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CHAPTER 6

Statistical Foundations of Electrodynamic
Theory

L.G. Suttorp

Institute for Theoretical Physics, Amsterdam

6.1. Introduction

In 1865 James Clerk Maxwell presented his now famous paper A
Dynamical Theory of the Electromagnetic Field in which the fundamental
equations of electrodynamics are developed for the first time. In particu-
lar, this paper contains an electromagnetic theory of light. It was held by
the author, who liked the use of military metaphors, to be ‘“‘great guns”
(Maxwell, 1865). His Treatise on Electricity and Magnetism, published in
1873, gives a unified treatment of the subject, in which the results of his
earlier papers are contained.

Maxwell’s work was difficult reading for his contemporaries. Ehrenfest
considered it to be ‘““a kind of intellectual primeval forest, almost
impenetrable in its uncleared fecundity” (Ehrenfest, 1923). According to
Lorentz “one feels a lack of unity in his book due to the fact that it
records faithfully his gradual transition from old to new ideas” (Lorentz,
1923). :

Lorentz himself contributed a great deal to a better understanding of
Maxwell’s writings. In his dissertation of 1875 he gave a list of optical
phenomena that should be explained on the basis of Maxwell’s theory.
Over the years these efforts evolved into a major research programme
aimed at a systematic exploration of macroscopic electrodynamics, in
particular for moving polarized and magnetized media. In these investiga-
tions Lorentz often employed concepts derived from a molecular picture
of matter.
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At a microscopic level electrodynamics deals with the interaction of
electromagnetic fields and matter consisting of particles carrying electric
charges. On the one hand it describes how fields are produced by the
charged particles, on the other it determines the motion of the particles
under the influence of electromagnetic fields. From a fundamental point
of view macroscopic electrodynamics comes about as a consequence of
the combined effect of all tiny interactions on a microscopic scale. Hence,
it should be feasible to show how both aspects of the microscopic
interactions manifest themselves on the macroscopic level. As statistical
methods are indispensible for making the transition from a microscopic to
a macroscopic description, it may be said that a statistical foundation of
macroscopic electrodynamics is furnished in such a way.

The details of the interaction of fields and matter on a microscopic
scale are well known. In contrast, the macroscopic laws of elec-
trodynamics in the presence of polarizable and magnetizable media have
been subject to debate for a long time. Whereas the field equations, as
already given by Maxwell, were firmly established theoretically and
supported by a wealth of experimental data, the situation was less
comfortable for the equations governing the macroscopic motion of
polarizable matter under the influence of electromagnetic fields. There
are two reasons for this. In the first place the theoretical derivation of the
macroscopic equations of motion of matter from the microscopic laws is
more involved than that of the field equations. Moreover the experimen-
tal verification of the theoretical predictions, in particular of the forces on
polarizable and magnetizable matter in time-dependent fields (for in-
stance in light fields), is quite demanding. Only in recent years has it been
possible to measure these forces with sufficient accuracy.

In the following a review is given of the recent advances in the
understanding of the statistical foundations of macroscopic elec-
trodynamics. Both theoretical and experimental developments will be
discussed in some detail.

6.2. Statistical Derivation of the Macroscopic Field Equations

The field equations established by Maxwell more than a century ago
were purely macroscopic in nature. The atomic structure of matter, about
which hardly anything was known at that time, was not taken into
account. Lorentz (1902, 1904a) was the first to observe that it is possible
to derive Maxwell’s equations from the laws valid at a microscopic level
for a set of charged point particles and their fields.
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The derivation of the macroscopic field equations from microscopic
theory may proceed in two steps (Mazur and Nijboer, 1953; de Groot,
1969; de Groot and Suttorp, 1972). By taking into account that the
charged particles in matter are often grouped in stable entities like atoms
or molecules one is first led to field equations at the so-called ‘atomic
level’. Subsequently, the macroscopic equations follow by applying a
suitable averaging procedure. The derivation can be presented with
various degrees of sophistication, by adopting either a nonrelativistic or a
covariant point of view, and furthermore, by choosing either a classical or
a quantum-mechanical description.

In a nonrelativistic classical approach one starts by writing the mi-
croscopic field equations, which are often called the Maxwell-Lorentz
equations:

— A€ — — .~ lee
V'e_pmicro’ 60e+V/\b—c J micro »

V-b=0, d3b+VAre=0, (2.1)

with V and 9, denoting differentiation with respect to the position R and
the scaled time ct (with ¢ the speed of light). The microscopic sources are
determined by the positions R; and the velocities v; of the point particles
with charge e;;

pfnicro = Z eja(Rj - R) H
i (2.2)
jfnicro = 2 e]vja(Rj - R) .
7

The field equations (2.1) determine the microscopic fields e and b, if
suitable boundary conditions are imposed. As is well known, Maxwell’s
macroscopic equations are usually written in terms of four electromag-
netic fields which are generally regarded and treated as independent
quantities. As Einstein (1957) once remarked, it was “Lorentz’s act of
intellectual liberation™ that first led to a microscopic description in terms
of only two independent electromagnetic fields.

If the point charges occurring in (2.2) are grouped in stable entities the
source terms can be expanded in multipole series. In fact, labelling the
stable groups by an index k and the individual particles by a double index
ki, choosing a privileged point with coordinate vector R, within each
stable group k and making a formal Taylor expansion of the delta
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functions (Cristescu and Marinescu, 1973), one obtains from the source
terms (2.2):

P micro = P =V P, (23)
=j+c3,p+VAm).

j fnicm
The atomic charge and current densities are defined as
p=2pi=2 e 3R~ R),

4 (2.4)
= % Ji= ; e 0(R, —R),

with e, =X, e,;, and v, =dR,/dt. Furthermore, the atomic polarization
and magnetization densities are given by multipole series of which the
leading terms are:

Pzgpkzgl‘ka(Rk‘R)’

(2.5)
m=2 m = ) (e +c ' m Av)S(R, —R),
k k
with the electric and the magnetic dipole moments
»y = z €ilkis Ve = E €l A Fril 2¢ (2.6)

that contain the relative position vectors r,;, =R, —
derivatives.

