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~Summary. — The Hamiltonian for a Dirac particle with anomalous mag-

netic moment in an electromagnetic field is transformed to even form
up to terms linear in the coupling constant and without derivatives of
the field. The even parts of the position and spin operators are derived
by imposing conditions of covariance. Covariant equations of motion and
of spin are then deduced; they turn out to have the same form as the
classical equations for a composite particle with magnetic dipole moment.
(The magnetodynamic effect for a particle in a time-dependent field is
shown to contain the vector product of the electmc field and the anomalous
magnetic moment only.)

1. — Introduction.

A charged dipole particle in an electromagnetic field may be described by
means of covariant equations of motion and of spin. These are needed for
the interpretation of measurements of magnetic moments, as for ingtance
the (9 — 2) experiment. Although Dirac particles are concerned in that case,
classical equations have generally been used.

Such covariant classical equations have often been postulated, ¢.e. either
obtained from variational principles ad hoe () or generalized from nonrelativ-

© (1) J. FRENKEL: Zeits. Phys., 87, 243 (1926); J. I. HorvarH: Acts Phys. Acad.
Seci. Hung., 8, 171 (1954); K. Nacy: Bull. Acad. Sci. Pol., 4, 341 (1956); F. Hars-
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Progr. Theor. Phys., 24, 291 (1960); D. Bomy, P. HrrrioN, T. TAKABAYAST and J.
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istic equations (2). If one tries to derive covariant equations one must first
define a central point for a composite particle in an external field. ‘For a free
composite particle this presents no difficulties (*°), since one can then impose
the Frenkel condition U,8**= 0 (where U* is the four-velocity and 8*f the
inner angular momentum) together with the condition U* parallel to P*
(where P?% ig the four-momentum). For a composite particle in an external
field the Frenkel condition is used by a number of authors (>¢) in deriving
equations of motion, although it does not lead to a uniquely defined world-
line of central points, as was proved by MoLLER (*). In fact the equations allow
peculiar solutions: even in the field-free case helical motion is possible. (In
order to avoid this difficulty the form of the equations is sometimes (?) changed
afterwards by means of an «iteration process») A different condition wviz.
P,8%"= 0 has been proposed by NAKANO (8) and TULCZYJEW (°) and was ap-
plied extensively by Dixon (°-11). In Sect. 2 of this article it is proved that
this condition leads to one single world-line of centres of energy (or several
discrete ones). In Sect. 3 we derive the equations of motion and of spin for
the composite dipole particle in an external field, retaining only terms linear
in these fields. The set of equations includes an expression for the total mo-
mentum in terms of the four-velocity, the inner angular momentum, the electro-
magnetic dipole tensor and the field. In Sect. 4 the special case of a composite
particle with a magnetic dipole moment proportional to the inner angular
momentum is considered. DIxoN (10-11) already derived part of the equations
mentioned; he found the expression for the total momentum only for the case
of a normal magnetic moment in a homogeneous field.

An interesting aspect of the equations of motion is that they contain the
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(") E. Pranre: Suppl. Nuovoe Cimenio, 4, 291 (1966); J. VLIEGER and S. EMip:
Physica, 41, 368 (1969),

(&) T. Naxgaxo: Progr. Theor. Phys., 15, 333 (1956).

(®) W. Turczysew: Acta Phys. Polon., 18, 393 (1959).

() W. G. DixoN: Nuovo Cimento, 34, 317 (1964).

(1) W. G. DixoN: Nuovo Cimento, 38, 1616 (1965).



COVARIANT EQUATIONS OF MOTION ETC. 247

magnetodynamic effect, associated with the vector product of the electric field
and the magnetic moment. Such a term, which occurs already in Frenkel’s ()
work, was discussed extensively in recent years (*2); it was found to contain
the total magnetic moment. We find however that only the anomalous magnetie
moment contributes. For a composite particle, such as an atom or a molecule,
this constitutes only a slight difference (see the end of Sect. 8 and ref. (%%)). For a
single (charged)particle the normal magnetic moment is of the same order as the
total magnetic moment, so that then the difference might be quite appreciable.
Such a single particle is studied in the remaining part of this paper (Sect. 5-8).

In order to obtain equations of motion for a Dirac particle in an electro-
magnetic field one starts with the Dirac equation including a Pauli anomalous
term. The Hamilton operator in the Pauli representation of the Dirac matrices
containg even and odd terms. In the field-free case it can be transformed to
even form with the help of the Pryce (*)-Foldy-Wouthuysen (‘4) transformation;
positive- and negative-energy solutions may then be distinguished. In the case
of minimal coupling with an external field an even form was obtained by Forpy
and WOUTHUYSEN but in nonrelativistic approximation only. The latter
restriction was removed by ERIKSEN and KOLSRUD (%), but the transformation
operator could only be given in the form of an integral. An explicit transforma-
tion operator was given by BLOUNT (*); he obtained an even relativistic
Hamiltonian as a series of terms with space derivatives of the fields of increasing
order, so that again positive- and negative-energy solutions may be distinguished.
This method is used in Sect. 8 and extended to the case of the Dirac Hamiltonian
with Pauli term.

The covariant equations of motion may now be obtained if position and spin
operators with covariant properties are defined. If one is interested in ex-
pectation . values of operators for positive- (or negative-) energy solutions of the
Dirac equation, only the even parts of the operators occur. It is known that
the even part of the position operator cannot fulfil both of the following con-
ditions, viz. 1) covariance (in fact quasi-covariance, see Appendix I, cf. (+17:18)),
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(1967); W. SHockLEY and R. P. JaMES: Phys. Rev. Leil., 18, 876 (1967); S. COLEMAN
and J. H. Vax VirEck: Phys. Rev., 171, 1370 (1968).
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Theory, Thesis (Amsterdam, 1968).
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2) commutation of Cartesian co-ordinates. If the last condition is chosen, co-
variance is lost: it leads to the Newton-Wigner position operator (**). If how-
ever covariant equations are to be obtained the first condition should be im-
posed. As is shown in Sect. 5 and 7 of this article, one can then derive the
position and spin operators for the particle in a wnique way. For the field-
free case both of these operators were already found by PrYCE (4) (the spin
operator also by others (20:21)); for the case with fields a spin operator of the
same form as derived here was proposed as a generalization of the field-free
case (*1). It should be mentioned that some authors try to reconcile condi-
tions 1) and 2). This can only be achieved through an interplay of even and
odd parts of the position operator in conditions 1) and 2). One obtains in this
way the Dirac position and spin operators (%), However the even parts
alone of these operators violate the covariance condition, and since only these
parts occur in the expectation values the latter will not possess covariant
properties. Still a different position operator may be proposed (2222) if apart
from the requirement of evenness also the second condition is abandoned.

With the knowledge of the Hamiltonian, transformed to even form, and the
covariant position and spin operators it is straightforward to find equations
of motion and of spin. These equations, obtained in Sect. 8, turn out to be of
the same form as the classical equations derived in the first part of this paper.
This justifies their use in the discussion of measurements, such as the (g — 2)
experiment.

