, ds,
where (IV.193-194) with (IV.182-183) have been used and where only
dipole contributions have been taken into account. The latter limitation
gives us the leading terms in the uncorrelated part of the macroscopic
energy-momentum tensor. (In the correlated part such a limitation is not
possible, since virtual multipoles of all orders cannot be excluded.) With the
definitions (61) of the macroscopic polarization and (84) of the macroscopic
velocity one may write (88) as

WO FP )M g, — ™ 20,{F"M,,, U — A"M,, F*U U} — 0, Ty, (89)

with 4% = g** +¢72U*UP. Here a second contribution to the material
energy-momentum tensor appears:

T =c? f {F“ymm(uﬁ wf — U UP) =y, F(ATu; uf — 47U, UP)
a7 . d
+ St {%(ay Fec)mis—c_2 . (Fe mi‘:ul{:)} uf} dM(X,—R)f(1)d1. (90)
my 5

This contribution contains in its first two terms velocity fluctuations uf — U*
while in the other two terms the inner angular momentum 5% appears. On
the other hand the first three terms of (89) contain exclusively macroscopic
fields, polarizations and velocities. With the Maxwell equations (64) the
first term of (89) may be written in the form of a divergence:
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HEFP )My, = F0, M)~ 0y(FIM) = 8,(F7Ff —F'M [ +1g*'F , F"),
1)
where both the homogeneous and the inhomogeneous field equations have

been employed. With (91) and (66) the first three terms of (89) become a
divergence —J, T(“f’;, with the field energy—-momentum tensor

T = —F"H/—1g"F, F*+ ¢ (FM,, U~ A"M,, F*U)U".  (92)
This is the only part of the total energy—momentum tensor which depends,
in its explicit form, exclusively on the macroscopic fields, polarizations and
velocities. Therefore we labelled it with the index (f), although, as remarked
before, the division of the total energy—momentum tensor into a field part
and a material part is not essential. We shall discuss the contents of (92)
later on.

The uncorrelated long range part of the right-hand side of (86) has now
been found, so that the correlated long range and the short range parts re-
main to be discussed. Let us start with the latter. The last terms of (86) are
already in the form of a divergence; introducing a distribution function ac-
cording to (19) and substituting (IV.206-207), one finds for them — d, T
with a third contribution to the material energy-momentum tensor

nﬁ)lrr = SJ(ST?S:;N/”H + 6?% uw)ullj 5(4)(X1 ””R)fz(] > 2)d1 d2. (93)

In the short range part of the first term at the right-hand side of (86) we
shall consider separately the contributions from the ‘plus’ and ‘minus’ fields.
The plus part of the total force on atom k is given explicitly in (IV.206) with
(IV.204) and (IV.210). Introducing an extra variable s* (with differential
d*s = ds) and a four-dimensional delta function we may write the short
range plus field contribution as

c” 1f 31208 (X, = R)8M (X, —R+39)f,(1, 2)d1 d2ds, (94)
where we employed the abbreviation

12(8) Z;;Zeller(ulzqua ul]“!za)()l(s+llz 721) }
i,j

< z ( m f azl an+1’\mn+c 2 (wsd__ +u1-65) 1ncj!~""a"+lulanl
47[ nm=1 51 J

,/d R
lnﬂl pmHaS Bm 2( —Up%0 nlglmﬂmﬂuzﬁm} $AgeTn- 11 Bm-1

ds,
(5:g“n+lﬂm+l_asan+l g;mﬂ)é(sz)’ (95)
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In the non-relativistic theory the expression corresponding to (94) could be
transformed into a divergence (a three-divergence and a time derivative) by
making an appropriate Taylor expansion, which could be broken off after
the first term since the integrand has short range as a function of % In fact
it is the difference between the unexpanded and the multipole expanded
atomic force so that it vanishes if the atoms are sufficiently far apart. We
now have to generalize this procedure, due to Irving and Kirkwood, to the
relativistic case. In (94) the two-point distribution function f5(1, 2) appears.
As a result of the presence of the two delta functions, it contains the position
four-vectors R* and R*—s* of the two atoms, so that its form is f5(R, 1,
R—s,2) (where now 1 and 2 denote the other dynamical properties of the
atoms). As the relativistic generalization of the Irving-Kirkwood procedure
we expand the two-point distribution function as a function of R* in a Taylor
series around R*+1s*:

fo(R, 1, R=5,2) = f,(R+3s, 1, R—45,2)— 450, fo(R+4s, 1, R—3s,2)+ ...
(96)

Only the first few terms contribute significantly since the integrand has short
range as a function of s*

If one introduces the expansion (96) into (94) one gets a sum of two
terms: one term has the same form as (94), but with different delta
functions:

¢t f P52(8)0 (X, —R—15)0 (X, —R+35)/5(1, 2)d1 d2ds;  (97)

the other term may be written as —d, T("‘,ff)w, with a fourth contribution to
the energy—niomentum tensor

Ty = 3¢t f ‘Sﬁfsfl;z(s)é(A)(Xl —R—15)6(X,— R +145)fy(1, 2)d1 d2ds.
(98)

If (95) is inserted into (97) one finds that the terms which contain &7 vanish
for reasons of symmetry: by making the substitutions s* < —s*and I < 2
the integral changes into its opposite. As to the remaining terms of (97)
with (95), one finds for the unexpanded part by integrating partially with
respect to s }
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-2
c dry; .
- Z;Ifz i€y Uy; [;iL '055{(34-1'1,——rzj)z}—é{(s—l-r”—rzj)z}ul'ﬁsJ
t.J

Sy

5(‘”(X1 — R—35)0(X, —R+1s)f,(1, 2)d1d2ds

¢ ? . 4 o
= Zn— %e1ielj “2j (*:l*q* [0(4){(S+I‘Ii—}'zj)2}5(4)(x1 _R_%:S)]
i S
39X, —R+15)f5(1, 2)d1 d2ds
¢
- . C’/}f“? Z ey etz 0{(s+ "1,‘—7'21‘)2}5(4)()(1 —R—%s)
LEN)

S(X,—R+4s)fo(1, 2)d1d2ds. (99)

The first term at the right-hand side vanishes as follows by integrating
partially and employing the conservation of probability in the form ( 10),
while the second term gives a contribution to — g T(ﬁﬁ)v. The fifth part of the
material energy-momentum tensor occurring here reads, if the multipole
expanded part of the terms without 85 of (97) with (95) are treated in a similar
fashion:

™2 ot
Eﬁfw = gr—f“/; [Z €1i€yj l!§j5{(5+"1i“"21‘)2}+ Y (= 1rmpe
T i

nym==1

B -2 (d .
Uy {mlzh / “Ogpn—C 2 (d;‘ _“z'as) mgl”'ﬁ'"d“zg,,.} C7mm1,,mm/;,,,-x5(52)}
2

S(X;—R—15)0@(X,—R+1s5)f5(1, 2)d1 d2ds.  (100)

The plus field short range contributions have thus been written in the form
of a divergence. The essential step consisted in showing that owing to sym-
metry part of the terms of (97) with (95) vanished. This symmetry was in-
timately connected with the appearance of the delta function 3(s?) which is
invariant under the transformation s* < —s* If we had used from the be-
ginning the complete retarded field, instead of only its plus part, an extra
factor 0(s) would have appeared, which would have destroyed this invari-
ance. Thus if we consider the minus field contribution a different proce-
dure will have to be followed to transform it into a divergence®.

The minus field short range part of the first term at the right-hand side of
(86) is obtained by inserting the atomic expressions (IV.206) with (IV.208)
and (IV.202). If one employs the inhomogeneous atomic field equations
(IV.20-23) for the partial fields /% together with the homogeneous ones,

! In the non-relativistic theory this problem did not arise, because the non-relativistic
terms were due exclusively to the plus field.
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one finds for the unexpanded minus field part a divergence —d,7; fﬁm,
with the abbreviation

T(z/f)vx = —c? ZJ ffa ;(R'*"n)fwz (R+7lz)+f+11(R+rli)f.—ﬂ2j7(R+rli)
g ﬂf+lrve(R+7]z)f/ j(R+711)1f2(] 2)d1d2

2
+ L Z ellJvf.zﬁz,(R”*' I‘l,-)ul,w 55{(R~ Xl )z}fz(l 5 2)d] d2, (101)
T i

Likewise one arrives by similar steps at the expression —d, 7‘(’;’3)“[ for the
multipole expanded minus field short range part of the first term at the right-
hand side of (86). The seventh contribution to the material energy-momen-
tum tensor, which occurs here, has the form

d R
T = — — Z f[{ iy, 477 (ﬂd“ +ul'0) m”{""“"gulan}

41 u=1 Sy
A 7ve
Oal...a,,_ 1 fl Z(m):}

{95(0"g.+ 910, ~gl0,)+ 900", ~920.) + 979, O
S{(R—X,)}f,(1,2)d1d2. (102)

In this way all short range parts of the right-hand side of (86) have been
evaluated as divergences of various contributions to the material energy—
momentum tensor.

The correlated long range parts of the right-hand side of (86) may be dis-
cussed along similar lines, the only difference being that one has to confine
oneself to systems with short range correlations'. For such systems one may
assume the validity of the generalized Irving-Kirkwood approximation,
which states that the correlation function is slowly varying over distances
that may be compared with the correlation length?. Then one may write a
Taylor expansion for the correlation function (cf. (96)) and break it off after
the second term. As a result one obtains for the correlated long range part of
(86) a term —d, T(%, ;. The material energy-momentum tensor agpearing
here consists of various contributions: first a term like (93) but with }*, and
534 replaced by {5y a0d D%y (v (IV.202-203)), and f5(1, 2) replaced

t The name long range referred to the atomic quantity. If such a quantity is multiplied
by the correlation function, the long range character need no longer prevail: in fact if no
long range correlations are present in the system, the correlation function and therefore
also the product with the long range atomic quantity will have short range character.
2 If long range correlations are present one may employ an artifice like that of chapter 11,
section 54 (cf. problem 9).
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by ¢,(1, 2); secondly a term like (98) with (95) with similar alterations;
thirdly a term like the multipole expanded part of (100) but with f2(1, 2)
replaced by —c,(1, 2); and fourthly a term like (102) again with the same
replacement.

In this way all contributions to the energy-momentum law (86) have been
written in the form of divergences, so that we have obtained a conservation
law of energy—momentum for a system of neutral atoms without long range
correlations in an external electromagnetic field:

8 T* =0 (103)
with
T = T+ T3 (104)

The energy-momentum tensor 7* consists of nine contributions, which
have been classified as one contribution Tm (92), which depended solely on
the macroscopic (Maxwell) fields, the polarizations and the velocities, and
eight other terms. The latter form together what has been called here the
material energy-momentum tensor 7%,.

The case « = 0 of (103) represents the energy conservation law which
may be written (with &y = 0/dcz and 9, = V, = 9/0R', i = 1,2, 3) as

3 T4+ VpeT% = 0, (105)

ot
where T°° is the energy density and where ¢7° (i = 1, 2, 3) are the com-
ponents of the energy flow. The cases « = i = 1, 2, 3 of (103) form the law
of momentum conservation:

T4V, TV = 0, (106)
ot
where ¢~'77° is the momentum density and 7 the momentum flow.
In subsection d we shall discuss the components of the energy—momentum
tensor in more detail.