The multipole series for p and m come about by a formal Taylor
expansion. This Taylor expansion of the sources is equivalent to an
expansion of the Green function occurring in the solutions of the field
equations. The multipole series which represent the solutions can usually
be truncated after a few terms if the observer’s position is sufficiently far
away from the ‘atoms’. The occurrence of infinite series can be avoided
altogether by inserting an additional integration over an auxiliary parame-
ter (Irving and Kirkwood, 1950; Power and Thirunamachandran, 1971,
Healey, 1977, 1978, 1982a; Craig and Thirunamachandran, 1984).

As (2.5) shows, the magnetization m contains contributions arising
from electric dipole moments in motion. The curl of these terms, which
shows up in (2.3) on a par with the current density, is called the Rontgen

R, and their time

e
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current in the literature (Rontgen, 1888, 1890). Although one would
expect similar terms with moving magnetic dipole moments in the polari-
zation p, these are not found in (2.5). They do appear, however, in a
covariant theory, as will be discussed below.

The source terms (2.3) depend on the properties of the stable groups in
the system, in particular on their charges and their muiltipole moments.
The latter are often related to the fields in a simple way, e.g. by a linear
relationship. Under those circumstances it is convenient to introduce the
auxiliary quantities d = e + p, k = b — m and write the field equations in
the familar form due to Maxwell. It should be emphasized, however, that
such a rewriting has the disadvantage that it tends to obscure the physical
difference between the fields and their material sources.

Covariant classical derivations of the macroscopic field equations have
been given by several authors, with varying degrees of rigour (for reviews
see de Groot, 1969; de Groot and Suttorp, 1972). As a starting-point one
writes the Maxwell-Lorentz equations in covariant tensorial form

aB f"ﬁ = C—lj;icro ’ aa fB'y + aﬁf'ya + 67faB =0 s (2'7)

with a field tensor f* and a charge-current density four-vector:

oo = Z ¢ | ()8R (5) ~ R ds,, 2.8)
7

where s, is a suitable parametrization along the world line of particle j and
uj = dR"‘f ds;. ,

The covarlant atomic field equations follow from (2.7) and (2.8) by
making a formal Taylor expansion of the delta function, as before. In this
way we get

4 ~’micm

=c " +a,m*?, (2.9)

with j* giving the charge-current density of the stable atoms or molecules
and m®” representing the antisymmetric polarization tensor on the atomlc
level. If only dipole contributions are retamed the components of m®*
read

P= E (A — C—lﬁk AU )R, —R),

- (2.10)
m=, (b +c o, Av,)S(R,~R).

k
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The dipole moments g, and #, are Lorentz contracted moments,
defined in terms of relative positions and velocities in the instantaneous
atomic rest frame. As (2.10) shows, dipoles in motion contribute to the
polarization and the magnetization vectors in a symmetric way. The
asymmetric results (2.5) are an artifact of the nonrelativistic theory.

In the quantum-mechanical derivations of the atomic field equations we
may again distinguish between nonrelativistic and relativistically covariant
treatments. In the former one may either use a Schrodinger-type descrip-
tion, with Coulomb interactions and external field couplings (de Groot
and Suttorp, 1972; Babiker et al., 1973), or adopt the well-known
formulation of quantum electrodynamics with nonrelativistic sources
(Brittin, 1957; Schram, 1960; Healey, 1982a; Craig and Thirunamachan-
dran, 1984). Extensions of these treatments so as to include spin effects
have led to the use of the Breit Hamiltonian (de Groot and Suttorp,
1972) and “semirelativistic’” quantum electrodynamics (Crowther and ter
Haar, 1971a,b). Finally, an approach using the full formalism of
covariant quantum electrodynamics, with material Dirac fields in second
quantization, has been presented (Babiker et al., 1974; Babiker, 1975);
however, in that treatment the nuclei are assumed to be fixed, so that
effects of multipoles in motion are discarded a priori. In all other
quantum-mechanical treatments mentioned here the Rontgen current,
which is connected to electric dipoles in motion, is found to have the
usual form. On the other hand, a contribution of magnetic dipoles in
motion to the electric polarization has been obtained only by Crowther
and ter Haar (1971a, b) and de Groot and Suttorp (1972). In the former
treatment the terms arising from the spin magnetic moments in motion
are only partly found; this is a consequence of the choice of the position
operator for spin particles made there. Up to now a complete covariant
derivation of atomic field equations in the framework of quantum elec-
trodynamics, with the inclusion of all effects of particle motion, is not
available in the literature.

Having discussed the field equations at the atomic level we now
consider the second step in the derivation of the macroscopic Maxwell
equations: the averaging procedure that smooths the wildly varying
physical variables at the atomic level and results in slowly varying
macroscopic quantities. In Lorentz’s original treatment (Lorentz 1902,
1904a) an averaging over small spatial regions was introduced to arrive at
the macroscopic fields. Similar averaging procedures (sometimes modified
to averaging over small space-time regions so as to preserve covariance)
have been employed repeatedly since then (Déllenbach, 1919; Rosenfeld,
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1951; Russakoff, 1970; van Kranendonk and Sipe, 1977). As a modifica-
tion of spatial averaging a truncation of the Fourier integrals that
represent the physical quantities has also been considered (Robinson,
1971, 1973).