Earlier attempts to derive equations of classical form from quantum theory
include Fradkin and Good’s (24) discussion of the motion of wave packets based
on a number of additional assumptions, and valid only for homogeneous fields.
Furthermore WKB methods have been used, again for the case of a homogeneous
field by RuBINOW-KELLER (*) and RAFANELLI-SCHILLER (*). DIXoON (1) em-
ployed position and spin operators without specifying the field contributions;
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helimited himgelf to a particle with a normal magnetic moment in a homogeneous
field. CoORBEN (%%), KOLSRUD (**), PLAHTE (28) and YAMASAKI (**) introduce
proper time into Dirac theory without solving the well-known difficulties of
interpretation pertinent to this notion. Moreover the covariance properties of
their equations are not well-defined.

Just as the classical equations, the quantum-mechanical equations of motion
contain the magnetodynamic effect. It is found again that only the anomalous
magnetic moment (which for a Dirac particle is essentially different from the
total magnetic moment) contributes to this effect. If however a noncovariant
position operator, such as Newton-Wigner’s or the even part of Dirac’s operator,
is utilized, the incorrect result is found that also the normal magnetic moment
(or half of it) contributes to the magnetodynamic effect (20).

2. — Definition of the classical centre of energy.

In classical theory a composite particle, consisting of point charges, in an
external electromagnetic field is described by an energy-momentum tensor
of which the divergence can be expressed in terms of forces f* acting on the
charges:

(1) 0pt* = f*.
A covariant centre of energy may be defined (*10) by considering those plane

surfaces 2 of which the normal n* is parallel to the total momentum integrated
over the surface

(2) Pr=— 0"1ft°‘ﬁnﬂ ax
z
(P* is assumed to be a timelike vector; metric 9°=—1, g**=1); in these

surfaces one then determines the centre of energy

(3) X% = w“nﬁtﬁynydz,‘/fnst"gn;df.
z Z

(*") M. KoLsruD: Nuovo Cimento, 89, 504 (1965).

(**) E. PranTe: Suppl. Nuovo Oimento, 4, 246, 291 (1966); 5, 944 (1967).
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(®*) A. Conorr: Compt. Rend., 268 B, 1184 (1968); H. Bacry: Compt. Rend.,
267 B, 89 (1968); W. SHOCKLEY: Phys. Rev. Leti., 20, 343 (1968); W. SHOCKLEY and
K. K. THORNBER: Phys. Lett., 27 A, 534 (1968); J. H. VAN VLEcK and N. L. HUaNG
Phys. Lett., 28 A, 768 (1969).
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(In the rest frame of P* this formula reads indeed Xxfxt""dx/ft“" dx.)
These centres of energy then satisfy the relation

(4) P,8*=0,

where the inner angular momentum is

(3) 8 P=—0c f{(x—xwf’v— (x—X)Pt*"}n, dX.
p

We shall now prove that for a finite system with a positive definite energy
density ¢ the set of centres of energy defined in this way forms one single
world-line (or several discrete ones). Consider such a-point X* determined in
a plane surface X with normal parallel to P%. One may ask -oneself now if there
exists a point X* - 8X* (with P, 3X*=0) in the infinitesimal neighbourhood
of X*, which is likewise a centre of energy, this time in a plane surface X' with
normal parallel to the corresponding momentum P*4 3P% 1In the proper
frame of P* one has from (2), (4) and (5)

(6) [t“’(fc“, x)dx =0 (@° = X°),
z

(M) f(x—X)t“"(w“, x)dx =0.
b

The proper frame of P*--- 3P* is connected to the proper frame of P* by an
infinitesimal pure Lorentz transformation

(8) =04+ €ex, a'=x -} ex®

for a certain value of €. The time-space point with co-ordinates (2°, X -3X)
has in the new frame the co-ordinates (2%, X' 3X) which are given by

(9) P=a+eX,

- (10) X +8X'=X+3X+ex*

up to terms linear in e and 3X. Furthermore the space co-ordinates of an arbi-
trary point in X’ read in the new frame

(11) R =3+ e,
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where ® and 2° are connected by
(12) ="+ eX.
From (9), (11) and (12) it follows now that
(13) =2+ e (X—=&",

(14) =2 —ea.

In the proper frame of P*+ 3P* the space components of the total momentum
vanish (cf. (6)):

(15) f #0/(B0, %) A& =0 .

$>4

Using the transformation properties of a tensor one gets

(16) f (1050, B) + e 9@, ) -+ o,19(8%, &)} AR/ = 0 .
J

Introducing (13) and (14) one gets (J,= 0/0x°):

(17) f {to(@, &) —a° € (D]OR') t0(a®, &') +

+ € (X —R')0,170(a®, &') + £41%(a®, &') + &,0%(a°, &)} AR = 0 .

After a partial integration (from (9) and the fact that " is constant in the
integration it follows that #° is constant) one has with (6)

(18) f{e' (X —R)D,t00(a% &) 4 £18°°(a®, B') + &;1 (2%, R')} AR’ =0 .
With the equation of motion (1) and a partial integration this becomes
(19) J‘{e'(X—x)f(w", x) - €2, x)}dx =0 .

For a finite system the integral is in fact confined to a finite support (Lorentz
contraction only improves the argument). As a consequence of (7) the centre
of energy X lies also in this domain and therefore |x — X| is bounded. Hence
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for sufficiently small external electromagnetic fields

eft"“dw

so that (19) cannot be satisfied. The conclusion is that no point exists in the
infinitesimal neighbourhood of X%, which is also a centre of energy; in other
words the set of centres of energy determines a discrete number of world-
lines (). The condition (4) thus leads to a situation completely different from
that following from the condition U, 8% =0 (with U*= dX"/ds). As a mat-
ter of fact MOLLER proved (°) that the latter condition does not suffice to deter-
mine a world-line. Moreover he showed that it cannot be supplemented by the re-
quirement that P* be parallel to U* (in the general case with external fields).

(20)

’

e'f(X—x)f(m", x)dx| <

3. — Classical equations of motion for a charged particle with electromagnetic
dipole moments in an external field.

For a composite particle, which satisfies the energy-momentum law (1),
the derivative of P* with respect to the proper time s of the world-line X*(s)
is given by

dP* d Z(a+as)
(1) i =—tds ft“ﬂ'nﬂdf =fo—1f“dV,
Z(8) Z(8)

where the integration in the first integral is extended over the surface 2(s)
orthogonal to P*(s) (or n*(s)) and containing the centre of energy X*(s); the
last integral, which is obtained from Gauss’s theorem and (1), is extended
over the domain bounded by the surfaces X(s) and X(s 4 ds). The volume
element dV may be written as

(22) AV = —U,n* {1 —sig(@ — X’ |U,n"} dsd X,

where U*= dX*|ds and #*= dn®/ds. Since n*= P*/v/— P? and F,(»—X)"=0
one has #*@— X)*= (P,/v/— P?)(— X)* and thus (21) becomes with (22)

(23) dpP*/ds = F*,

() One may prove from (6) and (7) that for sufficiently small fields the world-line
is timelike so that a proper time s along the world line may be introduced.
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where F* is the total four-force expressed in terms of the force density f*(x):

(24) P =—| T
pAD)]

f* Up PP {1_1)}(90—)()7

S

If the energy-momentum tensor is symmetric one has from (1) the angular-
momentum law

(25) 8, {(e— X"t — (2 — X)P 17"} = (0 — X)*f — (@ — X f*.