¢. Energy—momentum conservation for a neutral plasma

In the preceding we considered only one-component systems. The extension
to a mixture is in particular necessary if one wants to study neutral plasmas,
in which particles with different charges occur. The various species will be
labelled by a special index. The starting point for the derivation of the con-
servation law of energy-momentum for plasmas is the atomic equation
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(IV.177), where one has to take the inner angular momentum s;” and the
total torque 2}’ as zero since the particles are considered to be point charges
without structure (for the same reason we may denote the position of the
particles simply by R, instead of X,). The average of this atomic equation
becomes then:

cdy < ;fmk Uy u,€<3(4)(R,‘—R)dsk> =c < ;f fZé(‘”(Rk-—R)dsk> . (107)

From the definition (15) with (17) of an average quantity it follows that the
left-hand side of this equation can be written as 0, 7(i, with

T, = me uf uf SR~ R)fi(1)d1, (108)

where « labels the species. This quantity forms part of the material energy-
momentum tensor. At the right-hand side of (107) the total force f; on atom
k appears. It is given by (IV.191) with (IV.193), (IV.182) and (IV.195), but
without the short range and the multipole terms:

fi=ce Fzﬁ(Rk)“k[} +c! D e flaﬁ(Rk)ukﬁ > (109)
I(Fk)

where F** is the external field and / the retarded field generated by particle /.
The latter was given in (IV.14, 15) as:

S = = 2 el (R~ R)JAR ~ Ri)ds. (110)
yia

We substitute (109) with (110) into the right-hand side of (107) and make
use of the splitting of the two-point distribution function into the product of
two one-point distribution functions and a correlation function. The un-
correlated part becomes

c“lzea( FP(R)u; 5 8"P(Ry = R) f{(1)d1, (111)

where F*(R) is the macroscopic (Maxwell) field. With the definition (60)
with (IV.5) of the macroscopic charge-current density J” this expression
becomes

T FP,, (112)
which is the macroscopic Lorentz force density. By using the inhomogeneous
Maxwell equation one then finds F*0, F; or, with the homogeneous Max-

well equation, —d, T¢% with the field energy-momentum tensor:
T8 = —F9F!~ 3, F". (113)
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These are the contributions which depend solely on the Maxwell fields. We
now turn to the correlated part of the right-hand side of (107). Just as in the
preceding subsection it will be convenient to split the interatomic field (110)
into a plus and a minus part (cf. (IV.17) and (IV.18)). The plus field contri-
bution to the correlated part at the right-hand side of (107) is:

30 [ (st e 5]
S (R —R)SD(R, —R+5)c(1, 2)d1 d2ds, (114)

where we introduced an extra integration over a variable s* and a four-
dimensional delta function 6*(R, — R +s). We confine ourselves now to the
case without long range correlations®. For a plasma which is neutral in its
proper frame (i.e. in the frame in which U* = (¢, 0, 0, 0)) and which is not
too far from equilibrium this seems a reasonable assumption. Then we may
make a Taylor expansion of the correlation function, just as in the preceding
section, and retain only the first few terms. This procedure, which is the rela-
tivistic generalization of Irving and Kirkwood’s method, brings (114) into
the form

_ e, e . ,
2 Zb o bf {(uyu, 82 —u5u,00,)0(s)) 10 (R, — R—1s)
SRy~ R+1s5)c5(1,2)d1 d2ds— o T m)" , (115)
where a second contribution to the material energy-momentum fensor arises:

_ e,e .
Eﬁfm =c7? Z “énb Sﬁ{(“fuz ¢y —uju 1'05)5(32)}

(R —R—15)8Y R, —R+1s5)c¥(1, 2)d1 d2ds.  (116)

The first part of the first term of (115) may be shown to vanish by using the
transformation s* «<» —s% 1 « 2. The second part of the first term of (115)
may be written after partial integrations, first with respect to s% and sub-
sequently with respect to R, in the form

—-2 €, b uaz‘(5(52)5(4)(R1"R~%S)5(4)(R2—R+%‘S)

ab

'\
e —Ecz ’(1,2)d1d2ds — 8, Ty (117)
é

1

! The case with long range correlations may be treated by making use of an artifice as
employed in chapter 11, section 5A.
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With the help of the continuity equation for ¢5’(1,2), which has the form
(10), it appears that the first term of (117) vanishes. The second term con-
tains a further contribution to the material energy—momentum tensor

T = ¢’ Zbei%l u% uf 5(s*)0(Ry —R—1s)
a.

8
0™ (R, —R+14s)c5(1, 2)d1d2ds.  (118)

We finally have to treat the minus field contribution to the correlated part
at the right-hand side of (107). It reads, according to (109) and the definition
(19) with (18) of an average quantity,

¢ ?S e, f TR u 3 6(R,—R)5(1, 2)d1 d2. (119)

With the help of the atomic field equations (IV.13), (IV.20) and (IV.22) for
the plus and minus fields /% and f “#this expression may be transformed into
a divergence —0,T, (“n’fﬂv, where a last contribution to the material energy—
momentum tensor appears:

T(a;x[x])w = - cnzf {fﬁz ﬁuﬁu‘i' i f;ﬁz;v +39°F 17e %} e,(1,2)dtd2. (120)

To summarize the results: the conservation law of energy-momentum for a
neutral plasma
9, T =0, (121)
with
T = Tg + T (122)

has been found. The energy-momentum tensor 7 consists of a “field part’
T¢h (113) and four contributions (108), (116), (118) and (120) to the
‘material part’ Y}fﬁ). The law (121) contains the energy—momentum conserva-
tion law and the momentum conservation law as the 2 = 0, and a = i =
1, 2, 3 components respectively, as explained at the end of the preceding sub-
section.

d. The macroscopic energy—-momentum tensor

The macroscopic energy-momentum tensors (104) and (122) consist of field
and material parts, which have been specified in the preceding.

The macroscopic field energy-momentum tensor for a fluid of dipole
atoms in an external field is given in (92) as an expression involving the field
and polarization tensors F**, H*® and M*. Its components are the field
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energy density 7.3y, the field energy flow ¢7%!, the field momentum density
¢~ T and the field momentum flow 7. An alternative expression for the
field energy—momentum tensor may be obtained if we define the four-vectors
E®and B”* in terms of the field tensor F** as:

E* = PP, (123)
B* = —4c™'e"F,, Uy, (124)

where U” is the bulk velocity and ¢ the Levi-Civita tensor with %123
= —1. From these definitions and the antisymmetry of F* and ' follow
the orthogonality relations

E,U"=0, B,U"=0. (125)
Equations (123} and (124) may be inverted, with the result
F = ¢ YUEP - UPE*+ U, By). (126)

[n the local momentary rest frame (denoted by (0)), where U* = (¢, 0, 0,
0) the definitions (123) and (124) reduce to

E“9 = (0, E®);  B*® = (0, BV), (127)

so that £ and B* are four-vectors of which the space components in the
local momentary rest frame are the electric and magnetic field respectively.
In the observer’s frame, where U” = (yc, yc), the four-vectors E* and B
read in three-dimensional notation:

E* = (yB:E, yE+yB A B), (128)
B* = (yp:B, yB— 7B AE). (129)

Jn an analogous way we define D* and H* in terms of the excitation tensor
H* as;

D* = ¢ 'H"U,, (130)
H* = =3¢ "e""H, U, (131)
with the properties
D,U" =0, H,U* =90 (132)
and the inverse relation
HY = ¢ Y(UDP— U'D*+ U, H). (133)

In the local momentary rest frame we have

D@ = (0,D®);  H*® = (0, H), (134)
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and in the observer’s frame:
D* = (yp-D, 7D +yB A H), (135)
H* = (yp:H, yH—yB A D). (136)

Finally we introduce P* and M* by the definitions involving the macroscopic
polarization tensor M“:

P = —c 'MPU,, (137)
M* = —3c e My, U, (138)
with the properties
P, U =0, M, U = (139)
and the inverse relation
M = ¢ (= UP 4+ UPP*+ 67U M). (140)

In the local momentary rest frame we have

PO = (0, P, M"Y =(0,M?) (141)

and in the observer’s frame:
Pa = (Yﬁ'Pa 'yP—’yﬁ/\M), (142)
M* = (yB-M, yM-l—yﬁ/\P). (143)

Since H* = F* — M*f the four-vectors E%, B* D% H?, P*and M™ are con-
nected by the identities

E*+P*=D%  B*—M"= H" (144)

If we introduce the expressions (126), (133) and (140) into the macroscopic
field energy-momentum tensor (92) we obtain an alternative expression for
T:
T8 = —E°D’—HB’ + A"*(3E,E"+1B,B"~ M, B’)
+4¢ UPUNE,E' +B,B")— ¢ *U%"™E, H U,— ¢ *U’¢E, H, U,,( :
145

This expression shows that T(’ff; is in general asymmetric since £*D?+ H*Bf
is asymmetric. If however the medium is isotropic as far as polarization and
magnetization are concerned, which means that P(® = xE‘® and M©® =
¥B(® (with susceptibilities 1 and y, which may depend on E(®? and B9?),
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it follows from (127) and (141) that
P* = gE*, M* = yB* (146)
As a consequence of (144) these equalities imply that
D* = ¢E", H"= u 'B, (147)

with the dielectric constant ¢ = 1+x and the (reciprocal) permeability
w~ ' = 1—y. With these relations it follows that T{}”) is symmetric for sub-
stances that are isotropic as far as polarization and magnetization are con-
cerned.

In the local momentary rest frame the components of the energy-mo-
mentum tensor (145) read in three-dimensional notation (withi,j = 1. 2, 3):

5 T4 (EAH)  —E'D'—HB +(E*+1B*~MB)g"]

where we omitted the superscript (0) for brevity's sake.

For electric dipole substances (M = 0 in the local momentary rest {rame)
the results (148) for T{) and 77, were already given by Lorentz' and by
Einstein and Laub’ on the basis of electron-theoretical arguments. Min-
kowski’s! and Abraham’s’ tensors differ essentially from (148); both have
for 747 and in the bracket of 7 the expression 1E-D +1B-H. Minkowski
writes for T(‘g the vector (D AB)' and Abraham symmetrizes the pressure
tensor T(i-f") even for anisotropic substances. (For a discussion and for later
literature v. section 7.)

The simple expression (148) is valid only in the local momentary rest
frame. The general expression (145) contains the velocity cf. taken at the
observer’s point {¢7, R). Its components read in three-dimensional notation
(withi. j = 1,2, 3):

Tg, = YE*+iB*+ P-E—7"B(PAB~M AE)—y*(P—p A M) Q*(E+B rB),
(149)
T = (EAH)Y —32B(P AB~M AE)f' —y*(P— B A M)Q*(E +§ A B)B,
(150)
T, = (EAHY =B (PAB—MAE) +72(BA(P AE+M AB)Y
= (P=BAMYQ*(E+BAB)S,  (151)
' H. A. Lorentz, Enc. Math. Wiss. V 2, fasc. 1 (Teubner, Leipzig 1904) 243; A. Einstcin
and J. Laub, Ann. Physik 26(1908)541; H. Minkowski, Nachr. Ges. Wiss. Gottingen (1908)

53; Math. Ann. 68(1910)472; M. Abraham, R. C. Circ. Mat. Palermo 28(1909)1, 36(1910)
33; Theorie der Elektrizitit 1I (Teubner, Leipzig 1923) 300.
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T} = —E'D'~H'B'+(3E* +1B*—M'B)g"
+7*{BA(PAE+MAB)—PAB+MAE}
(P —BAM)Q>(E+BAB)FS, (152)

where y = (1—%)"* and Q2 = U— BB (v. (IV.A12)). In the non-relativistic
limit one is interested in the quantities 797, ¢Tgy, ¢ 'Tif) and T up to
order ¢~ !. Using the fact that the magnetization M is of order ¢~ !, one finds
then from the above formulae the expressions that occur in the non-rela-
tivistic energy and momentum laws (I1.109) and (IL.118).