In modern statistical physics one generally employs ensemble averaging
techniques to arrive at macroscopic quantities. Mazur and Nijboer (1953)
were the first to apply this method to derive the macroscopic field
equations, albeit in a classical nonrelativistic context. In a relativistic
description the retardation of the fields should be taken into account. It
implies that a simple phase space formulation in terms of the coordinates
and momenta of the particles, all taken at the same time, no longer
suffices. Instead, retarded distribution functions should be introduced (de
Groot and Vlieger, 1965; de Groot, 1969; de Groot and Suttorp, 1972).
With the use of these functions the Maxwell equations

aff _ —lya ap _
0,F P =cTU" +3,M™®, 8, Fy, +0,F,, +03,F,,=0 (2.11)

for the averaged fields F** and the average source terms J* and M b
follow straightforwardly.

In discussing the relative merits of the space-time and ensemble
averaging it has been argued (Russakoff, 1970) that the latter gives
insufficient smoothing if it is applied to crystalline solids. In fact, if the
lattice points are kept fixed in performing the ensemble averaging in this
case it is indeed true that the resulting macroscopic quantities vary wildly.
However, whether such an ensemble choice, with fixed lattice points, is
justified will depend on the physical properties in which one is interested.
If a description with smoothly varying fields is needed the chosen
ensemble is clearly not general enough; in that case an ensemble should
be chosen in which the lattice points move around as well (possibly with
strong correlations in their movements).

Averaging procedures in the quantum-mechanical theories can be
discussed along similar lines. The ensemble averaging makes use of
density operators (see e.g. Schram, 1960) or alternatively of Wigner
distribution functions (de Groot and Suttorp, 1972).

In closing this section it may be remarked that the multipole expansion
employed in deriving the atomic field equations is related to the multipole
expansion of the Hamiltonian for charged particles interacting with
electromagnetic fields (Goppert-Mayer, 1931; Power and Zienau, 1959;
Fiutak, 1963; Atkins and Woolley, 1970; Woolley, 1971). In the electric
dipole approximation a canonical transformation or, in quantum mech-
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anics, a unitary transformation can be used to replace a coupling of the
particle momentum and the vector potential by a coupling of the electric
dipole moment and the electric field. This change from a ‘velocity’- to a
‘length’-form of the interaction has sometimes led to a debate in connex-
ion with the derivation of the Maxwell equations (Mandel, 1979; Healey,
1980, 1982b; Power and Thirunamachandran, 1980, 1982; Haller, 1982).
It should be clear that the use of such a transformation cannot change the
physical contents of the theory, at least if no further approximations are
made.

6.3. Composite Particles in Electromagnetic Fields

The field equations determine the fields that are generated by material
sources consisting of charged particles, which may be grouped in stable
entities. The description of the physical system of field and matter is
complete only if the equations giving the motion of the charged particles
(or of the stable groups) in the presence of the fields are added. The latter
are governed by the electrodynamic force first given by Lorentz (1892)
and carrying his name. The force acting on a composite particle in an
electromagnetic field is found by adding the Lorentz forces on the
individual constituents. As in the preceding section the details of the
derivation of the equation of motion for a composite particle depend on
the scope of the chosen theoretical framework.

In a nonrelativistic classical theory the equation of motion for a point
particle with label j, carrying a charge e; and a mass m;, moving in
external fields E and B reads:

mv; = e,(E + c'lvj AB), 3.1

where the fields are to be taken at the position R; of the particle with
velocity v;. An equation of motion for a composite particle consisting of
constituents j follows from (3.1) by introducing the centre of mass, with
position vector R, and expanding the external fields around this point.
For slowly varying fields the resulting multipole series may be truncated
at the dipole level. The resulting equation of motion is (de Groot and
Suttorp, 1972):

mo=e(E+c 'vAB)+(VE)- p+(VB)- (v +c¢ ' A D)
+c'd(p A B)/dt. (3.2)
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Here m and e are the total mass and the total charge of the composite
particle. Furthermore V denotes a differentiation with respect to R and
d/dt=9/at + v -V is the total time derivative, with v the particle velocity.
An alternative form of (3.2) follows by inserting an integration over a
delta function and performing some partial integrations:

mv:f[(pe —V'-p)E+c¢ '(jS+ap/at+ V' Am)AB]dR',
(3.3)

with atomic charge-current densities, polarization and magnetization as
defined in (2.4) and (2.5). Eu (1986) has expressed doubts as to the
validity of the equation of motion (3.2) on account of the fact that its
derivation would not resemble that of the atomic field equations closely
enough. However, the equivalent form (3.3) clearly shows that the
equation of motion can indeed be interpreted simply in terms of the
(expanded) source terms occurring in the atomic field equations. It should
be added here that the expression for the force on a composite particle as
put forward by Eu (1986) is not correct; for instance, a term containing
the time derivative of the electric dipole moment, as included in the last
term of (3.2), is missing. In fact, the reasoning by which the expression
for the force is obtained by Eu (1986) is not even sufficient to lead to an
unambiguous result.

The expression for the force on a nonrelativistic composite particle as
given in (3.2) is not symmetric in the electric and magnetic dipole
moments. Magnetic dipole moments in motion are not coupled to the
gradient of the electric field. Furthermore, a counterpart to the last term
of (3.2) is missing. Both these features disappear if lowest order relativis-
tic effects are taken into account. In the corresponding ‘‘semirelativistic”
theory (de Groot and Suttorp, 1972; cf. also Coleman and Vieck, 1968)
the equation of motion reads

mo=e(E+c 'vAB)+(VE)-(p—c v Aav)
+(VB)-(v+c'1u/\v)+c”d(p,/\B—V/\E)/dt. (3.4)
Indeed, a “magnetodynamic” effect determined by the time derivative of
the vector product of the magnetic dipole moment and the electric field

now shows up on a par with the “electrodynamic” effect, which was
already present in (3.2). The precise form of the forces on a magnetic
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dipole, in particular the status of the magnetodynamic effect, has been
the subject of much debate (Shockley and James, 1967; Penfield and
Haus, 1967, 1969; Costa de Beauregard, 1967; Suttorp and de Groot,
1970; Casimir, 1972; de Groot and Suttorp, 1972). For instance, an
attempt has been made to obtain this force by considerations based on a
“magnetic charge” dipole (Tellegen, 1962; Pao and Hutter, 1975; Pao,
1976); for a recent discussion see Haus (1982).