With the help of this equation one finds for the derivative of the inner angular
momentum S*(3) with respect to the proper time s:

(26) d8*f|ds = D*¥ — (U* PP — UPP¥),

where the total torque

@27 D*(s) =—|{(z—X)*ff — (2 — X)*}

Z(s)

A P A S
¢V — P* U, P*
is expressed in terms of the force density f*(z).

For the case of a composite particle, consisting of (spinless) point particles
with charges e;, masses m; and positions R(s,) with s, the proper time, interact-
ing with each other and with an external field the total energy-momentum
tensor reads

(28) @) =e¢ zf dI:i (111? 09 {R,(s;) —w}ds; +
+ B () FF, () — 1 B (@) B () g™ +
+ Z {FW (z) (@) + for (@ )Fﬁ () —3% (i,(x)Fw(m)g“ﬂ}+
+ 2 {{&@) m S®)—% fi(w)fmw(w)g“ﬂ}

zd'laﬁi

(diagonal terms in the double sum are left out to avoid self-interaction terms).
The field {7 (/% = e, , fil = ¢""b,,,,), which is generated by particle i, satisfies
the equations

29) 0,12 = f (AR [ds) 50 (R,(s,) — 2} ds,,

(30) aaf(i)ﬂy + aﬂf(iwa + ayf(t)aﬁ: 0,
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whereas the external field F* (For = EF, k= ¢&»B,,) satisfies homogeneous
equations of the same form. The conservation law Optes = 0 leads with the
help of (29)-(30) to an energy-momentum law of the form (1) with the energy-
momentum tensor

af " (4) .
(31) " =c¢ zfmz ds, dsi 0 {R ac} ds; +

+ Z {f(i) fgw 4f<z>( )f(;i)ye(m)gaﬁ},

@9, 4%

(which is seen to be symmetric) and the (Lorentz) force density
(32) f4(@) = F¥ @)jpl@)]e

where j*(») is the four-current, given by
(33) i*@)e= e,f(dR‘f/dsz.) S {R,(s,) —x}ds,; .
%

In this expression the parameters along the world-lines ¢ need not be chosen
as the proper times s,. It will be convenient to use instead the parameter s
in the force density. (This parametrization may in fact be induced with the
help of the surfaces X(s).)

With the explicit forms (32) and (33) the equations of motion (23)-(24)
and (26)-(27) are completely specified. The total force (24) becomes with (32),
(33) and a multipole expansion

dR
34)  F*(s) = — FF(X 1[ B sfRs)— 2} 2L
e ©) ( )ge { x}c\/—}?z
. _Z.)a(x X) (Xﬁ . dRzE_
{1_——_0';134 }ast_aF )3 f” i
. U.P [, Ple—X)
0@ {R,(s) —u} oV {1— TP }dst

where only terms with the fields and their first derivatives have been retained
(terms with higher derivatives would contain quadrupoles and higher moments,
which are neglected). Substituting (22) with n%= = P*l4/— P* and introducing
the internal variable 7$= (R;— X)* and the total time derivative d/ds= U*3,
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we obtain
(85)  F*(s) = (efe) F*P(X) Up +
+ 1P FP(X) g e, {7«,.,, Usp—rpUy+5 L (,ﬂw d(;'zﬂ re (Z';v)}_{_
+otg {F"‘f’ X) z{ e:Tip} s

where the electric quadrupole moment Ze,.r;’.‘rf has been neglected. This ex-
i

pression contains the electromagnetic dipole moment tensor (*!):

" " drf dr
(36) Maﬂ = 0~1§e¢ {7"; Uﬁ—?; U + ( I3 d; ﬁ d;)}

Furthermore one has from (36) and the orthogonality relation 7,,P*=0 the
identity ‘

(37) E‘:eﬂ‘;‘: eM™ P,[U,P",

where again the quadrupole moment has been discarded. With (35), (36), (37)
and the homogeneous field equation for F*? the equation of motion (23) takes
the form

(38)  AP%[ds = (¢/e) F**(X) Uy + 3{0* ™ (X)} My, + (d/ds) {I'(X) M, P?|U, P75 .

In the same fashion we obtain from (26) and (27) as the equation for the inner
angular momentum

(39)  d8*)A8 = F(X)M;f — FP(X) M —
— F*(X) M, P° U|U, P* - FP(X) M, P° U*|UP* + P* U — PP U

The eqs. (38) and (39) with the supplementary condition (4) are the equations
of motion and of spin for a classical composite particle with charge and electro-
magnetic dipole moments in an external field. In order to discuss them we first
consider the field-free case. Then the equations reduce to

(40) dP*/ds =0, d8**|ds=P*U’—P'U~.
By differentiating the condition (4) one finds with (40)
(41) PP*Uf—P,U*PP=0.

(®1) 8. R. pE Groor and L. G. Surrore: Physica, 31, 1713 (1965).
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Hence the four-vectors P* and U” are parallel, so that

(42) P*= MU” (M=—c2P,U%.
Now (40) reduces to

(43) av*/ds=0, d8*jds=0,

since dM/ds vanishes as follows from (42).
In the case with fields differentiation of (4) and substitution of (38) and (39)
leads to
(44)  P*TU, PP =U* By PP + M Ty, P’ —U* PP Fy, M B, [U, P — (6]6) S F, U” —
— 18 (3, F,,,) MY — 8*%(d/ds)(Fy, M"* P,[U, PF) .
Hence now P* is not parallel to U% If (44) is multiplied by U, one obtains
the equality
(45) P, P*=—c¥U,P*} + U, + P JUP) M* F,, P"—
— 2 U, 8% {(e]e) Fy, UY + % (05F,,) M -+ (d/ds)(¥y, M U P*)} .
According to (42) and the condition (4) all terms on the right-hand side but the
first are at least of second order in the fields. Hence if one wants to confine
oneself to terms linear in the fields the equality (44) may be written as
(46) P*= MU*— o M** Fp, U’ — U’ By, M U, U+
+ (| M%) S* Fy, U + (1/2Me?) 8*/ (35 F,) M — (1] Mo*) 8°7(d/ds) (£, M T,) ,
so that now the total momentum P* is expressed in terms of U%, M = —¢2P,U"
(cf. (42)) and 8°%, e, M*, I,
The equations of motion and spin (38) and (39) get a simplified form if

—as in (46)—only terms linear in the fields are retained. One obtains then,
with (46)

@47)  AP*[ds = (¢fe) F* Uyt § (9% FP) My, — c=2(d/ds)(F* M, U?)

48)  A8*|ds = P*UP—~PPU*+ F" M;f —F" M, +
+ 2P M, U UP— 2 F7 M, U°U”.

An alternative expression for the total momentum P* may be obtained
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with the help of the relation

(49)  —c(A8*/ds) Up= (¢/ Mc*)8** F,, U¥ 4 (1 [2Mc2) 8*(0, F,.) M —
— (1/Me*) 8% (/ds)(F,, M U,)

which follows from (48) with (46). Substitution of this relation into (46) gives
(50)  P*= MU*— 2 M* Fy, U” — ¢ UP Fy, M* U, U* — 6-*(A8°/ds) T .