For a neutral plasma the macroscopic field energy-momentum tensor
(113) has a simple form, as compared to (92), because now no polarization
terms enter into the expression. The introduction of electric and magnetic
field four-vectors (123) and (124) by means of (126) would be unpractical
here, because then the four-velocity, which is absent from the original ex-
pression (113), would be artificially introduced. The fact that (113) depends
only on the fields, not on the four-velocity, implies that its components

(T(?)O T((;;) _ (%‘(Ez’i‘Bz) (E/\B)i ) (153)
TS TH)  \(EnB) —E'E-BB+3(E*+B%)g"

are form-invariant if a different Lorentz frame is chosen as coordinate
system.

The remaining part of the total energy-momentum tensor has been called
its material part. For a fluid system of dipole atoms it has been specified as a
sum of eight contributions, while in the case of a plasma it consists of four
terms. In order to get some insight into their structure it is instructive to
study the way in which their non-relativistic limit is reached. It then turns
out that for the dipole case the contributions (87), (90), (98-100) and the
corresponding correlation terms lead (apart from rest energy terms) to the
kinetic terms (labelled by K in chapter 1I), the field-dependent terms (F),
the short range terms (S) and the correlation terms (C) of the non-relativistic
approximation (cf. problem 8). The other terms of the material energy—
momentum tensor give no contributions in the non-relativistic limit. Like-
wise one finds for neutral plasmas that the contributions (108) and (116~
118) lead to the non-relativistic kinetic (K) and correlation terms (C)
respectively (v. problem 7).

e. The ponderomotive force density

The macroscopic conservation laws of energy and momentum (103) or (121)
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may be formulated in the form of a balance equation

0 Tomy = F7, (154)
where F* is defined as
Fr= -0, T, (155)

and is called the ponderomotive force density.
For a fluid system of neutral atoms the ponderomotive force that cor-

responds — according to (155) — to the field energy-momentum tensor (92)
follows with (91):

F* = W& FIMy,—c ™28, (UNFM, U — 4"M,, F*U,)},  (156)

where the projector 4 was defined as g”’ + ¢ 2U*UP. If we introduce the
operator

D = U7, (157)
and the specific volume

v = (), (159)
we may write (156) in the form:
F* = L"F"YMy,—c 29" D{v'(F*M,, U — A" M4, FU )}, (159)

where (85) has been used.

If the four-vectors £%, B, Py = v'P*and M = v'M? are introduced with
the help of (126) and (140) we obtain an alternative form for the pondero-
motive force density:

F* = @'[(0"Eg)P! +(6"Bg)Mb — ¢~ % *D{(P,y B,— M, E,)U.}
— XU ey, (PL B — M ES) U+ ¢ *D(U’E, P),  (160)

where we used (125), (139) and the identity (6"U”)U, = 0, which follows

from U,U* = —c?. Contraction with U* yields the relation:
U,F* = —o'E,DP;+(DB,)M". (161)

The components of the ponderomotive force density may be written in
three-dimensional notation. From (160) with (128-129) and (142-143), or
directly from (159), one finds with U* = ¢y(1, B):
F® = —(6,E)"P— (3o B)'M + ¢'yd o {yB(P, A B—M, A E)}

+0ydo{7*(P,— BAM,)Q*(E+BAB)}, (162)
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F = (VE)}P+(VB)M + o'ydo{y(P,AB—M,AE)}
- Q,'}}dO{Yﬁ A (Pv A E+Mv A B)}
+0'ydo (7*B(P,— BAM,)Q*(E+ B AB)}, (163)

where cd, is the substantial time derivative ¢(+ V), Q% = U~ BB and
P,, M, are the specific polarizations v'P and v"M. These expressions get
simple forms in the local momentary rest frame in which the local macro-
scopic velocity vanishes:

F° = o'Edy P,~ (00 BYM +2(3o B)(E A M), (164)
F = (VE)yP+(VB)M + ¢'04(P, A B—M,AE)
—(8o B)A(P NE+M AB)+(0 B)E-P. (165)

In these expressions relativistic effects containing the acceleration occur.
In the special case that § is constant in time and space one finds for the com-
ponents of the ponderomotive force density in the rest frame:

F® = E-0,P—(0,ByM, (166)
F = (VE)P+(VB)M +&((P AB—M AE), (167)

where we used the fact that 8,0 vanishes (since it is equal to v'V-$ as follows
from mass conservation in the rest frame).

From the general expressions (162) and (163) one may derive the non-
relativistic and semi-relativistic expressions for the ponderomotive force.
The latter follow by retaining terms of order ¢~ in ¢F° and F and consider-
ing the polarization and magnetization as being of order c®. By using mass
conservation one finds for ¢F° and F the expressions:

0 =P %]3 M+ V-(0PE) + 39 (w(EAM}+ 2 V- {o-(E A M)},

ot
(168)

(VE)P+(VB)ML—W-(P/\B MAE)+ - va(P/\B M AE)}. (169)

The non-relativistic expressions (I[.114) and (I1.106) follow from these
by considering the magnetization as being of order ¢~ 1 and again retaining
terms of order ¢~ '. The difference between the non-relativistic and the semi-
relativistic ponderomotive force densities is that the latter contains the mag-
netodynamic effect with the vector product of the magnetization M and the
electric field E.
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For plasmas the ponderomotive force density that corresponds — according
to (155) - to the field energy-momentum tensor (113) follows with (112) as:

F* =Py, (170)

This is the Lorentz force density with components:
F = ¢ 'EJ, (171)
F = o°E+c™'JAB. (172)

(The charge density in the proper frame of U* was supposed to vanish; this
need not be the case in other Lorentz frames.)
5 The conservation of angular momentum

a. The balance equation of inner angular momentum

The inner angular momentum law for a system of neutral atoms will follow
by taking the average of the atomic Jaw (IV.178):

< Zfs Pui 6™ X, — R)dsk>
= c ( foA,‘f,A,/;b’ T (siul — sPUD i (X, R)dsk> . (173)
The averages in this equation may be written with the help of the covariant

distribution functions that have been defined in section 2. The left-hand side
becomes according to (15) with (17)

8fs Pui 5(X = R) f,(1)dl, (174)

where (1) is the one-point distribution function (7). The macroscopic inner
angular momentum density is defined as

S = f SESB(X, —R) £, (1)dl. (175)

Ey splitting the atomic velocity u{ into the macroscopic velocity U* defined
in (84) and a velocity fluctuation u% — U* we get for (174)

oS*UT+ TP, (176)
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with the abbreviation
Ji = f sl — UNS™W(X, —R) f1(1)d1. (177)

The forces and torques ¢ and 9%, which appear at the right-hand side of
(173) have been specified in (IV.191-192) as sums of long range and short
range contributions. The long range parts are given in (IV.193-194) as the
sum of an external field and an interatomic field term. The latter part,
being a two-point quantity, is multiplied by a two-point distribution func-
tion in (173) if the average is expressed with the help of distribution func-
tions. The two-point distribution function is written in (14) as the sum of an
uncorrelated and a correlated part. The sum of the external field part and the
uncorrelated part of the long range contribution to the right-hand side fol-
lows from (1V.182-183) with (IV.200-203). Taking only dipole contribu-
tions and introducing the Maxwell fields we obtain then for this sum of terms

f [ "{.,A’fe(F my, — miFy)

r -, d
(slulws1 'ut) {30, F)mT —c Zci;n(F my u“)”
1

m1
SM(X, —R)f(Dd1. (178)

The terms with the macroscopic velocity in the first part of (178) may be
written as (twice) the antisymmetric part

T(f) T(f) (1 79)

of the field energy-momentum tensor 7¢5 (92). The remaining terms of (178)
may likewise be identified with (twice) the antisymmetric part of a term*
of the total energy-momentum tensor, namely

T(ff)u - 7}6:)11 > (1 80)

as follows from inspection of (90).

Now that the uncorrelated long range part of the right-hand side of (173)
has been found, we consider its short range contribution. By employing
two-point distribution functions according to (19) and inserting the atomic
expressions (1V.206-207) one obtains for this contribution

( 8578 6 (X, — R)fa(1. 2)d1 2+ T — T (181)

o

1 Note that the kinetic term 7%F

31

of the material encrgy-momentum tensor does not
contribute here, since it is symmetric.
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where the tensor {4, appears, which has been given in (93). To discuss the
first term of this expression, we split it into a plus field and a minus field part.
The former follows by insertion of the atomic formulae (IV.211) with (IV.
205). If the generalized Irving-Kirkwood expansion (96) is employed one
may write the plus field part of the first term of (181) as

¢! f B2(5)0 (X, —R—15)0(X , — R+45)f,(1, 2)d1 d2ds—a, JiF7 (182)

with the abbreviations

“*1
Sff os) = Zn—zdehezlih(u“ Upj oFf — ﬁju]i'és)é{(s—f—r]i—rzj)z}
g

L3 (O e

TR AN
sy, — (1 — D)m] é
4r nym=1 ot )

Sy —1

(n—l) ((—im +u,0 ) mi “"um*l}

Sy

ia - d
{m’é"”’;"‘ 8y, —C 7 (ds; — 1yt 5) mbibme 1uzﬁm} sty ot a1

(559&,,/3m+1 _ggm%-l 65«;;)5(52)_(% ﬁ) (183)
and

r

I =gt J S0 ()0 (X | — R—15)6 (X, — R +3s) f»(1, 2)d1 d2 ds.
(184)

The last expression is a contribution to the inner angular momentum flow. If
(183) is substituted into the first term of (182) one may distinguish various
contributions. In the first place we consider the unexpanded term with &f

Making use of the symmetry with respect to an interchange of 1 and 2, one
may write it as

e Zehez,sul,uzj[o S{(s+ry—r,)" 10X —R—15)
7 i

0Kz =R+ 15)f(1, 2)d1 d2ds—(x, ). (185)

where we used moreover the fact that (s"+7§;—r3,)0’ — (o, ) acting on the
delta function gives a vanishing result. Comparing (185) to (98) with (95) one
obtains the result that it is equal to the unexpanded part with ¢7 or ¢ of
Te =Tl Likewise one may derive that the corresponding mulUpoIe
expanded part of (182) with (183) (i.e. again the part with &) is equal to the
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antisymmetric part of the multipole expanded terms with o or &% in
Z}iﬁ)w—ﬂﬁ;ﬂv given by (98) with (95). The latter result follows in the sim-
plest way by making use of the identity

n
Sﬁa:ﬂ---anﬂlmﬁm 5(82) - (CX, ﬂ) = - _Z} azis @y 1 Lo OB e B (5(52)551'
i=

m

- Z afm...a,,ﬂl...ﬁj_,/}j“...pm (5(52)52].—‘(0(» /3) (186)

i=1
(which follows from 9,0(s*) = 25,8'(s*)). The two parts of T8 v which we

have encountered up to now will be denoted by Tfrg)w, so that we have
found for part of the first term of (182):

7"(9:5)1\;, - 71(5;)1\"' . (1 87)

We now consider the remaining parts of (183) (inserted into (182)). They
may be transformed (by making use of (186) and of the conservation of
probability) in such a way that they become

ﬂﬁnv"‘*‘ Y}G;f)v—(“: B)—0o, T (188)

Here the second part of the fourth together with the fifth part of the energy-
momentum tensor appears (v. (98) and (100)). Furthermore we introduced
a contribution to the inner angular momentum flow:

=2

L c

aBy b R LY, B 51 . - \2

Ji' = - uy {Zexi@:f.j(’li+z‘5 Wb 0{(s+ri—ra) ]
i.f

o
_1\f L SPOR-2 1 Xy @leetint 1 ~
+ 2 ( 1) Lnrnl ”ula,,+ z5 lnl " ulan+1(/szn}

nym=1

d

BivoBmBA -2 A 1B N s(2

{mz! Osp,, € (aﬁ —uyd, ) mht PPy, Osarorme 1B O(57)
Sy

39X, —R—15)0(X,— R+14s)fo(1, 2)d1 d2ds—(, B).  (189)