The expression for the magnetodynamic effect as contained in (34)is
only an approximation: the full result (still up to order ¢~? only) contains
the angular momentum s of the composite particle as well:

—c! d% [(V—;ec—s)AE]. (3.5)

Hence the magnetodynamic effect depends only on the “anomalous” part
of the magnetic dipole moment. However, for an atom or molecule the
anomalous magnetic moment is much bigger than the normal one, since
in the latter the total mass of the composite particle comes into play.

In contrast with the above the normal part of the magnetic moment is
certainly important if the constituent particles carry an intrinsic spin.
Under these circumstances it is preferable to use a quantum-mechanical
description. In the nonrelativistic regime the quantum results for the
equation of motion coincide with the classical ones (if the so-called Weyl
representation is chosen, see de Groot and Suttorp, 1972). 1If
semirelativistic terms are retained, however, for instance by using the
Breit Hamiltonian, one finds that the magnetodynamic effect is mostly
determined by the orbital magnetic moment. The spin magnetic moment
drops out in first approximation since its anomalous part is very small.
Hence the last term of (3.4) in this case should read

., d |
-t Y (w,., NE). (3.6)

It is indeed remarkable that the force on a magnetic dipole not only
depends on its strength and orientation, but also on its origin. The same
feature shows up if the balance equation of the internal energy and of the
angular momentum of a composite particle are investigated in the
semirelativistic approximation. Most discussions in the past have over-
looked this possibility. _

Up to now a purely covariant theory for composite particles has been
worked out only for the classical case. An essential step in the theory is
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the choice of the subsidiary condition that defines the centre of the
particle. If the antisymmetric tensor s*? representing the angular momen-
tum is chosen to be orthogonal to the four-velocity u* of the composite
particle (i.e. u,s** = 0) helical solutions may occur even in the field-free
case. Such a strange feature is absent if the condition p,s*% =0, with p*
the particle momentum, is adopted (Pyrce, 1948; Dixon, 1964, 1970a, b,
1974; Suttorp and de Groot, 1970; de Groot and Suttorp, 1972; Souriau,
1974). The covariant equations of motion and of spin then become:

dp® . ds*® _
ds =1 ds

d*® — up® + ufp* 3.7
with

p*=mu” + m_lc"zs"‘ﬁfﬂ + c_zd“BuB ,

2 d

fo=c"eF*Pu, + 5(3°F*)my, — ¢ &

(FPmgu"), (3.8)
d** = F"'m ,A* — F¥'m A" .

Here s is the proper time along the central world line of the particle, F op
is the antisymmetric external field tensor and m*? is the antisymmetric
dipole tensor of the particle. Furthermore, the tensor AP =g +
¢ *uuP, with g*# =diag(—1, 1, 1,1) the metric tensor, projects a four-
vector on the space orthogonal to u®.

The equations (3.7)-(3.8) simplify considerably if the dipole tensor
m*® is proportional to the angular momentum tensor s*?. An alternative
way to arrive at the equations pertinent to this particular case has been
presented by van Dam and Ruijgrok (1980). More complicated equations
arise, on the other hand, if radiation reaction terms are included as well
(van Weert, 1974, 1975a, b; Teitelboim et al., 1980; Rowe and Rowe,
1987). s

6.4. Macroscopic Forces on Polarizable Matter in Nonrelativistic and
Semirelativistic Theory

The macroscopic forces exerted by electromagnetic fields on polariz-
able matter are the result of the forces experienced by the composite
particles that are the constituents of the medium at the atomic level. In
the following the macroscopic forces on dielectrics, which can be treated
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in a purely nonrelativistic theory and those on magnetizable matter, in
which semirelativistic effects play a role, will be discussed. The purely
relativistic formulation will be considered in the following section.

To derive the forces on nonrelativistic dielectrics one starts from the
equation of motion of a neutral atom or molecule with an electric dipole
moment in the presence of external electromagnetic fields and of other
particles. By averaging the atomic equation of motion one obtains the
macroscopic balance equation for a dielectric (de Groot and Suttorp,
1972):

19(s')—tv)-=——V-(vi+PK)+FL+FS, 4.1)
with o the mass density, v the hydrodynamlc velocity and P* the kinetic
pressure tensor. Furthermore, F" results from the contrlbutlons of the
external fields and of the long-range dipole interaction, while F* arises
from short-range interactions. Upon introducing the macroscopic Max-
well fields E, B instead of the external fields and using the Irving—
Kirkwood expansion (Irving and Kirkwood, 1950) to rewrite the correla-
tion and short-range terms as a divergence one arrives at the final form of
the (nonrelativistic) balance equation for a dielectric:

a(ev) _

o7 -V-(ovv+ P)+F, (4.2)

with P the macroscopic pressure tensor (consisting of kinetic and poten-
tial parts) and F the macroscopic force density:

F.=(VE)-P+c"lgd%(vPAB), (4.3)

with v =" the volume per unit mass, P the macroscopic polarization
and d/d¢=3/9t + v -V the ‘material time derivative’.