Thus if only terms linear in the fields are taken into account the equations
of motion and spin are given by (47) and (48) with the condition (4) and the
expression (46) or (50) for the total momentum.

Equations like (47), (48) and (50) but with the condition U, 8% = 0 instead
of (4) have been discussed earlier (>4). Owing to the use of this different sub-
sidiary condition it is then not possible to go back to (46) starting from (47),
(48) and (50); this fact is connected with the appearance of the unwanted
helical solutions, even in the field-free case (*).

4. — Equations for a composite particle with magnetic dipole moment proportional
to the inner angular momentum.

Let us consider the special case of a composite charged particle without
electric dipole moment and with a magnetic dipole moment proportional to
the inner angular momentum; then

(51) M — 3 8%

The eqs. (47) and (48) with (4) and (46) read then, if one retains again only
terms linear in the fields,

(52)  dP*[ds = (e[o) F* Uy + L (3" FP") My,

(83)  d8%/ds= P*U’— PPU*+ F** M;} — F" M,

4) PR* =0,

(54) P*= MU*—c2M*F, U+ (6/ Me*) 8™ Fp, U +(1/2 Me?) S* (95 F,,) M7 .

(*) In ref. (%), equations like (47), (48) and (50) and the condition U,8%=0
were derived for a composite particle on the basis of an explicit construction of a central
point and with the use of the Darwin approximation for the intra-atomic fields. Helical
motions of macroscopic dimensions are then excluded.
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From these equations one may prove that the square of the inner angular mo-
mentum §,; 8* and the quantity

(55) M*= M+ Lo F M
are conserved. In fact multiplying (53) with 8,s and using (4) one gets
(56) (0/ds)(8,58%) = 48,,7* M;*
which vanishes as follows if (51) is introduced.
Furthermore the time derivative of M =—¢-2U,P* becomes with (52)

and (54)

(57)  AM/ds = — }o2(dF,,/ds) M 4 ¢~4(dT, [ds)-
{M*PFy, U — (6| Mc) 8% Fy, U — (1/2M) 8* (3, F,,) M} .

Since dU%/ds vanishes in the field-free case, this equality becomes up to first
order in the fields

(58) AM[ds + fo2(AF,,/ds) M =0 .
Finally if (53) is multiplied by F,z one finds with (51) and (54)
(59) F,dM*[ds=0,
if again only linear field terms are retained. From (58) and (59) it follows
indeed that M -+4¢2F,,M* is conserved.
With the definition of a «classical gyromagnetic factor» g by means of

(60) w=ge/]2M*c

we can write the eqs. (52) and (53) with (54) and (55), up to terms linear in
the fields, as

(61)  M*AT*[ds = (e[e) I Uy + (ge/4 M*0)(0*F™) 8y, - (/2 M* c3)(d/ds)-
{3gF? 8, U + (9—2) 8 F,, U} — (ge/4M*2¢%) 8% (d/ds){(0F,,) 877 ,

(62)  dAS¥[ds = (ge/2M*e)(F™ 8,f — FP §,*) — (g— 2)(¢/2.M* ¢%)-
(8 F, U U"— 87 F,, U° U*) + (ge|4 M*2¢>) {87 (3, F,;) S* UP — 87 (2, F,,) 8% U},

In the right-hand sides of (61) and (62) the leading terms with the inner angular
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momentum S* contain the first derivatives of the field and the field itself
respectively. Hence if the fields are sufficiently homogeneous the last terms
1n (61) and (62) may be discarded.

The space parts of (61) and (62) without the last terms may be written in
three-dimensional notation. We write U%= (y¢, yv) with v=c8; from (4),
(64) and the Lorentz transformation of the antisymmetric tensor 8% it fol-
lows that the space-space and space-time components S¥=¢**§, and 8% =
= T'" may be expressed in terms of the rest-frame inner angular momentum
B0 = Le,; S04 ag §=pSO —p2(y + 1)"1BR-S and T= yRAS for the field-
free parts. Hence in the right-hand side of (61) and (62) one may substitute
T=BAS, since terms quadratic in the fields were not taken into account.
The result is finally

(63)  yM*d(yv)dt = ye(E + BAB) + (ge[2M* ) {(VE)- BAS) + (VB)-S} +
+ (¢/2 2% ¢¥)y*(d]dn)[gS (B — BAE)B — (g—2) {SA(E -+ BAB)— SARB- E}],

(64)  »dS[dt= (ge/2M*c){SAB + (BAS)\E} +
+ (g—2)(e[2.M*c) {y*B-S(E + BAB)—Sp-E—y*pB-SB-E}.

(Time and space differentiations in the right-hand sides of (61)-(64) operate
in effect only on the fields, because quadratic field terms are discarded.)

Bquation (63) containg the « magnetodynamic effect » ¢.e. the time deriv-
ative of the so-called «hidden momentum » Its leading term is (e/2M*c?)-
‘(g—2)SAE and contains thus only the anomalous magnetic moment. For
an atom or a molecule g is of the order of several thousands and hence the
anomalous magnetic moment is approximately equal to the total magnetic mo-
ment. For a single (charged) particle however the anomalous magnetic moment
is esgentially different from the total magnetic moment. The study of such a
particle which is described by Dirac theory is therefore of particular interest.
It will be shown in the following Sections that equations of the same form as
the clagsical ones may be derived for the Dirac particle.

5. — The free Dirac particle: covariant position and spin operators.

It will be useful to study first some aspects of the free particle; in particular
covariantly defined position and spin operators. These will be generalized
to the case with fields in Sect. 7.

The wave function for the free particle satisfies Dirac’s equation

(65) H,yp=—(@i)opfet, H,=cup,+ fme.
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The Hamiltonian HY contains « odd » matrices (i.e., which couple the upper
and lower components of ¢ in the Pauli representation of the Dirac matrices).
Pryce () and Foldy-Wouthuysen (}*) showed that a transformation with the
unitary operator

By + me? -+ cfa-p,,
\/2Eon(Eop + mcz)

(66) Us (Bop =V ply+ m*ol)

brings the Hamiltonian in the « even » form
— * o
(67) ﬁgp = UopH:p Uop - ﬁEop .

Since this expression is even the wave equations for upper and lower compo-
nents are not coupled. For that reason one can distinguish between positive-
and negative energy solutions. If one calculates the expectation value of a
physical quantity for a positive- or a negative-energy solution only the even
part of the corresponding operator plays a role.

In particular if one wants to define a position operator only its even part
is of importance. This even part X is completely determined if we impose a
number of conditions. In the first place from the transformation properties of
translation (vie. [Py, X]]= (%/i)0" with the generator P, equal to the
operator p,), rotation (vie. [M( , X! 1= ific*X  , with the generator M, =
= xA\p,,+ %fic) and inversion ((A.21) for a polar vector) it follows that in
the P-FW picture X has the form

(68) Xop = UODXOD U:D =X + {fl(Eop) + ﬂfz(Eop)}pop+ {:fS(Eop) + ‘Bf‘i(Eop)} G/\pop ¢

Moreover the transformation character under pure Lorentz transformations
is determined by the commutation rule (417-18)

(69) [N, X3]= $o1{XG,, (H,, X:p]} )

where N, = t¢'{x,, H} with x, the Dirac co-ordinate is the generator of
a pure Lorentz transformation (see Appendix I). If the form (68) is substituted
into (69) one finds a number of differential equations for the form factors
f(B,,). If the solutions are inserted into (68) we obtain finally as the position
operator in the P-FW picture (see Appendix II):

(70) X, = x + o \p,,/2m(H,, + me?)

and—with the help of (66)—in the Dirac picture,

(1) X,,= x + (i#/2mc) fla— c2a- p, p,/BL) .
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In this way the even part of the position operator has been obtained uniquely
by imposing its transformation character. A position operator of this form
has been proposed by Pryce (4) starting from classical considerations.