As the plus field part of the first term of (181) we have found now from (182),
(187) and (188):

T(ig)lv‘*" T(G;g)v’“(“a B)_‘ay(*]ﬁy"‘t]ﬁ‘iy - (190)

Next we consider the minus field contribution to the first term of (181) in

which one has to insert (IV.209) with (IV.203). For the unexpanded part

(i.e. the part resulting from the minus field part of the first term of (Iv.209))
one finds by making use of the atomic field equations (IV.20-23) and of the

§5 ANGULAR MOMENTUM CONSERVATION 283

conservation of probability:
T(o;g)w_‘(a» ﬁ)—‘(’/‘) J?\[j}; (191)

aﬁ . .
Whe?re Timywi (101) appears together with the divergence of a further contri-
bution to the inner angular momentum flow:

1

afy -2 @ (7 Ay N .
Jw' = —c Z[’"1f{f582j(R‘|‘”1i)f+’1fs(R‘|‘"u)-l-/fan(R+r“)f_"’2j5(R+r1,-)

i,j¢

+1g77f_ 2js(R+7y IR+ ri)ifo(1, 2)d1d2

-2 4 i a FBy N
HeTEY E S PP R+ u 00 {(R— X )P fo(1, 2)d1 d2—(a, B)

i 4r
+C"22€3ff'“ (R+r ~)dr¥i(‘5{(R—X V1 f(1, 2)d1d2
2o 1= W g 1)1 (1, 2)d1d2. (192)

For the multipole expanded part of the minus field contribution to the first
term of (181) one obtains along similar lines:

Ty — (2, B)— 0,73 (193)

with the material energy-momentum tensor (102) and the inner angular
momentum flow

FIn-1

-1 o —
afiy ¢ o Afenilp— 18AR A ~
e | R e R R et

~2 _ d A Oy eeallyy m 280 F4
+¢ (n 1) (Zi;_ Uy 0) RS : Uyq, aal..‘an—z 1”2(’")
1

By g g 5 abal 4 olah 7 -
007 = 0909, —0.929)+ 09" g0m— 9l g7 — g2 g7}
{(R—X )1 1,1, 2)d1d2— (2, )

.—1 oo
_— {_ Z “1"-“"7’6 -2 d A T
- mj wn T C s Fugdy mytt

T n=
2n A= Sy

-2 Ayelp 41 ~ ~ 7
+cfuimd Ui, Oan} Co{,..‘an_lf—ﬁz(m)} S{(R—X)*1fo(1,2)dt d2.

(194)

E\Iow we have found the complete short range part of the right-hand side of

173); i

T(afx{f)m‘vn—(o‘a /)’)”5), J;‘fj’v > (195)

where roman indices indicate sums of terms. The correlated part of the long
range contribution to the right-hand side of (173) may now readily be found,
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since these terms have the same structure as the multipole expanded part of
the short range contribution. By considering separately plus and minus field
contributions one finds for systems of which the correlation function has
short range character — so that the generalized Kirkwood approximation is
valid® - as the correlated long range contribution to (173):

T v — (o, B)— 3, J%, (196)

where the material energy-momentum contribution 7¢%,yy; has been de-
scribed in section 4b, while the inner angular momentum flow Jv;” consists
of three contributions: first a term like (184), but with d%*/,,(s) instead of
5% ,(s) and the correlation function ¢,(1, 2) instead of the two-point distri-
bution function f5(1, 2); secondly a term like (189), but only the multipole
expanded part of it and f5(1, 2) replaced by —c,(1, 2); thirdly a term like
(194), again with —¢,(1, 2) instead of f5(1, 2).

Collecting the results we have reached the balance equation of inner angu-
lar momentum:

o(S*U7) = —0,J"+ T T, (197)

where the inner angular momentum flow consists of six contributions, given
above, and where the source term is equal to twice the antisymmetric part
of the total energy—momentum tensor.

The inner angular momentum law (197) has the form of a local balance
equation, not of a conservation law, since in general the total energy—?no—
mentum tensor will not be symmetric. This is what one would expect since
the total angular momentum contains an orbital part as well. The balance
law for the orbital angular momentum density R*T#" — RFT* follows directly
from the conservation of total energy-momentum 3,77 = 0 (cf. (103)):

O(R*TH —RPT*) = T —T*. (198)
By taking the sum of (197) and (198) one obtains:
6,(R* TP —RPT™ + SPU"+ J7) = 0, (199)
which is the law of conservation of total angular momentum. ‘
From the local laws (197-199) one may obtain global laws by integrating
over three-space and using Gauss’s theorem.

If one studies the non-relativistic limit of the inner angular momentum
equation (197) one recovers indeed the equation (I.196) of the non-rela-

t We note again that the extension to systems with long range correlation presents no
difficulties.
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tivistic theory. In particular one finds for the non-relativistic limits of the
space-space components of $*# (175) the expression (I1.166) of the non-
relativistic treatment (v. problem 10). Furthermore the space-space—space
components of J*7 (177) reduce to J& given by (11.169) (in fact J;* reduces
to e¥™J % with &% the Levi-Civita tensor) while the space-space-time com-
ponent of J*' gives no contribution to the non-relativistic inner angular
momentum law. Similarly one finds that Ji?” (184) and J7 reduce to J®
(11.180) and J (I1.183) respectively. The other parts of J*? give no contribu-
tion in the non-relativistic limit (cf. problem 12).

For plasmas, where the internal structure of the particles is disregarded, the
angular momentum laws reduce to simple forms since no inner angular
momentum exists. Correspondingly (twice) the antisymmetric part 7% — 75
of the total energy-momentum tensor may be written as 9.J"", as follows
from inspection of its various terms (108), (113), (116), (118) and (120). In
fact, only the part (116) is asymmetric; its antisymmetric part may be written
as a divergence by making use of the conservation of probability. Therefore
one finds analogously to (197) for a plasma the equation

T — T = ¢ JF. (200)

In spite of its resemblance to the inner angular momentum law (197) this
equation has a different character; it is in fact only an identity valid for the
antisymmetric part of the energy-momentum tensor’. Combining the identity
(200) with the energy-momentum law (121) one finds for the angular mo-
mentum the conservation law

SAR* TP —RPT™ 4 J*7") = 0. (201)

In the non-relativistic limit both the left-hand and the right-hand side of
(200) tend separately to zero (v. problem 11).

b. The ponderomotive torque density

The conservation law of total angular momentum (199) contains the total
energy-momentum tensor 7%, which consists of two parts that we have
called the “field’ and the ‘material’ energy—momentum tensors T(“f’; and T(“n‘f).

T It is possible to symmetrize the energy-momentum tensosr by adding a divergenceless
part (v. problem 13). To prescrve the analogy one would then also have to change in a cor-
responding way the expressions for the dipole case. Such a change is feasible, but it leads
to lengthy expressions. Moreover for the long range correlation case the non-relativistic
limit of the symmetrized tensor would not have the same form as that of chapter II.
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An alternative form of the conservation law is thus
8, (RETE) —RPTE + S™U7+J*7) = RFI—RPF*+ T — Ty, (202)

where we introduced the ponderomotive force density defined in (155) and
given explicitly in (156) or (159). This formula shows at the right-hand side
in the first place the torque exerted by the ponderomotive force density and
in the second place a ‘ponderomotive torque density’

D =T -T. (203)
Its explicit forms follow from the field energy-momentum tensor (92):
D™ = A*AE(MEF%,— FM?) (204)

or, written in terms of the field and polarization four-vectors (123-124)
and (137-138)

D* = p*E’ — PPE*+ M°B* — M’B". (205)

Its components read in three-dimensional notation (where U* = cy(1, B)):

D% = [—"/zﬁ/\{ﬁ/\(P/\B”M/\E)}'—'yzﬁ/\(P/\E—l—M/\B)]i, (206)

DY = (y?Q%(P AE+MAB)+7°BA(PAB—M AE), (207)

where i, j, k = 1, 2, 3 (cycl.) and Q% = U—Bp. In the local momentary rest
frame (in which the local macroscopic velocity vanishes) these expressions

reduce to
D% = 0, (208)

DY = (PAE+M AB)-. (209)

For substances which are isotropic as far as the electric and magnetic polari-
zations are concerned the torque density (209) vanishes. '

From the general formula (207) one finds for the ponderomotive torque
density in semi-relativistic approximation

DY = (PAE+MAB+BA(PAB-MAE)}, (210)

with 7, j, k = 1, 2, 3 (cycl.). The non-relativistic limit follows by taking into
account that M is of order ¢”'. Then one recovers (I1.189).
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6  Relativistic thermodynamics of polarized fluids and
plasmas

a. The first law

In section 4 the macroscopic conservation laws of energy and momentum in
a polarized medium have been derived from the atomic conservation laws.

For systems with a correlation length which is small compared to macroscopic
dimensions the conservation laws read:

G(TH+Tm) =0, (x=0,1,2,3), (211)

with a field energy-momentum tensor T(“f; and a material energy—-momentum
tensor 774,. In terms of this material tensor T35, we now define a scalar
energy density u,, a heat flow four-vector J, a momentum density four-
vector /* and a pressure four-tensor P as:

uy = ¢ U U, Tih =o', (212)
= — Uy T 45, (213)
I"= 7245 T U, (214)
PP = A7ATTE (215)

where U” and ¢’ are the bulk four-velocity and bulk rest mass density defined
in (84), while 4j stands for &;+c¢~*U*U,. From (213-215) the ortho-
gonality relations

JoU,=0, Iv,=0 Pfu,=0  PPU,=0 (216)

follow. In the local momentary rest frame, in which U” has the components
(c, 0,0, 0), the four-vectors 7%, J; and the four-tensor P** are hence purely
space-like. In this frame the components of T(‘ff) read:

T = u,+0'c?, (217)
Tamy = ¢, (218)
Ty = I, (219)
T = P, (220)

(with i,j = 1, 2, 3), as follows from (212-215). In the (ct, R)-frame the
expression for ﬂ“ﬁ) in terms of u,, J, I* and P is:

Tim = (@ +u)U Ul + 20T + U7 + PP, (221)
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If the conservation law (211) is multiplied by U, and (221) is introduced we
get:

U0 {TeE +c o' P +u)UUP+c 72U+ 1°UP + PP} = 0. (222)
The first term is equal to — U, F* as follows from the definition (155). An
explicit expression for this term has been given in (161):

~U,F* = ¢'E,D(v'P*)—(DB,)M", (223)
where £% and B* are the field four-vectors defined in (123) and (124), while
the polarization four-vectors P* and M * have been defined in (137) and (138).

The symbol D stands for the operator U*3,. The remaining terms of (222)
may be put into the form:

—o'D(v'u})—08,J%—1,DU*—P,, 0*U”’, (224)

where we used (85) and the orthogonality properties (216). Introducing the
energy per unit rest mass
u’ = v'u, (225)

v

and inserting (223) and (224) we get from (222):
oDu' = —8,J%—1,DU*—P,;5"U" + ¢'E,D(v'P*)— (DB, )M". (226)

Thisis the firstlaw of relativistic thermodynamics for polarized media; it gives
an expression for the change in time of the energy u. The right-hand side
contains in the first place the divergence of the heat flow J7 together with
Eckart’s relativistic correction’ and a term with the pressure tensor P,.
Furthermore terms with the electromagnetic fields £%, B* and the polariza-
tions P*, M* occur.