Incidentally, it may be remarked that some time ago doubts were
expressed (Miller, 1971) on the convergence of the expansion as pre-
sented in the paper by Irving and Kirkwood (1950). However, the
convergence of the expansion is warranted as long as only short-range
functions are expanded; it is an easy matter to rewrite the expressions in
Irving and Kirkwood’s (1950) paper in terms of such functions only, so
that the criticism is not justified. Likewise, the expansions used above are
fastly convergent, at least for fluid systems that are not too near to the
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critical point. For crystalline solids an alternative expression for the
correlation part of the pressure should be used, which resembles that
given by Miller (1971).

The form of the equation of motion as given in (4.2) is not unique,
since terms may be shifted from the pressure tensor to the force density.
Only the combination occurring in (4.2) has a physical meaning. In
particular, one may arrive at a different expression for the force density
in a quite natural way (Suttorp and de Groot, 1981a):

F=F+V-(iPP+ 4PU), (4.4)

with U the unit tensor. Correspondingly, the pressure tensor P associated
with this force density contains an extra term equal to the tensor of which
the divergence appears in the last term of (4.4).

The balance equation (4.2) can be written in the form of a conservation
law by employing an identity that follows from the Maxwell equations for
a dielectric:

(VE)-P=Y-[DE + BB — }(E* + B)U] - ' % (DAB). (45)

With the help of this relation and the continuity equation the force
density (4.3) can be written as the sum of a time derivative and a
divergence. As a result the balance equation (4.2) becomes a conserva-
tion law:

d(ov+ ¢ 'E A B)
ot
=-V-[ovv+ P—DE - BB —c 'vP A B + }(E*+ B*)U].
(4.6)

The time derivative at the left-hand side contains the sum of the material
momentum density gv and the field momentum density which for fields in
a dielectric is found to be ¢ 'E A B. At the right-hand side the divergence
of a total momentum flow occurs; the latter is the sum of a material part
and a field part as well.

The pressure P occurring in (4.2) has the property that it is isotropic
and diagonal for a fluid dielectric in (local) equilibrium; in that case one
has: P =pU, as can be proved from the Gibbs relation. On the other
hand, the pressure tensor P contains an anisotropic part even in this
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special case. Both P and P are symmetric, for fluid and solid dielectrics at
rest (or with a velocity small compared to ¢), if the polarization is parallel
to the electric field and if the angular momenta of the molecules have
relaxed to their equilbrium value. This can be proved by considering the
balance equation of angular momentum.

The Gibbs relation can be used to connect the pressure p for a
dielectric fluid in equilibrium to the pressure p, for a fluid with the same
temperature and density in the absence of electromagnetic fields:

E

p~p0=f(P+v%)~dE. 4.7)

0

For a dielectric fluid in local equilibrium the momentum balance equation
(4.2) may thus be written

d(ov )
(;)t)=—V-(vi+p0U)+FH, (4.8)

with the force density
F'"=F-¥(p-p,). (4.9)

For a linear medium, with P = kE, it reduces to
H 1 2 1 0K 2 . d
F"=—-3EVk — 3V U::)";E +c Qa‘t‘(vP/\B). (4.10)

This is the well-known expression first obtained by Korteweg (1880) and
Helmbholtz (1881, 1882) for the static case. It should be noted here that
strictly speaking the linear law P = xE connects quantities in the local rest
frame; we have assumed that the hydrodynamic velocity is small com-
pared to the velocity of light.

Both (4.3) and (4.10) are correct expressions for the force density felt
by a dielectric fluid in an electromagnetic field. However, each is
associated with its own pressure, which is defined in a different way in the
two cases. The paradoxical situation that one may arrive at different
expressions for the force density has led to much debate in the past.
Although its explanation is by now well known (see Mazur and Prigogine,
1953; Mazur and de Groot, 1956; Landau and Lifshitz, 1960; de Groot
and Mazur, 1962; de Groot and Suttorp, 1972; Pavlov, 1978; Lahoz,
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1980) it can still lead to erroneous statements (see, for instance, Gingras,
1980; Novak 1980a). In recent years several statistical treatments have
reconfirmed the validity of the Helmholtz expression for the force
density, both for the case of polar dielectrics (Hgye and Stell, 1980) and
for the general case (Lai et al., 1981, 1982; cf. Lai et al., 1986). In the
latter papers various simplifying assumptions have been made, however,
for instance on the validity of the Clausius—Mossotti relation and on the
isotropy of the two-particle distribution functions in the presence of a
field. As a consequence the correlation part of the pressure tensor (as
defined in de Groot and Suttorp, 1972) could be expressed in terms of the
macroscopic polarization alone; this is not possible for a general dielectric
fluid.

Several experiments have been carried out to check the consequences
of the momentum balance equation for a dielectric, either in the form
(4.2) or (4.8). Light scattering experiments carried out by Hakim and
Higham (1962) have confirmed the changes of pressure in a static
dielectric fluid as predicted by (4.7). Electro-optical effects, which might
change the interpretation of these experiments, have been shown to be
negligible by Brevik (1979). The latter author concludes, however, that
the experimental findings show that (4.2) is inappropriate. As stated
above both (4.2) and (4.8) can describe a dielectric fluid.

Further experiments supporting the description of a dielectric given
above have been performed with time-dependent fields (Goetz, 1955;
Goetz and Zahn, 1958; Zahn, 1962; James, 1968; Walker and Lahoz,
1975; Walker et al., 1975). Whereas the former three papers are con-
cerned with the forces in time-dependent electric fields, the experiments
described in the latter three papers concentrate on the forces exerted by a
magnetic field on a dielectric with a varying polarization, as given by the
last two terms of (4.3) or (4.10).