The spin angular momentum % %X is obtained by subtracting the orbital
angular momentum X, Ap, from the total angular momentum x/Ap,, + 3%0;
it reads in the P-FW picture

(72) %, = (B,,/me*)6 — Py, pyy o/m(E,, + me?)
and in the Dirac picture
(73) Z,= 6 —ifa/\p,/me.

Since (72) is even, the spin defined in this way is conserved, as follows from (67).
Expression (73) is the space-space part of the tensor (*20-21)

(74) I = o™ + (1/me)(y* P, — V' Pl) 5

where y = —ifa, y* = —if, "’ = — Li[y*, y’] and p), = & p,, -+ fme. Its space-
time components X7 =T, read in the P-FW picture T = pp, \o/me. The
velocity operator in the P-FW picture is VODE (i/ﬁ)[ﬁgp Xop]: pep,[E,, a8
follows from (67) and (70). Hence one has the relation ¢! Vov /\f:w: T . which

op?
is the quantum-mechanical counterpart of (4) with (42).

6. — Transformation to even form of the Hamiltonian for a Dirac particle in an
external field.

The Dirac-Hamiltonian for a particle in an electromagnetic field E(r,?),
B(r, t), with potentials ¢(r,t), A(r, 1), reads

(75) Hop :Ga'nop+ﬂmcz+e(p+ﬂa.op7
(76) Ha.opz%(9—2);’”3(@./3“'1;—“:36.3) )

where 7, = p,,— (¢/c) 4, p,= efi[2me and the last (Pauli) term represents the
coupling of the anomalous magnetic moment with the field. The Hamiltonian
will be put to even form by three successive transformations. First a trans-
formation will be performed (*¢) with the operator

Ey + me* + cfo-7

(s Bl & ————r—,
) ' V2 E(Hr + me?)

(Br= Verm: + m2et) ,
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where in the right-hand side the Weyl transform (see Appendix III) has been
written. If ¢= 0, the operator 8, ,, reduces to U, of (66). If only terms linear
in ¢ and without derivatives of the fields are taken into account we find

(18)  (S.HSY,, = 8, HSt 1 sz,ngSH Ut B -
ieh oH oU*? ief; oU _oUt
+2 EzakUa apr "|—'2—0"8ukapiHaij —
__1ehi 0U dp ieh _dp 0UY
2 apzawlU Ty an dp’

since the Weyl transform of 8,,,, depends on p and x only through . Here
the same symbols are used for operators (Lh.s.) and their Weyl transforms
(r.h.s.). The operator S, . is not unitary since

oU aU*
(79) (8,80 1+ sz,k T
However the product U, , =8, 5’1 o 18 Unitary (up to terms linear in e and
without field derivatives), if S, is chosen such that

ieﬁ oU U
30 21—
( ) Sz.op <= uka D4 apj

The transformed Hamiltonian beeomes

(81) (U, HU1)°D<_81HSI+ aZ,nggH U'B* 4
i
ieh o0H 2U* iefi U _oU? iefi OU g ot
+%8iikU@_aEBk+;—“ mca aij o ap,awl U+
iefi S 0UY ek oU Ut oU oUt .

+ 2 Uaxz apl ‘—4_ ukap a B ‘8 ﬁEauha a .
If we introduce the abbreviation
(82) E=/i)U/op) Ut = — (fi[i)UdUop =&, + E,,

where ¢ and o indicate even and odd parts, the expression (81) becomes

(83) (UIHUI)OpzﬁEn—f—eqo—(ieE/%ic)smc{&‘ B} BE —
— (eo/ BE)BE.- (PAB) + ¢§-0¢[dx + § (¢ —2)u, U(ifor- E — fo-B) U
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Since the time derivative of the transformed wave function is determined by
{U,HU! — (#]i)(0U,/ot) U, we also need oU, /0t of which the Weyl trans-
form is — (e/e)(@U[Op)- (0A[t) (up to terms linear in e and without second
derivatives of the potentials). We obtain thus

84)  (UHU — (i) @U[at) Ul = BBy + op— (ieH[2Aio)esn {E', 55 B —
_(ee/B)BE, (pAB)— & E -+ }(g— 2, U(ifo- E—fo-B) U .

Here the odd terms which depend on the fields may be transformed away by
means of a final unitary (up to térms linear in ¢ and without field derivatives)

transformation
(85) Uz.on = 1— (i6/4ﬁ0)8“k{§z? Ei} Bk -

— (¢/2B)fE,- E + {(g—2)p,/4E} p{U(ifor- E— fio-B) o
The explicit transformed Hamiltonian is obtained if we substitute the expressions

(86) g, — fictpAo g __ ticfa fiic3 fou - pp
¢~ 2R(E 4 me?)’ °T T 2K ' 2FE + me?)’

which follow from (82) with (66). The result is—up to terms linear in ¢ and

without field derivatives—

1 3(U, )
1 ot

(87) ﬁonz{UZUIHmU;_ UIUz} =

op

me? med
zﬁE‘n"l—e(p"—‘MB’E—ﬁG'B—‘uBEm)(p/\c)E___
Ly g_Bopop B cpho)E
51 2)”3{‘3"3 H(E + me?) 7

which is the relativistic generalization of the expression derived by Foldy-
Wouthuysen (14). Apart from the anomalous terms it has been found by
Blount (*¢). We shall call it the Hamiltonian in the Blount picture.

7. — Covariant position and spin operators for the Dirac particle in the presence
of a field.

In order to obtain the equation of motion (Sect. 8) up to first order in the
derivatives of the fields an expression for the position operator including terms
with the potentials will be needed. Since the Hamiltonian (87) in the Blount
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picture is even again—as in Sect. 5—only the even part X,, of the position
operator is relevant. This part is fixed by a set of conditions. In the first
place the expression for X in the Blount picture should reduce to the form
(70) for the field-free case. If furthermore the transformation properties of X,
under translations (viz. [P, , X, 1= (%[i)d,), rotations (cf. (A.17) of Ap-
pendix I), inversion (ef. (A.21) for a polar vector) and pure Lorentz trans-
formations (cf. (A.10)) are given it follows that in the Blount-picture X has
the form

fic AT ¢
) Romxt g Bk ok o) (A= 2 o) +

2 n3 A
+ (a; + Pay) {%pAop'A+ﬂEf}—AA~cwg(£ﬁwﬁc —ppAo <P}

The velocity operator (up to terms with the potentials) corresponding to this
position operator follows with (87):

[ﬁom Xon] 2 fporn/Bn = V.

| =

(89) V=

In an analogous way the even part 20;; of the spin operator in the Blount
picture up to terms with the potentials (which should reduce to (72) in the
field-free case) is found by fixing its transformation properties under transla-
tions (viz. [P, ,, Z,,]=0), rotations (cf. (A.17)), inversion (cf. (A.21) for an
axial vector), and pure Lorentz transformations (cf. (A.15)-(A.16)). We obtain

B o TN C
me? m(Br + me?)

