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ABSTRACT
A result page of a modern web search engine is often much
more complicated than a simple list of “ten blue links.” In
particular, a search engine may combine results from differ-
ent sources (e.g., Web, News, and Images), and display these
as grouped results to provide a better user experience. Such
a system is called an aggregated or federated search system.

Because search engines evolve over time, their results need
to be constantly evaluated. However, one of the most effi-
cient and widely used evaluation methods, interleaving, can-
not be directly applied to aggregated search systems, as it
ignores the need to group results originating from the same
source (vertical results).

We propose an interleaving algorithm that allows com-
parisons of search engine result pages containing grouped
vertical documents. We compare our algorithm to existing
interleaving algorithms and other evaluation methods (such
as A/B-testing), both on real-life click log data and in simu-
lation experiments. We find that our algorithm allows us to
perform unbiased and accurate interleaved comparisons that
are comparable to conventional evaluation techniques. We
also show that our interleaving algorithm produces a ranking
that does not substantially alter the user experience, while
being sensitive to changes in both the vertical result block
and the non-vertical document rankings. All this makes our
proposed interleaving algorithm an essential tool for com-
paring IR systems with complex aggregated pages.
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1. INTRODUCTION
In a result page returned by a modern search system

some results look different and may be more visually at-
tractive than others. Moreover, results from different sub-
collections (e.g., News, Images, Finance, Mobile) are usually
grouped (i.e., presented adjacent in the ranking) to improve
the search result browsing experience. These results are of-
ten called vertical documents. If the vertical results are
grouped, we call such group a vertical block. In Figure 1 we
provide a schematic picture of two document lists containing
vertical blocks; the vertical block occupies positions 3 to 5
in ranking A and positions 4 to 5 in ranking B.

ranking A ranking B

d1 d2
d2 d1
d˚3 d6
d˚4 d˚4
d˚5 d˚3
d6 d7

Figure 1: Two rankings with a vertical block
present. Vertical documents are shown as dotted
lines and also marked with ˚.

There is an efficient way of comparing two rankings called
interleaving [4]: it produces an interleaved ranked list out of
rankings A and B, shows it to the user and then infers user
preferences from their clicks. However, if we want to inter-
leave ranked lists from Figure 1 using balanced, team-draft
or probabilistic interleaving (see [15], [19] and [11], respec-
tively), we may end up in a situation where the resulting
interleaved ranking L has vertical documents mixed with
regular documents. That is, those interleaving methods do
not respect the grouping of vertical results. As was found by
Dumais et al. [9], this can significantly alter the user experi-
ence, which violates one of the core principles of user-based
evaluations formulated by Joachims [15].

The main research questions we address in this paper are:

1. Can we perform interleaving measurements in a way
that respects grouping of the vertical results and does



not change the user experience? How does the quality
of the interleaved list compare to the quality of the
aggregated result pages being interleaved?

2. How does an interleaving algorithm that respects group-
ing compare to state-of-the-art interleaving algorithms
and A{B-testing? To which extent do they agree?

3. Does a comparison based on a vertical-aware interleav-
ing method represent a fair and unbiased comparison,
or does it erroneously infer any preference for a ran-
domly clicking user? Can it capture quality differences
between rankings as well as conventional interleaving
methods, while preserving vertical blocks?

The main contributions of this paper are answers to these
questions, which includes a proposed vertical-aware inter-
leaving method and the corresponding experiments.

We outline related work in Section 2. Section 3 is dedi-
cated to the design of an interleaving method that respects
grouping of vertical results. Sections 4 and 5 describe our ex-
periments to compare the proposed and non vertical-aware
interleaving algorithms. In Section 6 we sketch and discuss
additional possibilities for designing vertical-aware interleav-
ing algorithms, after which we conclude in Section 7.

2. RELATED WORK

2.1 Interleaving
While the traditional Cranfield approach [8] to ranking

evaluation is still widely used, there is a growing trend to
use implicit feedback to evaluate and learn ranking mod-
els. Starting from the work of Joachims [14, 15] the idea of
interleaving methods has become increasingly popular.

Two widely used interleaving algorithms are team-draft
interleaving (TDI) [19] and balanced interleaving (BI) [15].
TDI can be described as follows. For each user query we
build an interleaved list L whose documents are contributed
by rankings A and B (rankings that we want to compare).
This combined list is then shown to the users and the users’
clicks are recorded. The system that contributes most of the
documents clicked by the user is inferred to be the winner
for the particular query-user pair; the system that wins for
most such pairs is then considered to be the better system.
Balanced interleaving uses a different algorithm to build an
interleaved list L and a more sophisticated procedure for
determining the winner. These algorithms, as well as their
modifications, were extensively studied in [4]. Our vertical-
aware interleaving method is based on TDI.

In addition, there are recent methods that explore new
evaluation approaches. Hofmann et al. [11] propose a method
called probabilisitic interleaving (PI) that allows more inter-
leaved lists to be shown to the user. This method is reported
to be unbiased and sensitive to even small ranking changes.
Radlinski and Craswell [18] propose to choose possible inter-
leaved lists and their probabilities as an optimization prob-
lem (optimized interleaving (OI)). We sketch a solution for
making OI vertical aware in our discussion in Section 6.

2.2 Aggregated Search
Dumais et al. [9] find that grouping results of the same

type improves the user experience. Following these findings,
many commercial search engines provide this functionality
in their search result page interface. The search engine that
introduced this aggregated or faceted search early on was

Naver; there, result pages allow many more than 10 results
per query, and results are always grouped [21]. Yahoo! and
Bing historically inserted blocks of vertical documents on
fixed positions (slots) in addition to the organic web search
documents [2, 17]. Yandex allows vertical blocks to appear
in any position [6], and the same appears to hold for Google.