To analyze the experiments by Walker and Lahoz (1975) and Walker et
al. (1975), in which the torque on a dielectric cylinder in a time-
dependent radial electric field and a static axial magnetic field is meas-
ured, we start from the balance equation for the angular momentum
associated with the bulk cylinder motion:

ﬁR—;\t@—")=—RA[V-(guv+P)]+RAF. (4.11)

Assuming the pressure tensor to be symmetric we may write the first term
at the right-hand side as a divergence. Upon integrating over the cylindri-
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cal volume of the sample we use the relation (Liénard, 1923; de Groot
and Suttorp, 1972) determining the pressure tensor at the boundary of a
dielectric:

n-P=n[p,— (P n?], (4.12)

with n the normal to the boundary and p, the pressure of the surrounding
atmosphere. Using the cylinder symmetry of the system we finally obtain

%f(R/\gv)dR=f(R/\F)dR. (4.13)

It should be noted that the pressure tensor has dropped out completely.
Hence the oscillatory motion of the sample in a time-dependent field is
determined by the torque of the force density.

In the experiments described by Walker and Lahoz (1975) and Walker
et al. (1975) the contribution of the term dP/dt A B is confirmed (within
10% experimental error). A similar conclusion had been reached several
years before by James (1968). In later experiments (Walker and Walker,
1976, 1977a, b) the contributions of the term P A dB/3t are considered as
well. Further experiments to check the force on a dielectric in a magnetic
field have been described in Lahoz and Graham (1979a). The interpreta-
tion of the experiments has been discussed by Israel (1977), Brevik
(1979) and Lorrain (1980).

The radiation force on a mirror immersed in a dielectric fluid has been
measured in several experiments by Jones and collaborators (Jones, 1951;
Jones and Richards, 1954; Jones and Leslie, 1978). In the early experi-
ments light from a tungsten lamp was used to determine the radiation
pressure at normal incidence. It was found that for fixed intensity the
pressure is proportional to the refractive index n. In the experiment by
Jones and Leslie (1978) the higher intensity of a laser source was
employed to improve the accuracy from 1% to 0.05% and also to
determine the pressure due to polarized light for oblique incidence. The
earlier findings for normal incidence were confirmed, while for oblique
incidence the pressure turned out to be independent of the polarization.

The theoretical interpretation of the radiation pressure experiments can
be based on the balance equation (4.2) with (4.3) or alternatively on the
conservation law (4.6). Since only the average of the radiation pressure
over a time interval that is long compared with the oscillation period of
the light field can be measured in the experiments, quickly oscillating
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terms, like the last term of (4.3) or the time derivative of the field
momentum density in (4.6), yield no contribution. As has been remarked
before (de Groot and Suttorp, 1972; Brevik, 1979; Suttorp and de Groot,
1981b, c; Lai et al., 1984) this means in particular that the experiments
cannot lead to statements about the precise form of the field momentum
density in polarized matter, although the opposite has often been
claimed. The actual source of the radiation pressure is the momentum
flow (the pressure tensor); apart from the field contribution the material
momentum flow should also be considered here. For oblique incidence at
an angle @ the radiation pressure on an ideal mirror is (Suttorp and de
Groot, 1981b, ¢; Casimir, 1983; Lai et al., 1984)

p=2Incos’ 0, (4.14)

independent of the polarization direction of the incident light with
intensity /. For mirrors with finite reflectivity the radiation does depend
on the polarization direction.

To interpret (4.14) the following reasoning might be attempted. In the
dielectric fluid light propagates with the velocity ¢/n. If the momentum
density in the light beam is g, the radiation pressure for normal incidence
must be 2(c/n)g, with g=|g|; for oblique 1nc1dence this should be
multiplied by the purely geometrlcal factor cos’ 6. Comparison with
(4. 14) then shows that g equals In”/c, or in terms of the Maxwell fields:
g=c 'D A B, at least after time averaging. In this way the radiation
pressure experiments would determine the field momentum density, in
contrast with our statements above. However, the reasoning is incorrect,
since the presence of the medium is neglected completely. Moreover it
has tacitly been assumed that the momentum flow in the direction of the
beam follows directly by multiplying the moementum density and the
phase velocity. Sometimes the reasoning is refined by introducing several
types of momentum densities, e.g. the density of pseudo-momentum
(Arnaud, 1972, 1974, 1976; Gordon, 1973; Burt and Peierls, 1973;
Kastler, 1974; Joyce, 1974, 1975; Peierls, 1976, 1977, Wong and Young,
1977; Jones, 1978). Such subtle notions tend to obscure an issue, which in
principle is not that complicated.

If a light beam enters a dielectric fluid the surface experiences a
‘radiation tension’: it shows an outward bulge towards the incoming light.
This effect has been demonstrated by Ashkin and Dziedzic (1973) for a
laser pulse entering water. In particular, the time development of the
local surface curvature at the position of the (tiny) laser spot has been
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measured. These dynamical features can be understood by solving the
equation of motion (4.2), with a surface tension term included (Lai and
Young, 1976; Brevik, 1979). As discussed above for the radiation pres-
sure, reasonings based on (pseudo-)momentum densities have also been
employed to understand the radiation tension effect (Gordon, 1973;
Peierls, 1976; Wong and Young, 1977); however, these have occasionally
led to the prediction of an inward instead of an outward bulge, corre-
sponding to a pressure instead of a tension effect.

We now turn to a discussion of the forces on materials with both
polarization and magnetization. In this case the starting point is the
semirelativistic equation of motion for a composite particle in the elec-
tromagnetic field, as given by (3.4)-(3.6). The macroscopic balance
equation for such materials again has the form (4.2). However both the
pressure P and the macroscopic force F now contain contributions from
the interacation with the magnetic dipoles; these depend on the (orbital
or spin) type of the dipole. The force density is (de Groot and Suttorp,
1972)

F=(VE)-P+(VB)-M+c ' % [v(PAB—M,, AE)], (4.15)

with M the macroscopic magnetization and M, the magnetization due to
the orbital magnetic dipoles.