%) Z,= + (b + b pAA +

+ (by + Bbs) (Ap ‘o — mcﬂcs(p—%‘%) +

Ap- Bop-
+ (bs + Pbe) (% —c'Hop-A— /%%” + 0—25E26¢) :

This axial vector forms the space-space part 2:; of an antisymmetric quasi-
four-tensor X? of which the space-time components X% =T are

prAe

(91) TOD<_ po

+ (b1 -+ fbo)(pp — o EA) +

eppN\Ap -6

b+ ) (mapopa + FEALE) 1, 1) o pp-A + o ppie).

A further constraint on the spin operator follows from the orthogonality
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condition

(92) ot Vop/\ﬁon: Ton ’

which is the quantum-mechanical counterpart (up to terms with the potentials)
of the classical condition (4) with (46). It is satisfied if b, b,, b; and b, vanish.

The position operator and the spin operator are not independent of each
other. As a generalization of the field-free case we shall require that the sum
of the orbital angular momentum X Am, and the spin }%Z  is equal to the
operator xAm, + 4fic in the Dirac picture. As shown in Appendix I, for-
mulae (A.17)-(A.20), this quantity is the generator of rotations for a special
class of operators. The requirement reads written in the Blount picture

(93) XOD/\TI:OP + %ﬁﬁwz x A7, + o .

If (88) and (90) are inserted we get the result that the remaining constants a,,
@y, Gs, @y, b; and b, vanish as well, so that finally we obtain—in the Blount
picture

(94) X, =« + fie\An/2m(E, + me?)

S

(95) 2 2 (B /me*)e —mnr-o/m(E, + me?)

op
and in the Dirac picture

(96) X, < x -+ (ifi[2me)f(a — c*a-Ten/E})

(97) Z, <=0 —ifaAr/me

as position and spin operators. The spin operator Z  forms the space-space

part Zji of an antisymmetric quasi-four-tensor Z(f;ﬁ of which the space-time
components X = T? read in the Blount picture (cf. (91))

(98) T = prAo/me.

If in the expressions (95) and (98) the quantity 7 is expressed in terms of
the velocity ¥ with the help of (89) one obtains formulae like the classical
expressions mentioned after (62); here (#/2)e turns out to play the role of
the rest frame spin.

8. — Equations of motion and of spin.
The equation of motion for the Dirac particle is obtained by taking twice

the total time derivative (with the use of the Hamiltonian (87 )) of the position
operator (94) in the Blount picture.
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In the first place we have to evaluate the velocity operator. The Weyl
transform of the commutator I?op, X ] can be expressed in terms of the Weyl
transforms of ff and X with the use of (A.37). Up to terms linear in ¢ and
without field derlvatlves one obtains for the velocity operator (cf. (89))

o aX, i o~ o
©9) V=" es il X,
_, pre ehefop -B eticfpe - B(E? 4 Bme® -+ m2c?)
B, 2mE®E + me) 2mE(H + me?)
eficlp(phe)-E 1 ﬁp-cB_ﬁo2pp-cp-B
* 2mEpR Ty Nm g mE» +
n cENG n ¢p(pA\o)-E  cp-op\E
B B3 mE(E + me?)|

Likewise the acceleration operator may be calculated up to terms linear in e
and with first derivatives of the field

X, ar, Aop_,cz ¢*pp) .
ooy Shw =Tty v,y e (U“—E«T)

oo GorB w8 kS 9B o]+

n (_8_+ﬁ02p-V p(pNo)-E  pop-B ﬂpc'B(.E2+Em02+m204)_
2\ E m2ed E + me? m2ct (B + mc2)

___Ppp-op-B 1 ___¢VB)-pp-c cf\p)
mzcz(E+ mcz)} (g—z)ﬂB{(VB) G — E(E I mc ﬁ

i 2 ﬁogp-V) ~ po-pB p-cp/\E
T30 m’““’(@t+ E {c ‘Eho + me*  mo(E + me?)

The first terms at the right-hand side contain the fields E(x,?) and B(x, t)
a8 functions of the space co-ordinate in the Blount picture. Since the position
of the particle is given by X (94), we now wish to introduce the fields as func-
tions of X. Then we obtain for the first two terms of the right-hand side of
(100) up to terms linear in e and with first derivatives of the fields

24 po(cAp)-VE | e*cAp)-V(pAB)
101 — — —_ .
(101)  eBE(X, t) Ep/\B(X, t) m{ T+ me? HE L med)
(The noncommutative character of the components of X does not cause trouble
here because of the limitation to first derivatives of the fields.) Furthermore
we introduce the spin operator £ (95) instead of o; since in (100) o is only needed
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up to order ¢® we write

_meg, cpp
(102) o="5 L+ 5h e

Substituting (101) and (102) into (100), using the Maxwell equation VAE =
— — 9B and introducing the abbreviations § = cp/H, y = (1 — g2t and 0, =
= ¢~10/0t we obtain

(103)  maP, jat=y~*(U—BB)- [yeE(X, 1) + yeBAB(X, 1) +
+- 1gu, {(VB)-& + (VE)- (BAL) + 123+ B-V)BE- (B—PAE)} —
(g —2)upy*(Bo+ B-V){EA(E + BAB) —EABR-E}] .

Here we have limited ourselves to the « upper left » part of the matrix expres-
sion (i.e. p replaced by 1) which is the relevant part if expectafolon values for
positive-energy solutions are evaluated.

The spin equation follows by taking the total derivative of the spin oper-
ator (95) in the Blount picture. Using the Hamiltonian (87) we obtain for its
Weyl transform

haS, i[s fg ], H3Em
(104) —2' A “ﬁ[ﬂom ¢ z ]+ 2 at <~
N pe*p/ \Bp-c (0£
elu,{ﬁcAB T T me?) +\z /\° NEL-+
L ppA\Bp-c _cps-E  Ep-c GPP.GPQE}
+51(9 2)MB{/36/\B+m(E+m02) 7] T e mB(E + me2)|’

where only terms linear in ¢ and without derivatives of the fields have been
included. Upon introduetion of $ with the help of (102) the equation becomes

(105)

{ﬁzmj+( /\z) /\E}+

1 px med a ¢ ~
+ Lo [P pB— " pA EAB) A (PN B E).

Using the same abbreviations as in (103) and replacing again the matrix f
by 1 (i.e. limiting ourselves to the part occurring in the expectation value for
the positive-energy solutions) one gets finally
(106)  35a,jar = bguy{E AB + BADAE} +

+ 33—y 8- £(E + BAB)—2p-E— B8 EB-2} .
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Furthermore let us consider the time evolution of the « rest frame spin »
4%io in the Blount picture. One finds

7 d c? med
(107) ‘*—Gzﬂs {ﬁ%‘ 0/\B‘—”—ﬂW 0/\(P/\E)}—|‘

2 dt E( )
1 pe:p-BoAp ¢
+ B (9—2)us {ﬂGAB—Em —EG/\ (P/\E)} .