Likewise one may derive the first law for a relativistic neutral plasma. One

obtains
o'Du’ = —8,J2—1,DU*~P,;0"U’+J,E° (227)

with J* the electric four-current density.

b. The second law

In chapter IT the non-relativistic Gibbs relation has been derived from
equilibrium statistical thermodynamics with the help of a canonical ensemble.
Since no statistical derivation of a second law for relativistic systems (with

1 C. Eckart, Phys. Rev. 58(1940)919.
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interactions) in equilibrium is available, we postulate in analogy with the
non-relativistic law:

T'Ds’ = Du'+p'Dv'—E,D(v'P*)+v'M,DB" (228)

as the relativistic second law of thermodynamics for a dipole fluid of neutral
atoms in local equilibrium. Here 77, s, /, p’, v’ are the temperature, specific
entropy, specific energy, scalar equilibrium pressure and specific volume in
the permanent local rest frame (denoted by a prime). (This frame in which
matter is Jocally at rest all the time is a succession of Lorentz frames, not a
Lorentz frame itself.) Furthermore E*, B* and P?, M* are the field and polari-
zation four-vectors defined in (123), (124), (137) and (138). The derivative
D stands for U?0,, where U* is the local bulk four-velocity. The quantities
u' and p’ are connected with the energy-momentum tensor T("‘,ﬁ). The ex-
pression for the specific energy «’ follows from (225) with (212). The scalar
pressure p” will be connected to the pressure four-tensor P (215). In fact
the space-space part of the material energy-momentum tensor T(“m”) in the
rest frame reduces in the non-relativistic limit to the pressure tensor P (v.
problem 8), which is a scalar quantity p for a fluid in equilibrium (II, section
7b). Taking over this property in the present theory one finds that for a fluid
in equilibrium T, (“,ﬁ) is a scalar p’ in the local momentary rest frame, as far as
its space-space components are concerned. In the observer’s frame we may
express this, with (215), as:

A = (4348T )0 = P2, (229)
From the combination of the first and second law the relativistic entropy
balance may be obtained. In fact substitution of (226) in the right-hand side

of (228) leads to the entropy balance equation for a polarized fluid of neutral
atoms:

¢'Ds" = —0,5+o, (230)

where we introduced the entropy flux:

§* = — 2 (231)

L
Tl
and the entropy source strength ¢ given by:
I3 1 ! ~a
T'o = — = J @O T' =1, DU*—(Py—p'4,,)0*U”
~

+ Q/(Ea— Ecq.a)D(v/Pa) —(Ma—Meq.:z)DBa‘ (232)

Here we used 0, U* = ¢’ Dv’, which is a consequence of the rest mass conser-
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vation (85). Furthermore we took into account that in the second law (228)
the equilibrium values £, , and M, , are to be read for £, and M,.

The entropy flux (231) is equal to the heat flow divided by the local tem-
perature; the entropy source strength (232) contains contributions due to

heat conduction, viscous phenomena and electric and magnetic relaxation.

For neutral plasmas we write in analogy with the non-relativistic theory the
second law in the form

T'Ds' = Du'+p'Dv' (233)

with the same connexions between u’ and p’ and the energy-momentum
tensor T(“n”,) as given above. For the entropy balance one finds the same form
as (230) with the entropy flux (231) and the entropy source strength

’ 1 led ! o ’ pats4 o
T'o = — FJW& T —1,DU—(P,,—p'd,,)0"U" +J,E*,  (234)

where an extra term that represents the effect of Joule heat production
appears.

c. The free energy for systems with linear constitutive relafions

In this and the following sections some consequences of the relativistic first
and second law of thermodynamics will be discussed, especially in connexion
with the conservation laws of energy and momentum. The treatment will to
some extent be similar to that of the non-relativistic theory of chapter II.
§ 8a. We shall confine ourselves to a polarized fluid of neutral atoms with
linear constitutive relations of the form:

P* = (v, T")E™
N
M* = 4, T)B"

(235)

In three-dimensional notation and in the permanent local rest frame these

relations read:
P = «(v, T)E',
(236)
M = (v, T)B.

From the Gibbs relation (228) we may derive an expression for the time
derivative of the specific free energy

fr=u-T%, (237)
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we obtain:

Df" = —p'Dv'—s'DT'+E,D(v'P*)—v'M,DB". (238)

This relation may be integrated at constant v’ and T with the result:

s :fo’-;-v’f (E,dP*—M,dB%), (239)
const. v’ T’

where f; is the specific free energy for the same specific volume v’ and tem-

perature 7" but at zero fields and polarizations. If the constitutive relations

(235) are inserted, the integral in (239) may be carried out with the result

S =fo+4v'k" P, P*~ 30y B, B%; (240)
if i and y are eliminated an alternative form is obtained:
f'=fo+$'E, P*~3v'B, M". (241)

The scalar equilibrium pressure follows from the specific free energy by
differentiation with respect to the specific volume " at constant 7", specific
polarization v'P* and field B* as (228) shows. Hence the pressure p’ =
—&f’[ov’ is connected with the pressure p, = —&fy/0v’ for the same values
of v and 7", but with switched-off fields, by a relation following from (240):

!

p' = po+T P P LB B — S p Pty g B (242)
2k° o' o’

or with (235):

Is ! o a€ I C o ! aA
P’ = po+3E, P*+1B, M*+1v aﬁ’f,EaE +30' 2L B, B~ (243)
U oU

The specific entropy follows from the specific free energy by differentiation

with respect to temperature 7" at constant o', o’P* and B* From (240) we
obtain:
, , v Ok 0y
s =85+ —— — P P"+4v' -~ B, B, 244
N & oot (244)
where s’ = —df"/éT" and s, = —0f3/0T". Introducing E* and B® with (235)
we may write this expression as:

1 1 ’ a o ’ 0y
s = s+ 40 %EQE +3v é%éB B (245)
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An expression for the specific energy follows from (237) with (241) and (245):

~

!’ o r & r ’ Gc I 4 ’ ’ a’\»
' = up+E, P~ 1v'B,M*+3'T .;.%} E,E*+ 3T _q_j{_, B,B", (246)
[ C

where u) = fg+T's; (cf. (237)). The energy density u; = (v')”'u’ as com-
pared with the energy density u,, = (v")”'ug at zero fields reads:

¢

W = ul+1E, P 1B, M 1T B BT LB B (247)
oT’ eT’

We have obtained now the expressions (243) and (247) for the equilibrium

pressure p’ and the energy density u;,. The method which is employed here to

derive these results is analogous to that given for the non-relativistic case.

The formulae (243) and (247) will be used in the next subsection for a dis-

cussion of the material energy-momentum tensor.

d. The energy—momentum tensor for a polarized fluid at local equilibrium

The material energy-momentum tensor for a polarized fluid of neutral atoms
has the general form (221). In view of the expression (232) for the entropy
production, we shall suppose that in local equilibrium all thermodynamic
flows J;. I*, PP —p'4*#, E*— EZ and M* — M, vanish. Then (221)reduces to

T2 = Ho' et +u, U“Uﬁ—i—p'daﬂ, 248
(

m)eq
which is the energy-momentum tensor for a perfect fluid. The total energy—
momentum tensor for a polarized fluid in local equilibrium is the sum of the
field part (145) and the material part just given:

T = —E*DF —H*B’ + A" (JE,E"+ 1B, B"— B, M"+p")
+¢ PUUMKE, E"+3B, B+ ¢'c*+u,)
— ¢ 2USPE H U~ 2UPe™ME, H, U,. (249)

If the fields are switched off, while the temperature 7" and density ¢’ are
kept constant, the energy-momentum tensor becomes:

Ty = ¢ 20/ ) U U + p 47 (250)

qs

With the expressions (243) and (247) for p’ and u,, derived for a fluid with
linear constitutive relations, the difference T2% — 72/, between the energy-
momentum tensor in the presence and in the absence of electromagnetic
ficlds may be obtained. This tensor contains the complete effect of the switch-
ing-on of the fields. In view of this propefty it may be considered as the field
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part of the energy-momentum tensor; it will be called T: [’f”'] to distinguish it
from (“fﬁ), that has been introduced earlier. The corresponding material
energy-momentum tensor 77, is then 77/ . Hence for a polarized fluid of
neutral atoms in local equilibrium we have:

T = T+ T3, (251)

aff . a, o 2 o
T;:m] = chﬁ.o > T[fg = chB_Tq/’iO . (252)

€

We have introduced thus a second way of splitting the total energy—mo-
mentum tensor 77 into a “field’ and a ‘material’ part. The difference between
this splitting and that of (104) is that here we confine ourselves to (equilib-
rium) systems with linear constitutive relations. For such systems it is
possible to specify the effect of the turning on of the electromagnetic fields.
The splitting (104) was valid under more general circumstances, but did not
permit the kind of disentangling. achieved with the present splitting of 777,
We may note here that a similar situation arose already in the non-relativistic
theory in connexion with the material pressure tensor which has been defined
there in two different ways (v. chapter 11, section 8a).

From (251) and (252) with (243), (247), (249) and (250) we obtain explicit
expressions for 774 and 774 :

T = —E'D’—H*B’ +34% (E-,ND"#B‘, Hav g gy % g B"")
ov o'’
-2 -4 ¥ Y 7 (7]' ¥l I3 0 5
+icPUCU’ (E.),D’+B,H’+T LR E4T L B-,vB’)
% oT’
~ ¢ PUSPYE B U, — ¢ 2UPME, H, U, (253)
Tim = ¢ (Q'¢* +uio) U"U + pj 4%, (254)

where (144) has been used.
Often the magnetic susceptibility 7 is defined by

M* = 3, T")H" (255)

It is connected to 7, defined in (235), by the relation:

7= 1l(1=7). (256)
as follows from (144). From (235), (255) and (256) one proves
BB A = H 1 B O (2s7)
v v oT’ oT’
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Hence the field energy-momentum tensor (253) may be written alternatively
as:

oK s . O 5
T8 = —E*D*—H"B*+14% (E7D7+B~,Hy+v'5—,EyE’+v gf,H;-H )
v /

« 5K a ’ az ¥
1720 U? (E, D'+ B, H'+T" 2 E E'+T ~—-—H,H’)
+1c”2UU (EYD +B,H'+T' - E, S 1

— ¢ 2USPYE, H, U, — ¢ *UP™ME, H U, . (258)

This expression shows the symmetry of 7| [“f‘; with respect to electric and mag-
netic phenomena: the equations (144), the first of (235), (255) and (258) are
invariant under the transformations:
x @, & M?’; Dl — Ba; K — i;
Eodn e (259)
H*—» —E*; M*-—> —P*; B*- —-D% j-«k

(The Maxwell equations (68) without sources (J* = 0) are also invariant
with respect to these transformations as may be proved with the help of
(126) and (133).)

In the local permanent rest frame the tensors (253) and (254) take the
form:
1 (E"D’—i—B"H’ E'ANH'
2

Ox

o ke ald

+ T

E*+T' »07:3'2)
o1’
T/acﬁ _ —E,DI—H,B, s
I

f1

.1 (E'-D’+B"H'
2

E'AH' +v'£EE’Z+v'OliB'2)U
oo’ ov _
(260)
1.2 !
fg = [ e 0 ] (261)
L 0 poU

In terms of the susceptibility j the field tensor reads:
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é (E-D'+ 51 E'nH
e O g O H'z)
T’ o1’
I = —~E'D'~H'B'
4+ E. (E”D,‘FB,’H,
2
E'NH’ TRy L H’z) U

L cv cr

(262)

The expression (253) for the field energy-momentum tensor gets a simpler
form if the properties of the dipole fluid are further specified. This will be
done in the next subsection.

e. Induced dipole and permanent dipole substances

In the expressions (243), (247) and (253) for p’, 1] and T7£ derivatives of the
susceptibilities x and y with respect to specific volume v’ and temperature 7’
occur. These derivatives may be expressed in terms of x and ¥ themselves if
more is known about the properties of the dipole fluid {cf. chapter I, section
8a of the non-relativistic treatment).