As before the balance equation (4.2), with the force density (4.15), can
be written as a conservation law, since the field equations for a polariz-
able and magnetizable material imply the identity:

(VE)-P +(VB)-M=V-[DE + BH - (3E*+ 1B> - M - B)U]
ot a(D A B) .

- (4.16)

Insertion in (4.2) with (4.15) yields the momentum conservation law:

V[pv + ¢ 'E A (B—M_ )]

at
= --V-[ovv+P—DE—BH—c 'v(PAB~M,, AE)
+(JE*+ 1B ~M-B)U]. (417)

The field momentum density for fields in a polarizable and magnetizable
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medium is therefore given by ¢ 'E A (B —M,,); clearly the spin mag-
netic moments do not contribute to the field momentum. In contrast,
both spin and orbital magnetization are present in the field momentum
flow.

To check the magnetostatic terms in (4.15) Lahoz and Walker (1975)
have repeated with improved accuracy old experiments in which the
height difference of a paramagnetic fluid in a U-shaped container, with
one of its legs situated in a magnetic field, is measured; theory is
confirmed within an experimental error of a few percent.

Experiments that are sensitive to the dynamic terms in (4.15) have
been carried out by Lahoz and Graham (1979b, 1982). In these experi-
ments a similar configuration to that described above (4.11) was used,
with the difference that now ferrite samples were employed. The meas-
urements can be analyzed along the same lines as in (4.11)—-(4.13). The
experimental results were found to be consistent with the force density
(4.15). In fact, as the last term of (4.15) makes no contribution in the
case of a ferrite sample a null result is expected and was indeed
measured. In a theoretical discussion (Lahoz and Graham, 1981) it has
been concluded that the magnetodynamic effect does not exist. However,
this is not true: only orbital magnetic moments contribute to the effect,
since only these are nearly completely anomalous.

6.5. Relativistic Energy-Momentum Laws

The nonrelativistic and semirelativistic theories discussed so far are
sufficient to interpret the experiments on the electromagnetic forces in
material media that have been carried out up to now. In spite of this fact
there has been a lively debate over the years on the correct form of the
relativistic energy-momentum laws for polarizable and magnetizable mat-
ter in an electromagnetic field. These laws can be written as

3,T*=0, (5.1)

with 7°# the total energy-momentum tensor, which is the sum of a
material and a field-dependent part

T =T + T . (5.2)

The discussions have often concentrated on the relative merits of the
proposals for the field energy-momentum tensor put forward by Minkow-
ski (1908,1910) and Abraham (1909,1910) on the basis of formal
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grounds such as form invariance and symmetry. However it was already
recognized at a fairly early date (Lorentz, 1904b; Einstein and Laub,
1908; Abraham, 1914) that it should be possible to obtain the macro-
scopic energy-momentum laws from a consideration of microscopic ‘elec-
tron theory’.

A derivation of the covariant macroscopic laws of energy and momen-
tum may start from the equations (3.7)—(3.8). As these are classical
equations for a composite particle consisting of charged point particles
without structure, spin effects are left out; the magnetization thus arises
from orbital magnetic dipoles only. Upon employing a covariant averag-
ing procedure (de Groot and Suttorp, 1972) these equations indeed lead
to a conservation law (5.1) with an energy-momentum tensor (5.2)
containing a field-dependent part:

Teh=—F"H} -} gF, F" + c *(F"M,U" — A"M ,F*U,)U* ,
(5.3)

with H*® = F*® — M*? (cf (2.11)), g** the metric tensor, U the hydro-
dynamic four-velocity and A®* the projector on the space orthogonal to
U®. The material part of the energy-momentum tensor is found as a
statistical expression involving correlation functions.

In the local rest frame, for which U®=(c, 0), the field energy-
momentum tensor (5.3) has the components:

TY = L(E* + BY),
T(f) = T‘(‘E) (EAHY, | (5.4)
Tl =-ED’—HB +(JE*+}B*~M-B)g".

For a dielectric, with M =0, these expressions agree with those of
Lorentz (1904b) and Einstein and Laub (1908). The momentum density
and momentum flow are the same as found in the nonrelativistic and the
semirelativistic theory (see (4.6) and (4.17) with M_, = M); the energy
density and the energy flow likewise agree with those of the simpler
theories. Minkowski (1908, 1910) postulated a field momentum density in
a medium equal to ¢~ 'D A B, which, in the case of a dielectric, already
clearly disagrees with the ﬁndlngs of the nonrelatmstlc formulation.
Whereas Abraham (1909, 1910) adopted ¢~ 'E A H as the field momen-
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tum density he required the momentum flow to be a symmetric tensor
even in an anisotropic crystalline medium.
An alternative form for (5.1) is

af __ o
3Ty = F°, (5.5)
with the four-vector F” representing the force density
F*=1(3"FP)M,, — ¢ 2a,[UP(F'M, U" = A"M, F**U,)] . (5.6)

In the nonrelativistic and the semirelativistic limits the space part of this
four-vector reduces to (4.3) and (4.15), respectively (with M, = M for
the present case). ,

The field energy-momentum tensor 7'f is generally asymmetric; this is
not surprising, since it represents only part of the total energy-momentum
tensor and is thus associated with an ‘open’ system. However, it should
be noted that in the present case even the total energy-momentum tensor
is generally asymmetric. The reason for this asymmetry is that the
composite particles in the medium carry an angular momentum s*%. The
balance equation for the corresponding macroscopic ‘inner’ angular
momentum density S** contains the asymmetric part of T** as a source
term:

8. (SPU”) =~ 7" + T*F — TP, (5.7)

with J*?” the tensor that determines the inner angular‘momentum flow.
Since the orbital angular momentum balance equation reads:

0, (R°T® — RPT*")=T** — T** , (5.8)

the total angular momentum is indeed conserved, as expected. Of course
the total energy-momentum tensor can be symmetrized in the way
described by Belinfante (1939) and Rosenfeld (1940) on account of the
validity of (5.7).