Replacing again the matrix § by 1 we obtain

(108) Hido/dt 2= oA (0, + ) + 3 (1 —2)0Aw,,

where we introduced the angular frequency vectors of the Larmor and Thomas
precessions

(109) wy, =u,{B—y(y+1)gR-B—BAE},
(110) Wy, = vy + 1) BA(E BAB).

Equations (103) and (106) are the quantum-mechanical counterparts of
the classical equations (63) and (64) since one should notice that

@) dv/dt = y=4(U —vwje2)- d(yv)/dt .

The magnetodynamic effect in (103) contains indeed the anomalous part of
the magnetic moment only.

The resulting eqs. (103) and (106) are operator equations which have the
same form as the corresponding classical equations. The equations which result
if expectation values for a wave packet are taken have the same form as the clas-
sical equations only if the expectation value of products of operators can be
written as the product of expectation values. This is approximately true for
narrow wave packets in the limit of #->0. In that approximation the quasi-
covariance of the operators leads to the covariance of the expectation values
(cf. Appendix I).

ArPENDIX I

Conditions of covariance.

In Sect. 7 a position operator X,, was determined by relation (A.10) (cf. Sect. 5
formula (69) for the field-free case). This relation may be obtained in the fol-
lowing way. The expectation value of X,, (depending on the co-ordinate x,
the momentum p,, = (%/¢) 0/0x and the potentials 4 and @) at time ¢ in the
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(x® = ¢t, x)-reference frame is

(A.1) f‘/ﬁ(wo, %) Xop(%, Poyy 4, @) p(a° x)dx

in the Dirac picture (*). Let us consider the expectation value in a different
frame which is obtained by an infinitesimal pure Lorentz transformation

(A.2) =2+ ex, x'=x-4 ex’.

We want to take the expectation value at a time 2 which is numerically
equal to x°

(A.3) J"Ph@ol’ ’,‘\’I)X:p {’?,7 (h]7) 8/8&17 A, ‘PI}"P’@N’ a”) dx’ .

The spinor field is transformed according to
[~

(A.4) ‘ '@, %) = (1+}e-a)p@, %),

where the circumflexed co-ordinates without primes follow from (A.2) and
B =a° as

(A.5) P=a'—eX, X=x—€2a.

From (A.4) with (A.5) and the equation H,,y = — (#/i) Op/ct one has

(A.6) P/ (@, &) = p(a &) + fe-ap(a®, &) —ae-dyp(a°, ¥')/0%" +
+ (i/ﬁo)e’;’lﬂw {Z‘}la (ﬁ/i)@/@&', A, ‘P}"/)(xof x').

Taking into account the dependence of X,, on A4’ and ¢’ (and their Lorentz
transformation, ef. (A.2)), introducing (A.6) into (A.3) and using the transla-
tion property [9/0x,, X.,] = 6" we obtain

(A7) J}p*’Xén p' da’ *f"ﬁx"“” do = ex® — (i/k)ﬁp”[e Ny Xop]w do +
+ '({)1‘ {(aXop/aA) ' E€Q + (aXop/a(p) € A}“Pdw y
where we have introduced the abbreviation

(A.8) N,, =c¢*xH,, —Yifia = Lot {x, H,}.

(*) The Dirac picture is used throughout this Appendix.
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On the other hand the left-hand side is to be the expectation value of (*)
(A.9) ex® — (i/27ic) {G’Xom [Hp, Xop]} ’

so that the covariance condition for the position operator X,, reads finally

h(3Xh XY
i\04,. " 5

Conditions of a similar type may be established to characterize the covariant
properties of arbitrary physical operators. Of course in general one cannot
expect that operators for physical quantities can be defined in such a way
that their expectation values transform simply as four-vectors, four-tensors ete.;
this is only possible for conserved operators (Klein’s theorem). For nonconserved
quantities we shall introduce the notion of quasi-four-vectors and quasi-four-
tensors in the following way. The condition for a vector operator ¥, (depend-
ing on p,, A4 and @) to be the space part of a quasi-four-vector reads

% (OV, v,
Z(@Ai v op

i ) 1
(A10) [N}, Xb]— + S A0 = g o (X, [H, X4

(A-ll) [N:w Vg,, -

v 1 . i
A“) =79 o {X:w [H o ng]} -7 o Vg" 4

where Vg, should satisfy
| ovy, oy,
o4, " Ty

In particular, if V,, is independent of ¢ and depends on A4 only via 7ty = po, —
— (efe) A (i.e. Vo, =V, (m,)), the left-hand side of (A.11) becomes

1 fi
Af) = 5 (X, [Hap, V1 =5 V.

#
(12) (G, TR

(A.13) [Ness Vo] + (ehific)(@V 3y [Opie)p = [Noy— (elo)ip, Vo]

up to terms linear in e¢; hence for operators- V,, of this special type the gener-
ator of pure Lorentz transformations is effectively

(A.14) N,,— (¢fe)xp = fet {x, Hyy—ep},
where (A.8) has been used.

(*) In the classical theory of a composite particle the set of centres of energy at
successive times determines a world-line independent of the Lorentz frame (cf. Sect. 2).
As a result the positions observed in different Lorentz frames are connected in a particular
way (ef. (4)). In fact, let us consider the two points «°, X(x°) and #°, X(#°) on the world
line of which the time co-ordinates #° in the reference frame and & in an infinitesimally
different frame have the same numerical value. Thus from (A.2), #°=7"= "+ € X(@°)
and X'(2%) = X'(@") = X(%°) + €x°. From the first of these equations one has up to first
order in € that @ — a°— e€-X(x%). With the help of this relation the second equation
becomes upon Taylor expansion up to first order X'(a?) — X(2°) = €x°— €- X(«°)d X (x?)/da".
This expression is equal to the expectation value of (A.9) for a narrow wave packeb
in the limit %->0, since then the expectation value of a (symmetrized) product of
operators is equal to the product of expectation values.
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The condition for a vector operator V., to be the space-space-part T of
an antisymmetric tensor 7% reads

1 %
=35 O-I{X:‘py [Hopa Vgp]} _; gtk Wk.oxn

i J
(A.15) [N;:p, ,Vzn] —--? (aVop aVoD Az)

04, " 5y
where the space-time components W, = T should satisfy

(A.16) [N%, sz]—?(

We . OWa o \_ 1 agys i,
UL PRRAIE Az)zéc—l{xw,[ﬂop,ng]}jLZechW

These relations are easily generalized to the case where the operators depend
moreover on the fields and their derivatives.

The condition for a certain transformation character with respect to the
rotation group may be formulated in a similar fashion. In particular, the con-
dition for a set of three operators V7 (depending on p,,, A and ¢) to form a
vector operator reads

(A.17) [Moyy Vo] + (Fifi)eimn 4,8V 5[0 A" = — (i) &7 Viop 5

op?
where
(A.18) M, = x\py + $fic.