Let us consider first induced dipole substances that satisf y Clausius—Mos-

sotti laws of the type:
< 1 . 1
O (263)
Kk+3 v 3-2y 0o

while x and y are independent of the temperature 7’. With the help of these
laws the partial derivatives of the susceptibilities may be evaluated: the ex-
pressions for p’ and u/, become:

P’ = po— &P, P"+IM, M", (264)
u, = t,o++E, P*— 1B, M" (265)
The energy-momentum tensor 7. [“f‘; gets the form:
T = —ED'—H*B’+ 4’(4E, E' + 1B, B'— B, M" — 1P, P" + 1M, M")
+3¢TPUUNE, D+ B, HY) ~ ¢ " 2U*"™E H, U, — ¢ " *UPe“"™E H, U, .
(266)
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(The combination 3B, B”— B, M7 +3M,M" may be written alternatively as
1H,H—+M,M’.) The energy-momentum tensor (266) reads in three-di-
mensional notation and in the local permanent rest frame:
YWED'+B"“H') E'AH'

raff

Tny' = _E'D'~H'B (267)
E'AH +(E*+1B*—B"M — P> +iM'*)U

The field energy density for induced dipole fluids is thus L(E“D'+B"H'"),
while the scalar part of the field pressure tensor contains 1E'?+1B*—~B'"M'
M%P/Z +T13“M/2'

The relativistic first law for induced dipole fluids in equilibrium may be

written in terms of u), = v'ul, and py. In fact, substituting (264) and (265)
into equation (226), we obtain as the first law valid in equilibrium

o'Dug = —poe'Dv'+30'E;,D(v'P*)
—4P,DE: +30'By, D(v'M*)—3M, DB, (268)
where we used the abbreviations
E{ = E°+1P",
BY = B*—iM* (= H*+1M").

(269)

The relativistic second law (228) gets the form:
T'Ds’ = Duy-+poDv'—%E,,D(v'P%)
+1p'P, DE: —1B,,D(v’M*)+%0'M, DB} . (270)
(From (268) and (270) one obtains Ds’ = 0 in equilibrium.)
As a second case we consider fluids with permanent dipoles that satisty

Clausius-Mossotti laws of the type (263) and Langevin-Debye laws for the
temperature dependence of the susceptibilities:

K N_L’ o2 (271)
k+3 T 32y T

The expression for p’ (243) gets the form (264), while the expression (247)
for u, becomes:

u, = u,y—B,M*— %P, P*+ 1M, M*. (272)
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The expression (253) for T{; reads now:
T = —E'D'—H*B’ + A**(3E,E’ +1B, B’ — B, M’— 1P, P’ + 1M, M")
+¢ 2UUP(LE,E"+ 4B, B'— B, M’ —~ 1P, P"+ 1M, M")
— ¢ PUSPME H U, — ¢ U™V E, H, U,, (273)

or in three-dimensional notation and in the local permanent rest frame:

Jz'EIZ“{’“%B,z"‘B/'MI_‘%;PIZ‘I-%M’Z E//\H/
o _
Y—i:f] - _E,D/""H,B,
E'AH' +(E?+3B*—B"M'~{P*+1IM'*)U

(274)
The field energy density for permanent dipole fluids is hence 1E'?+1B'2
—B"M'—3P'? +1M'? in contrast with the expression 1(E"-D’+B'"-H') for
induced dipole fluids; no polarization energy of the form 1E;-P'+1B,-M’
occurs here.

The relativistic first Jaw for permanent dipole fluids in equilibrium reads
in terms of u, and pj:

o'Duy = —ph @DV’ +'Ey, D' P+ ¢'B, DM, (275)
while the relativistic second law is:

T'Ds’ = Dug+poDv’'—E,, D(v'P*)— By, D(v'M*). (276)
For diluted media terms quadratic in the susceptibilities may be neglected so

that the expressions (266) and (273) may be further simplified. For a diluted
fluid with induced dipoles we get:

T} = —E°D’ —H"B’ + A"(4E,E’+ 1B, B’ — B, M?)
+c2UUP(ZE, D7+ 1B, H")— ¢ *U%"™E, H, U, — ¢ U< E, H, U

"o

whereas for a diluted fluid with permanent dipoles the result is: e
T = —E*D*—H°B’+ A**(3E,E" +1B, B’ — B, M")
+c¢ *UUP(JE, E"+ 1B, B’ — B, M")— ¢ *U""™E H, U,
—c¢PUPMYE H U,. (278)

(In the approximation used here the scalar 18,B"— B, M" is equal to
1H,H.)
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The tensor (277) for diluted induced dipole fluids shows some similarity
to the tensors proposed by Minkowski and Abraham'. To make comparison
easier we wrile in the local permanent rest frame:

—L /. /_L. /. ! ! I
T = [Z(E D' +BH') E /\Ij ) ] @)
E'AH' —E'D'—H'B'+(E'*+1B*~B"M")U

The rest frame expressions of Minkowski’s and Abraham’s tensor contain
the same energy density and energy flow. However Minkowski’s momentum
density ¢ 'D'AB’ is not found and neither is the field pressure tensor
—E'D'—H'B'+4(E"D’+B'*H')U proposed by both these authors? (v. also
the discussion at the end of this chapter).

f. The generalized Helmholtz force density

The energy-momentum conservation laws for a polarized fluid of neutral
atoms in equilibrium may be written as:

OHTH+TE) = 0, (280)

where Tfj is the field energy—momentum tensor (253) and T[,,f] the material
energy—-momentum tensor (254), which has been defined as the energy—
momentum tensor in the absence of fields. The conservation laws can be put

into the form:
Op Tmy = 7 (281)

where a force density Z* is introduced, which is given by
v g
T = o, TH. (282)

It corresponds to a material pressure and internal energy density defined at
zero fields and is therefore equal to the difference of the force densities in the
presence and in the absence of electromagnetic fields.

With the help of (253) an explicit expression for the force density 7 may
be obtained. If use is made of the Maxwell equations (64), the definitions
(126), (140) and the relations (235), one gets:

t H. Minkowski, op. cit.: M. Abraham, op. cit.

2 As shown already in chapter 11 (v. equation (11.371)) a special case exists in which this
(Maxwell-Heaviside) field pressure tensor shows up. namely if one considers a body im-
mersed in an incompressible liquid.
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F* = —1E E'0"x—1B, B’

—10, {A“”( a"E E'+ a", B.,BY)
ov' ov

+e2UU (T’ o p ey Lp BY)}
éT o1’

~2 affiyl 1 s - - S
— ™26 Dp (k+x)EzB, U} ~c 23 Uﬁ)Ep;»g,,(K"FX)E'B’U”- (283)

In the Jocal rest frame the components « = 0 and o = 1, 2, 3 of the force
density 7 read for a substance of constant and uniform velocity:

3;'7() — lErZal K""lal ( aK Erl) +lB'2(3 16 T/ OK BIZ
p) 0 200 4 OT 0 X200 o7 > (284)

,. Jx 07
#/ — "‘%E/ZV’KW%V/ U’ — Er2 _%BIZVrX_livl U, %“Brz
ov'’ o’

+0o{(k+)E'AB'}. (285)

If we introduce the susceptibility 7 as in (256) these expressions for #'° and
F' become:

F'% = 3E 5y k10, (T' E'Z) +3H %04 71— 40, (T'~?LH’2), (286)
oT’ oT’

F = —%E'ZV'IC—%V/( I g )~——;—H’2V’7—~-5—V’ » 9% g2
ov' " v’

+0o{(k+7+x7)NE' AH)}. (287)

The expression (285) or (287) may be called the relativistic Helmholtz pon-
deromotive force in view of its analogy with the non-relativistic expression
(IL.350). Comparison with this expression (for constant and uniform macro-
scopic velocity and equilibrium polarizations, i.e. the same physical situation
as studied here) shows that the only difference consists in the appearance in
(285) or (287) of a term —38,(M’ A E’) on a par with 9;(P’ A B’) that figures
already in the non-relativistic theory.

In this section the laws of thermodynamics for polarized systems have been
obtained. From the second law expressions could be derived for the differ-
ence between the material pressure and the material energy density in the
presence of fields and those in the absence of fields. The field and material
part of the relativistic energy-momentum tensor could then be defined in
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such a way that the material tensor contains a pressure and an energy density
without fields.

7 On the uniqueness of the energy—momentum tensor

The derivation of the energy—-momentum laws in section 4 showed that they
may be formulated in terms of a macroscopic energy—momentum tensor.
Furthermore complete statistical expressions in terms of atomic quantities
have been obtained for the components of this tensor.

Since only the four-divergence of the energy—momentum tensor occurs in

the conservation laws
0, T =0, (288)

the energy—-momentum tensor is not uniquely determined: one may add a
divergenceless tensor T* without changing the contents of the laws. In the
inner angular momentum law (section 5)

o(S*U"y = —o, S+ T TP (289)

such a change of 7% into 7% + T* may be compensated by a corpsponding
change of the inner angular momentum flow J*7 to J*7+J"" with a
quantity J¥7 of the form —R*T#"+ RPT*. Then the right-hand side of
(289) remains invariant. Thus such a change of the energy-momentum tens.or
and of the inner angular momentum flow does not alter the physical descrip-
tion by means of (288) and (289). The particular forms of 7% and J*#" given
in sections 4 and 5 have been adopted since the statistical expressions allow
an interpretation which is analogous to that of the corresponding non-rela-
tivistic quantities, given in chapter IL. ‘

In the course of the treatment of section 4 it turned out to be convenient
to call a certain part of the energy-momentum tensor its ‘field part’, and the
remaining term its ‘material part’. This nomenclature, which arose from the
form of the various expressions, has of course no influence on the physical
contents of the laws. Such a splitting of the energy-momentum tensor could
be performed in different ways, which each have their particular advantagfes
as shown in section 6. Exactly the same situation was encountered already in
the non-relativistic theory, where the material pressure could be defined in
different ways: Kelvin’s and Helmholtz’s, each with its own force density. It
appeared there that both could be utilized to describe the physical phenom-
ena.

Just as it is fruitless to discuss — in non-relativistic theory — the relative
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merits of the Kelvin and the Helmholtz forces without considering the
ensuing difference in the corresponding material pressure tensors, a dispute
on the correct form of the field energy-momentum tensor — in relativistic
theory - is useless if one does not bring into the argument the form of the
material energy-momentum tensor: the problem would then remain un-
determined.

In the present statistical theory each choice of the field tensor determines
the form of the corresponding material tensor explicitly, so that no ambiguity
can arise. If the distribution functions are given, one may in principle cal-
culate both the material and the field tensor. (In practice this requires a
theory from which one may derive these distribution functions. A well-
known example is the relativistic generalization of Boltzmann’s kinetic
theory.)

The history of the discussions on the energy-momentum tensor for polarized
media goes back to the beginning of this century. Often only the field part
of the total tensor was considered. As a consequence various authors could
arrive at altogether different expressions: a manifestation of the inherent
ambiguity which results, as explained, if one forgets about the material part.

After Lorentz’s' original non-relativistic considerations on the electro-
magnetic forces in a polarized medium of electric dipoles at rest (v. chapter
IT) Einstein and Laub?® were the first to try and give a relativistic expression
for the force density in a polarized medium of electric and magnetic dipoles.
By taking the same electric dipole terms as Lorentz and by postulating an
analogy between electric and magnetic effects they arrived at an expression
for the force density in a medium at rest which had a form as (167) apart
from the second term, where they wrote (VH )M. The material part was not
considered at all, so that their treatment suffers from the ambiguity men-
tioned above.