As in the nonrelativistic theory the form (5.5) of the energy-momen-
tum laws is by no means unique. On the basis of a covariant Gibbs
relation one can derive the difference between the material pressure (and
also the material energy density) in the presence and in the absence of
fields. For fluids in equilibrium one obtains a “Helmholtz” material
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energy-momentum tensor:
H o 2 H Hjpa
Fius? = (o + ¢ 2uy U UP + pha*? (5.9)

with u' and p" the internal energy and the pressure in the absence of
electromagnetic fields. Correspondingly, the field energy-momentum ten-
sor in the Helmholtz picture is, in the local rest frame, defined by its
components:

H,00 _ oK
T = (E D+B- H+T6TE +TaTB)

T =T =(EAH),

) (5.10)
H,ij _ i
T =-ED' - H'B’

1 dK o ax 2) i
= - . —_— + ——
2<E D+B H+vavE vavB g,

where linear laws P=«kE and M = yB in the rest frame have been
assumed. The Helmholtz form of the balance equation of energy and
momentum for a fluid in equilibrium is:

9, Tous? = F* = —0,T 5™, (5.11)
which is a covariant generalization of (4.8) and (4.10).

The quest for the covariant energy-momentum laws of matter in
electromagnetic fields has a long history, details of which can be found in
several reviews (Brevik, 1970a,b, 1979; de Groot and Suttorp, 1972;
Skobel’tsyn, 1973; Robinson, 1975; Novak 1980a). As remarked above
the search for the “correct” form of the field energy-momentum tensor is
not a well-posed problem as long as the material part of the tensor is left
unspecified. From this fact, which has been emphasized repeatedly in the
recent literature (see for instance Pitteri, 1973; Mikura, 1976; Israel,
1977, 1978; Horibata, 1977; Kranys, 1979, 1980, 1982; Israel and Stewart,
1980; Maugin, 1980), it should not be construed, however, that all
expressions for the field energy-momentum tensor are equally useful and
equivalent. For instance, even nonrelatmstlc theory already shows (see
(4.6)) that it would be artificial to choose ¢~ 'D A B as the field momen-
tum density (as Minkowski proposed); this choice would correspond to a
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material momentum density different from v in the nonrelativistic limit.
Likewise, a symmetrized field momentum flow, as proposed by Abraham,
leads to a rather unconventional choice for the material pressure in an
anisotropic solid.

To derive the macroscopic energy-momentum laws we started (de
Groot and Suttorp, 1972) from the microscopic equations of motion.
Although several people have followed the same strategy since then
(Israel, 1973, 1977, 1978; Peierls, 1976, 1977; Maugin, 1978a,b,c, d;
Israel and Stewart, 1980; Lai et al., 1982; Eu 1986) many authors have
continued to try and use purely macroscopic arguments, for instance
variational principles (Mikura, 1976; Dewar, 1977), mathematical iden-
tities based on Maxwell’s equations only (Ginzburg, 1973; Ginzburg and
Ugarov, 1976; Ginzburg, 1979) or various ‘Gedanken’ experiments
(Skobel'tsyn, 1973; Costa de Beauregard, 1975; Lai, 1980, 1984; Brevik,
1982). Sometimes methods of general classical field theory for Proca
fields have been employed (Novak, 1980a, b).

In several papers arguments based on thermodynamics are introduced
in order to find the energy-momentum tensor. The first authors to try and
use relativistic thermodynamics in this context were Kluitenberg and de
Groot (1954, 1955a,b). By postulating a form for the relativistic Gibbs
relation and the symmetry of the material part of the energy-momentum
tensor they could deduce a field energy-momentum tensor which is
closely related to (5.3). A similar reasoning was used in a macroscopic
semirelativistic treatment by de Groot and Mazur (1962). As these
authors are well aware, the Gibbs relation for material media in motion
should be formulated in terms of rest frame quantities (for instance
E'=E+c 'vAB and P'=P—c 'vAM in semirelativistic theory),
since only these quantities satisfy relations independent of the state of
motion; for linear media one has P’ = kE’, but not P = kE. This point
seems to have been missed in a recent paper by Eu and Oppenheim
(1986).

A closely related method starts from the principle of virtual power
(Chu et al., 1966; Penfield and Haus, 1967; Robinson, 1975; Maugin,
1981), which is also based on an assumption about the general form of
the thermodynamic laws for media in motion. It has been criticized
(Brevik, 1970b, 1973; Lo Surdo, 1973; Cavalleri, 1973; Cavalleri et al.,
1975; see also Haus et al., 1972, 1974) for its use of quantities in the local
rest frame; however, these should appear in a proper formulation of the
thermodynamic laws for the reasons explained above.



190 L.G. Suttorp
6.6. Conclusion

In the past few decades our understanding of the foundations of
macroscopic electrodynamics has greatly improved. The derivation of the
macroscopic Maxwell equations from microscopic dynamics has been
refined so as to include the effects of relativistic motion, particle spin and
quantum electrodynamics. The macroscopic balance equations of momen-
tum and of energy have been derived systematically by starting from the
equations of motion for composite particles in external fields. The
resulting expression for the ponderomotive force density felt by polarized
and magnetized matter has been confirmed by experiments in which the
force due to time-dependent electromagentic fields were measured with a
high accuracy.
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