If I-fop depends only on w,, = p,,— (¢/c)A the left-hand side of (A.17) becomes
(A19)  [Mg,, Vi,]— (ehific)eimn 4,0V 5, [0ph, = [ Mo — (efe)(x NA)', Vo],

up to terms linear in ¢, so that for these operators the generator of rotations is»
(A.20) M,,— (¢)o)x \NA = x\ Ty + }iic

where (A.18) has been used.
The condition for a vector operator V,, to have polar or axial character
respectively reads finally

(A'2]') ﬁVop(Pow A’ <P)/3 =+ Vo»(_pow —-A7 9’)) .

ArrENDIX II

Covariant position operator for a free Dirac particle.

In the course of the derivations the position and spin operators, both in
th_e absence and presence of fields, were fixed by requiring certain properties
with respect to the transformations of the Poincaré group. As an example of
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such a procedure we show here how the position operator (70) for a free par-
ticle may be obtained.

From translation, rotation and inversion invariance it follows (see (68))
that the even part X, of the position operator could be expressed in terms of
four form factors, since the only vectors available are p,, and o. The left-hand
side of eq. (69), which determines the pure Lorentz transformation character
containg the generator IV,, (A.8). In the P-FW picture the Hamiltonian ﬁﬂn is
given by (67) while the Dirac co-ordinate gets the form

(A.22) ooy = Untip Ugy = UpaUsy = & + (/1)(0U4/0poy) UL,

so that the generator N,,,, in the P-FW picture becomes

(A.23) Noy = $0736 {x, B} + 1 Blic( pup/\0) (B + me?),

where (82) and (86) have been used. If (67), (68) and (A.23) are inserted into (69)
one obtains the result that a certain linear combination of independent tensors

vanishes. Hence all coefficients have to be zero. This leads to the following
set of linear differential equations of the first order:

(A.24) fa(Bop) + folBog)/(Bop 4- me?) =0,

(A.25) Doofa(Bop) + 67 Bop fo( Bog) — 37/ (B + me*) = 0,
(A.26) fs(Beo) + fol(Bog) | By — 7i6* | BBy 4 me?)? = 0,
(A.27) fa(Boy) + fa(Bop)[(Bop + me?) =0,

(A.28) PoofaBop) + ¢ Hop fo(Hop) = 0,

(A.29) fo(Bop) + fu(Bop) [ Eop =0,

whereas f,(E,,) and fy(H,,) must be zero. The solutions of the equations for
f3(Eop) and f4(Eop) are

(A.30) fs(Boy) = 31i|m (B, + me?) fa(Bo) =0

Upon substitution into (68) these results lead to (70).

AprPENDIX III

The Weyl transformation.

For each operator A4,, acting on a four-component spinor a Weyl transform
may be defined in the following fashion. With the use of closure relations for
the complete sets |x, 4> and [p, 2> which are eigenvectors of x,, and p,, and
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where 1=1,2,3,4 one may write the identity (3?)

(4.31) A, =fdp dx dudv|x + v, ) (x + Lo, %|p + Fu, x>
{p+tu, % |Aglp—tu, A><{p—tu, Vjx—}v, 2 e —4v, 4

(summation convention). Substituting for the scalar products <, x|px’>
= h~¥ exp [ip -x/#] S one obtains

(4.32) A= 15[Ap 85 dus(py 2) Al ),
where the Hermitian operator A.;.(p, x) is given by

(A.33) Am‘l.on(p7 x) = |dv exp [ip v/ﬁ:”x + %'D, %y {x— %v7 Al
and the matrix

(A.34) A(py x) = |du exp [ix - u/i]{p + }u, % Alp—Fu, 2>,

which contains all information on A4, is called the Weyl transform of 4

© op
(nota,tion A, 2= Au(p, x)); an alternative expression is

(A.35) Aulp, x (dv exp [ip - v/h]{x — v, x[A,|x + v, 1) .

The Weyl transform of the product of two operators is given by (33)

o o 9 9

i
(A.36) A4, Bopf_{exp[ (8x4 @,‘@;'E)]}A”"("’ x)Buy(p, x) .

Useful corollaries of this formula are

4 1. [0 @ 0
(4.57) %[AmB”]*‘%[sm{i(az'éﬁ—@;'@)}]

’{Axy(py x)BM}.(P’ x) + Buﬂ(P’ ) #a Pa } +

) if o © 0 0
+ ;_i [GOS{ (axA aPB éz @)}] {4uu(p, %) Bua(p, ) — Buu(p, %) A1s(py %)}

(®*) B. LEAF: Journ. Math. Phys., 9, 65 (1968).
(®) H. J. GROENEWOLD: Physica, 12, 405 (1946).
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5}:'%~8—}Z@5 0%, Opg aPA.a_x_o

o @ 9 2

s 5pe " 3ps 3] | s ¥ Bl %) G, ).

(A.38) AODB%OW;,{GXP[%@(@ 8 8 8 8 8 8 @

These expressions are used in Sect. 6-8.

RIASSUNTO (4

Si trasforma la hamiltoniana per una particella di Dirac con momento magnetico
anomalo in un campo elettromagnetico ad una forma regolare fino a termini lineari
nella costante di accoppiamento e senza derivate del campo. Si derivano le parti regolari
degli operatori di spin e di posizione imponendo le condizioni di covarianza. Si deducono
le equazioni covarianti del moto e di spin; esse hanno la stessa forma di quelle classiche
per una particella composta con momento di dipolo magnetico. 8i dimostra che Ieffetto
magnetico dinamico per una particella in un campo non omogeneo contiene il prodotto
vettoriale del campo elettrico e del momento magnetico anomalo. ‘

(*) Traduzione a cura della Redazione.

KoBapuantuble ypaBHenus Apwxexusi
A7 3aPSHKEHHON YACTHIBI ¢ MATHHTHBIM JHTIOIBHEIM MOMEHTOM.

Pesiome (*). — laMUIBTOHUAH IS IHPAKOBCKOM YACTHIIEL C AHOMAJIBHBIM MArHUTHBIM
MOMEHTOM B 3MEKTPOMATHHUTHOM IIOJIe Mpeobpasyercs X 4eTHOH dopme BIUIOTH A0 JH-
HEHHBIX WICHOB IO KOHCTAHTE CBA3Y U Ge3 MPOM3BOAHBIX OT monst. Ilpeamonaras YCIIOBUS
VHBAPHAHTHOCTH, BBIBOAATCH YETHbIE YacCTH ONEPATOPOB IOJIOKEHUS W CIOMHA. 3aTeM
BBIBOIATCS KOBapUAHTHBIC YPABHCHUs NABIXXCHMS ¥ YPABHEHHS IS CIOHHA, OKa3bIBASTCH,
4TO OHUM MMEIOT Ty Xe (OpMy, YTO M KIIACCHYECKHE YPABHEHHS LIt COCTABHON YaCTHIIbI
C MAarHuTHBIM IUIOJBHBIM MOMEHTOM. (IToka3sbIBaeTCs, YTO MATHUTHOIMHAMUYECKHII
3thhexT [ YaCTHUEI B HEOMHOPOLHOM TIONE COIEPXKUT TOJBKO BEKTOPHOE IIPOM3BEACHNC
SJICKTPUYECKOTO IO ¥ AHOMANBHOTO MarHHTHOTO MOMEHTA.)

(*) IIepesedeno pedaryueii.