In the same year Minkowski® put forward an expression for the field
energy-momentum tensor on the purely formal grounds that it should be
form-invariant in all Lorentz frames. This implies that the field energy—
momentum tensor should depend on the fields F*# and H*#, but not on the
four-velocity U* of the polarized medium with respect to the observer.
Furthermore the expressions for the field energy density, the field energy
flow and the field pressure due to Maxwell, Poynting and Heaviside were

¥ H. A. Lorentz, Enc. Math. Wiss. V 2, fasc. 1 (Teubner, Leipzig 1904) 200.
? A. Einstein and J. Laub, Ann. Physik 26(1908)541.
* H. Minkowski, Nachr. Ges. Wiss. Gottingen (1908)53; Math. Ann. 68(1910)472.
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taken over. In this way he arrived at the field energy-momentum tensor

Ty = FH? —3F, H"g", (290)
which in three-dimensional notation has the form
T, — YE-D+BH) EAH ) . (291)
© DAB  —ED—HB+}ED+BH)U

The material tensor was again not considered. Moreover the principle of
form invariance represents a mathematical requirement, which is foreign
to the theory.

Abraham! abandoned the principle of form invariance but instead as-
sumed that the field pressure tensor is symmetric in all Lorentz frames, even
for anisotropic media. Maxwell’s and Poynting’s expressions were adopted
as the field energy density and the field energy flow in the rest frame, whereas
the field pressure tensor in the rest frame was taken to be represented by
Hertz’s symmetrized form. In this way a completely symmetr.ic field energy—
momentum tensor was obtained; it reads in covariant notation:

Tiha = WF7H + FVH,)—4F  H"g"
+1c 2 UPF M, — MPF,)+ U(FP'M,,— MP'F )} U%,  (292)

while the rest frame expression in three-dimensional notation is:

%(E/'D,"}‘B,'H,) E’/\H’
TS = _JE'D'+D'E'+HB+BH)|. (293)
E'AH +4(E"D'+BH)U

In a subsequent paper Abraham® remarks that the expression for ’the field
energy-momentum tensor should be derived from electron-theoret@al con-
siderations, but he limits himself to a discussion of several possible ap-
proaches to carry out this programme. As an argument in favour of the sym-
metry of the field energy-momentum tensor he mentions the fé‘lct that the
microscopic energy—momentum tensor is symmetric. However this argument
ensures only that the system of polarized matter and fields is closed, so that
one expects macroscopic conservation of total angular momentum and
hence the possibility to symmetrize® the total energy-momentum tensor.

1 M. Abraham, R. C. Circ. Mat. Palermo 28(1909)1, 30(1910)33; Theorie der Elektrizitdt
1I (Teubner, Leipzig 1923) 300.

2 M. Abraham, Aon. Physik 44(1914)537.
3 F. J. Belinfante, Physica 6(1939)887; L. Rosenfeld, Mém. Acad. Roy. Belg. (Cl. Sc.)

18(1940)6.
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About the symmetry of the field part nothing can be found on these grounds.

Abraham’s field energy-momentum tensor contains a field momentum
density which (in the rest frame) is equal to the field energy flow (apart from
a factor ¢™2). Hence the field tensor has a property formulated as early as
1908 by Planck’; it is called sometimes the ‘inertia law of energy’. This cir-
cumstance has often been considered as a strong argument in favour of
Abraham’s tensor?. However, Planck’s law is valid only for a closed system?,
so that it may be applied to the total energy-momentum tensor only: the
latter may be written in symmetrical form.

Soon after Minkowski’s and Abraham’s papers Dillenbach* tried to give
a treatment of the energy-momentum laws on the basis of microscopic con-
siderations valid for the electrostatic case only. These considerations are then
generalized without further justification, with Minkowski’s field tensor as a
result. To explain its asymmetry he rightly remarks that only the sum of the
field and the material energy-momentum tensor ought to be symmetrical.
However the material tensor is not considered any further.

In Frenkel’s® treatment microscopic concepts are employed together with
macroscopic arguments. By a consideration of the forces exerted on surface
charges and currents he obtains as the field energy-momentum tensor for a
stationary medium an expression which is near to the result (148). However,
as he is convinced that covariance should imply form invariance he re-
Jects this tensor since it does not possess this property. Owing to this difficulty
a definite conclusion on the field tensor is not reached. By postulating the
symmetry of the field energy-momentum tensor with respect to time-space
and space-time components in the rest frame, and employing a reasoning
similar to Frenkel’s, Rancoita® arrives at a field energy-momentum tensor
of the form (148).

A much discussed argument in favour of the asymmetric Minkowski
tensor was put forward in 1950 by Von Laue” following an old idea of

* M. Planck, Phys. Z. 9(1908)828.

2 M. von Laue, Die Relativititstheorie 1 (Vieweg, Braunschweig 1919) 185; G. Marx and
G. Gybrgyi, Acta Phys. Acad. Sci. Hung. 3(1953)213; N. L. Balazs, Phys. Rev. 91(1953)
408; G. Gydrgyi, Acta Phys. Acad. Sci. Hung. 4(1954)121; G. Marx and G. Gyorgyi,
Ann. Physik 16(1955)241; J. Agudin, Phys. Letters 24A.(1967)761.

3 C. Moller, Theory of relativity (Clarendon Press, Oxford 1952) 164, 189; cf. F. Beck,
Naturwiss. 39(1952)254; Z. Physik 134(1953)136.

* W. Dillenbach, Ann. Physik 58(1919)523.

5 J. Frenkel, Lehrbuch der Elektrodynamik II (Springer-Verlag, Berlin 1928) 48-94.

® G. M. Rancoita, Suppl. N. Cim. 11(1959)183.

7 M. von Laue, Z. Physik 128(1950)387; Die Relativitdtstheorie I (Vieweg, Braunschweig
1952} 139.
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Scheye!. According to this argument the energy transport velocity, which .is
the quotient of the energy flow and the energy density,.shou]d transform in
such a way that the addition theorem for velocities is obeyed. szce the
Minkowski field tensor satisfies this criterion, a number of authors” have
advocated it. However Schopf? remarked that Von Laue’s criterion does not
lead exclusively to Minkowski’s tensor since it is satisfied by tensors of 'a
different form as well. Furthermore Tang and Meixner* showed that even if
Minkowski’s tensor is adopted as the field part of the total energy-momentum
tensor an explicit evaluation of the material contributions to the total energy
density and flow leads to the conclusion that the total e.:nelfgy transport velo-
city does not satisfy Von Laue’s criterion. Hence this criterion cannot be con-
sidered as a physical requirement to be imposed on an energy-momentum
tensor. o

Often reasonings which start from macroscopic variational principles are
considered as derivations of the form of the energy-momentum tensor. In
this way some authors try to derive the field energy-momentum tensor an7d
arrive at Minkowski’s® or Abraham's® tensor or still different tensors’,
whereas others® obtain expressions for the fotal energy-momentum tensgr,
which according to them is the only one that can be deduced from a‘ Var.1a—
tional principle. However against all such treatments the sam§ objgctlop
may be raised: at the outset a macroscopic Lagrangian (or Hamiltonian) is
postulated, not derived from first principles. Therefore arguments of this
kind do not lead to a solution of the problem. .

I the course of the discussions various ad hoc arguments of a macroscopic
nature have been put forward in favour of one or the other of the field

© A. Scheye, Ann. Physik 30(1909)805.

2 H. Ott, Ann. Physik 11(1952)33; F. Beck, loc. cit.; C. Moller, loc. cit.' 206-211; E.
Schmutzer, Ann. Physik 18(1956)171; J. I. Horvath, Bull. Acad. Polon. Sci. 4(1956)447;
W. Pauli, ;l'l1eox'y of relativity (Pergamon Press, London 1958) 216, note 11.

3 H. G. Schopf, Z. Physik 148(1957)417.

4 C. L. Tang and J. Meixner, Phys. Fluids 4(1961)148.

5 J. Ishiwara, Ann. Physik 42(1913)986; W. Dillenbach, Ann. Physik 59(1919)28; E.
Schmutzer, Ann. Physik 20(1957)349; U. E. Schroder, Z. Naturf. 24A(1969)1356.

6 E. Henschke, Ann. Physik 40(1913)887; K. F. Novobatzky, Hung. Acta Phys. 1(1949)
fasc. 5; G. Marx, Acta Phys. Acad. Sci. Hung. 2(1952)67; 3(1953)75; G. Marx and G.
Gyorgyi, Ann. Physik 16(1955)241; H. G. Schopf, Ann. Physik 13(1964)41.

7 K. Furutsu, Phys. Rev. 185(1969)257.

8 H. G. Schépf, Ann. Physik 9(1962)301: P. Penfield Jr. and H. A. Haus, Phys. Fluids
9(1966)1195.
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energy-momentum tensors'. An argument which was thought® to be in
favour of Minkowski’s tensor is the fact that the corresponding force density
vanishes for a neutral, current-free and homogeneous medium with linear
constitutive relations, if it moves with a uniform velocity. An argument
which was claimed® to be in favour of Abraham’s tensor is the fact that the
field energy density of this tensor is positive for all values of the macroscopic
velocity. As a consequence, if one performs a quantization of the macroscopic
electromagnetic fields, one finds photons with positive energy*. However
again the material energy-momentum was left out of consideration. Some-
times it was thought” that radiation pressure experiments can throw light
on the correct form of the field momentum density. However, as shown in
chapter IL, the explanation of the experimental results is independent of the
expression for the momentum density. since terms with time derivatives drop
out from the equations®. (The results of chapter II are not altered in rela-
tivity theory since the extra term in the force density (167), as compared with
(I1.106), is also a time derivative.) Still other postulates’ have been put
forward in order to justify the choice of a particular form of the field

1 A review of these and the other arguments in favour of one or the other field encrgy—
momentum tensor was given by 1. Brevik, Mat. Fys. Medd. Vid. Sclsk. 37(1970)n0. 11, 13.
In his first paper he seems to adopt Minkowski's tensor on the basis of ad hoc
postulates, while in his sccond one he rightly remarks that only the total energy-momentum
tensor has physical meaning. Yet he thinks that only Minkowski's and Abraham’s field
tensors do not run into conflict with experimental evidence. His argument to reject (122)
with (92) as a useful splitting is that according to him only Helmholtz-type material pres-
sures are in agreement with experiment. However, as explained in chapter 1I, the use of
both the Kelvin and the Helmholtz pressures and forces is allowed, provided one employs
them consistently.

2 H. Ott, op. cit.; F. Beck, op. cit.; C. Moller, op. cit. p. 206-211; 1. Brevik, op. cit.
3 K. F. Novobatzky, op. cit.; M. von Laue, op. cit.; F. Beck, op. cit.; E. Schmutzer,
Ann. Physik 18(1956)171.

% K. Nagy, Acta Phys. Acad. Sci. Hung. 5(1955)95. Minkowski's tensor leads to the
possibility of negative encrgy densitics and photons of negative energy: J. M. Jauch and
K. M. Watson, Phys. Rev. 74(1948)950, 1485; 1. Brevik and B. Lautrup, Mat. Fys. Medd.
Dan. Vid. Selsk. 38(1970)no. 1.

® R. V. Jones and J. C. S. Richards, Proc. Roy. Soc. 221A(1954)480; 1. Brevik, op. cit.,
uses the cxperimental result of Joncs and Richards as an argument pro Minkowski’s
momentum density (no. 11, p. 29), but elsewhere remarks (no. 11, p. 5) that it cannot
exclude other forms of the ficld energy-momentum tensor.

¢ G. Marx and G. Gyorgyi, Acta Phys. Acad. Sci. Hung. 3(1953)213.

7 A. Rubinowicz, Acta Phys. Polon. 14(1955)209. 225; G. Marx and K. Nagy, Bull.
Acad. Polon. Sci. 4(1956)79; J. 1. Horvath, N. Cim. 7(1958)628; O. Costa dc Beauregard,
C. R. Acad. Sci. Paris 260(1965)6546; 263B(1966)1007, 1279; N. Cim. 48B(1967)293;
W. Shockley, Proc. Nat. Acad. Sci. U.S.A. 60(1968)807.
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energy-momentum tensor, but again they are of an ad hoc and macroscopic
character.

Arguments based on the propagation of light waves in connexion with the
refraction of light, the Cherenkov effect, the Sagnac effect and Fizeau’s ex-
periments do not lead to a decision on the correct form of the field energy-
momentum tensor’, since these phenomena can be explained on the basis of
the field equations alone.

A special class of theories is based on thermodynamical considerations.
In the framework of the treatment of Kluitenberg and de Groot? a relativistic
Gibbs relation and the symmetric character of the material energy-mo-
mentum tensor were postulated. As a result a field energy-momentum tensor
was obtained which comes very near to that given in (92). The hypothesis
about the symmetry of the material tensor is rather essential; if it is dropped
different forms for the field energy-momentum tensor (for instance Min-
kowski’s tensor) are justifiable from a thermodynamical point of view, as
has been shown by Schmutzer®. De Sa* and Meixner® discuss various pos-
sibilities for the splitting of the total energy-momentum tensor into a material
and a field part. They rightly conclude that thermodynamical considerations
do not allow to specify the material part sufficiently well; the field part re-
mains then undetermined. Chu, Haus and Penfield® postulate a form for the
first law of thermodynamics together with the symmetrical character of the
material tensor. Since this starting point is equivalent to Kluitenberg and de
Groot’s, their resulting field energy-momentum tensor is also the same apart
from some diagonal terms.

In general it may be stated that the solution of the problem of deriving the
energy—-momentum and angular momentum laws for polarized media cannot
be solved as long as macroscopic arguments are utilized. The problem s even
undetermined if only the field energy-momentum tensor is considered with-
out giving expressions for the material energy-momentum tensor. The com-
plete programme can only be carried out if one starts from the microscopic
laws. Then statistical expressions for the total energy—momentum tensor and

1 G. Marx and G. Gydreyi, Ann. Physik 16(1955)241; G. Gyorgyi, Am. J. Phys. 28(1960)
85; cf. however 1. Brevik, op. cit.

2 G. A. Kluitenberg and S. R. de Groot, Physica 20(1554)199; 21(1955)148, 169.

3 E. Schmutzer, Ann. Physik 14(1964)56; cf. G. Neugebauer, Wiss. Z. Friedrich Schiller
Univ. Jena 13(1964)209.

4 B. de 84, thesis, Aachen (1960).

5 J. Meixner, Univ. Michigan Report, RL-184(1961); Z. Physik 229(1969)352.

6 1. J. Chu, H. A. Haus and P. Penfield jr., Proc. LE.E.E. 54(1966)920; P. Penfield jr.
and H. A. Haus, Electrodynamics of moving media (M.LT. Press, Cambridge, Mass.
1967).
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the angular momentum density and flow can be derived, as shown in this
chapter. These are then unambiguously defined (apart from terms which
drop out from the conservation laws, as discussed in the beginning of this

section): the splitting into a field and material part is a question of nomen-
clature only.



PROBLEMS

1. Prove that the average A(R) of the microscopic quantity
a(R) =Y f a(1)6P(R —R,)ds;
may be written either as

A(R) = c_lfa(1)5(4)(R‘R1)f1(1)d]
or as
A(R) = “f *“ff% 3P (n; R=R)f"(1;m, —c™IneR)d1,
n°Rj

where the three-dimensional delta function has been defined in (2).
Note that the first form shows that the second is independent of the unit
four-vector n”. Show that the second expression may be written as

~

AR) = ¢ | (0T (R. By 00 By i 141 620 By o

as follows by employing #” = (1, 0, 0, 0) and (55). In spite of its appearance
the derivation shows that this form of 4(R) has covariant character. (A par-
ticular case of physical importance is obtained by choosing a(i) = ce;uf
with 7 the four-velocity and e¢; the charge; then one gets the expressions

(72).
2. Calculate the Jacobian occurring in (55) for the velocities, i.e.,
(R
£
and for the velocities with accelerations, i.e.,
SR, R
By 00 B1)

3. Prove from (20) that one has for synchronous averages the identity
aﬂfcx(l s R)f(1; n, — ¢ 'neR)dL :de[y"a(lg R) (15 n, —c¢™'n°R)dl,

2N
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where the notation (28) has been used. To prove this relation one should
substitute a quantity of the type (21) (with t = —c¢™!#*R) into (20) and then
employ the definition (30) of an average, using the transformation which
leads from (23) to (26).

4. Prove (27) and (37) by differentiating the ancillary conditions, which
procedure leads to

J— nﬂ
Ouss = 7 RUL
and
a# §; = M‘T ,
(R— Ri)'RE !
respectively.

5. Prove from the definition (31) that synchronous distribution functions
characterized by a different normal unit vector »* and n'* are related as

'R} syn (1' W c_ln'A/'Rr{—I)
3 > »

svn

Psn ) = -l bt LN
. RLLD

nn'n’*RY

’

where t is a constant (independent of Rf) and where 4% is the tensor
g +n"n’". To prove this relation one should use the property (48).

Note that the relation is not symmetric in the distribution functions for
n* and n'*. This is due to the fact that the distribution function at the left-
hand side contains as an argument a quantity t independent of RY, while the
distribution function at the right-hand side contains a third argument which
does depend on R} . For that reason one may be interested in a relation which
contains also at the left-hand side a distribution function of which the third
argument is linear in R} . This relation, which may be proved along the same
lines, reads

(1 n, to+10Ry)
RE1I
_ h Rl Syn (1 nl -
b E

= 1
[nen'+cn'st, 'R

¢ 'nd R, +1,4"R, +fo)

nn' +cen't,

for arbitrary constants t, and t;. One may check that a repeated use of this
formula leads to an identity. A symmetrical relation is obtained by choosing
In particular

. _ynnen 4 u'
= c

1—nwn
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Then one gets:
1—nn

R
7R

syn .
e (I, n, To+c

I3 7
i n*Rynn +nR,
R B A 2 e e B
I —nn

6. Prove from (159) that the inner product of the four-velocity U* and the
ponderomotive force F* is given by

U, F* = 3(DF")M 5+ c"*(DUNF* My, — M*F,) U’
~c 29D’ U°F,, MP'U).
Show, by introducing the splitting of M* into two parts, defined as
MO = — AU UM+ UU, MY,  MP? = A540M7,

(so that in the rest frame MV and M ®*# represent the electric and mag-
netic polarization respectively) that one may write this expression as

U,F* = —3F;o'D('M""* ")+ 1M 3'DF*,

where the primes indicate quantities in the permanent local rest frame. The
proof follows from the mathematical identity

AlsDB'** = A,,DB*+2¢7*U%4,, B""—B,; A")DU,,

which itself is obtained by considering the Lorentz transformations from the
permanent local rest frame to the observer’s frame.

7. Show that the components of the kinetic contribution T(’;g)l (108) to the
material part of the energy-momentum tensor for a neutral plasma may be
written as (cf. problem 1)

T((r)no)l ¢? ZJ m,y; fR, Bys t)dBy
T(?ni)l = T(irg)l = C2 Zf MMy Yy ﬁll lsyn’a(R> ﬁl; t)dﬂl >

T(lz{'n)l

c? Zf’”a?’l BB VR, By t)dBy -

Prove that in the non-relativistic limit (i.e. up to order ¢~ ') the energy den-
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sity, the energy flow, the momentum density and the momentum flow reduce
to
T = 0¢> +%ov” + ou¥
cTomi = (0?0 +T5+ ou¥v + PXv),
¢ 1T(irg)l = Quia

T = ov'v! + PRV

with non-relativistic quantities given by (I1.119, 120, 122, 131, 132).
Prove that the non-relativistic limits of T3y (116) and T(‘fg)m (118) have
the forms

00 C
T(m)u+m = gu-,

0i c c C. i
Tomyusm = (Jq +ou~ v+ P,
— L i0
¢ Tomnsm = 0,

ij _ pCji
T(m)u+m =P

with the non-relativistic quantities (I1.127, 138, 139). Use in the proof that
up to order ¢~ 2 one has §(s*) = (s°)/|s|, where one should take into account
that s° is of order c.

Show finally that the non-relativistic limits of the components of Y}ﬁﬁ),v
(120) vanish, as follows by considering the expressions for the minus fields,
given in (IIL75) with (IIL72).

8. Show in a way analogous to that of the preceding problem, that the non-
relativistic limits of the components of the material energy-momentum
tensor for a dipole fluid are such that TEE (87) leads to the kinetic contribu-
tions K, given in (IL63, 78, 81) (together with mass terms), 74, (90) to
the field dependent terms F (I1.73, 89), 7; v+ (98, 100) to the short range
terms S (IL.94, 96, 97, 100) and Ty, described below (102) to the correla-
tion terms C (IL.104, 111, 112). The terms Ty, 72y and T2,y give no
contributions in the non-relativistic limit.

9. Show that in the case of long range correlations the generalized Irving—
Kirkwood procedure may be written as

(R, 1, R—5,2) = c,(R+14s, 1, R—1s,2)—15%0,0,(R+4%s, 1, R—1s,2)

with the mean correlation function (cf. I1.149)

0
&(R+1s, 1, R—3s, 2) sf e {R+3(2+1)s, 1, R+3(h—1)s, 2}dA.
-1
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Apply this relation to the correlation terms of the energy-momentum law
for a plasma and show that one obtains again an equation of the form (121)
with a second contribution to the energy—momentum tensor, given by an
expression like (116), but with Z3 instead of ¢§’. (A similar extension may be
given for dipole substances.)

10. Show that the non-relativistic limits of the space-space components of
the macroscopic inner angular momentum density S (175) are given by
(I1.166) of the non-relativistic treatment. Write to that end S* with syn-
chronous distribution functions of the type (55), namely as

Sa[} — f,y;l aﬁ eyn(R S T)d637£€

(cf. problem 1).
11. Show that the antisymmetric part of the energy-momentum tensor for

a neutral plasma may be written in the form (200) with the quantity J*7
given as

JH — €, ebf(s b — u?l 5(s*)cd "(R+%s, 1, R—1s, 2)d1d2ds.

Prove that in the non-relativistic limit both ¢~ *J4° and JY* with i, j, k =
1, 2, 3 vanish.

12. Prove the statements on the non-relativistic limit of the inner angular
momentum flow J*#7 for a dipole fluid that are given below (199).

13. The energy-momentum tensor (122) for a neutral plasma is not sym-
metric since T(";ff)" (116) contains a part that is asymmetric. By adding a
divergenceless part to T(fff)“ one may bring it into a symmetric form. Show
that one may choose for this divergenceless term:

7y 1" % q fs“ug ul 8(s*)cP(R+1s, 1, R—1s, 2)d1d2ds,
ab

so that the second contribution to the energy-momentum tensor gets the
symmetric form

K (m)"+T(’,’,f‘m)~c“ *w—b f(s S +s"us)
2n
u] 8(s*)e¥(R+1s, 1, R—1s, 2)d1 d2ds.

Show that in the non-relativistic limit the two tensors discussed coincide.
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14. Derive a for\m of the first law for a polarized fluid of neutral atoms in
local equilibrium by starting from the ‘Helmholtz’ splitting (251) of the
total energy-momentum tensor and using the force density (282).

Hint: calculate first the inner product U*% .