Evaluation of aggregated search was often viewed as an
offline task for human editors. Arguello et al. [2] propose to
use pairwise preference evaluation to rank the vertical blocks
for a given query. Ponnuswami et al. [17] describe the pro-
cess of manual assessments of both vertical and organic doc-
uments. However, they neither discuss the combined effect
of these two ranking aspects, nor suggest a way to compare
vertical documents inside one block to each other. They
also propose a click-based assessment of the vertical block
placement similar to Joachims et al. [16].

Most of the evaluation methods (apart from [22]) assume
that the vertical block is atomic, i.e., it is considered to have
no internal structure. However, this is not always the case.
For example, a news block usually contains a list of head-
lines. Each of them can be judged separately and compared
to organic results. One possible approach for evaluating re-
sults with vertical blocks could be to use intent-aware met-
rics such as nDCG-IA, ERR-IA [1] or α-nDCG [7]. If we
have relevance judgements for different user needs (intents)
for both vertical and non-vertical documents, we can then
compute one value representing the quality of the whole re-
sult page.

Our work differs in important ways from the work just
discussed. In contrast to previous work on interleaving, we
propose an interleaving method that preserves the user expe-
rience on complex aggregated search engine result pages. In
contrast to previous work on evaluating aggregated search,
we base our algorithm on an efficient interleaving algorithm,
which was proven to accurately infer user preference from
implicit feedback.

3. VERTICAL-AWARE INTERLEAVING
We describe an algorithm that may be viewed as a gen-

eralization of the TDI method by Radlinski et al. [19]. The
intuition is to start with the TDI procedure and then alter
it to meet the following requirements:

1. Both of the systems being interleaved should contribute
to the vertical block placement size and position in the
interleaved list;

2. Both systems should contribute vertical and organic
web documents;

3. Team assignment should be “fair”; and
4. The resulting interleaved list should not degrade the

user experience.

While formalizing these criteria is an interesting question by
itself, we leave it for future work.

We propose a method called vertical-aware team-draft in-
terleaving or VA-TDI for short (Algorithm 1). The main
idea is to enforce the grouping of vertical documents. There-
fore, our algorithm proceeds like TDI until it hits the first
vertical document. After that it interleaves only vertical
documents (line 23) until the block has been formed (line 13),
i.e., there are no vertical documents left or the desired block



Algorithm 1 Vertical-Aware Team-Draft Interleaving (VA-
TDI). “First Vertical Document Starts the Block”.

1: function VaTdi1(ranking A, ranking B)
2: LÐ rs; TeamA ÐH; TeamB ÐH

3: Av Ð td P A | d is a vertical docu
4: Bv Ð td P B | d is a vertical docu
5: SizeA Ð |Av|; SizeB Ð |Bv|

6: SizeL Ð SampleSmoothlypSizeA, SizeBq
7: InsideBlock Ð False; AfterBlock Ð False
8: while |L| ă N do
9: if |TeamA| ă |TeamB | `RandBitpq then

10: AddNextDocFrompAq
11: else
12: AddNextDocFrompBq

13: if |td P L | d is a vertical docu| “ SizeL or
“unable to add document at line 25” then

14: InsideBlock Ð False; AfterBlock Ð True

15: return L

16: function SampleSmoothly(integer a, integer b)
17: if a ą b then
18: Swappa, bq

19: Sample x randomly from ra´ 1, b` 1s where all in-
tegers from ra, bs have equal probability p; pa ´ 1q and
pb` 1q, if in allowed range, each has probability p

2
20: return x

21: procedure AddNextDocFrom(ranking X)
Ź X is either A or B

22: if InsideBlock then
23: Xleft Ð ti | Xris P XvzLu
24: if Xleft “ H then
25: return Ź unable to add document
26: else if AfterBlock then
27: Xleft Ð ti | Xris P XzpXv Y Lqu
28: else Ź before block
29: Xleft Ð ti | Xris P XzLu

30: k Ð minXleft

31: TeamX Ð TeamX

Ť

tXrksu Ź add the document
to the team

32: if Xrks is a vertical doc then
33: InsideBlock Ð True
34: LÐ L`Xrks Ź append the document to L

size is reached.1 After that, the algorithm continues inter-
leaving non-vertical documents (line 27).2

If we look back to our original goals, we see that Algo-
rithm 1 explicitly chooses a block size between those of A
and B (with some smoothing in order to do explaration),
while the position of the block is contributed implicitly (al-
though both systems can influence it). Requirements 2 and
3 are met automatically due to the TDI procedure that we
re-use (after one system wins the coin flip and contributes
the document, another system has to contribute the next

1We pick the desired block size beforehand (line 6) to ensure
requirement 1 is met.
2We also implemented a more complicated variant of the
algorithm to handle multiple verticals, but we do not deal
with this option in the current paper.

document), though we also verify them along with require-
ment 4 in the next section.

To summarize, we have introduced an interleaving algorithm
that respects vertical blocks. In the next two sections we
evaluate this algorithm experimentally, first on log data in
the next section and then using simulations in Section 5.

4. EXPERIMENTS WITH LOG DATA
When answering the research questions outlined in the

introduction, we would like to experiment with real user
clicks. For this purpose we adopt the setup proposed by
Radlinski and Craswell [18] that makes use of historic user
clicks in order to evaluate new interleaving methods (4.1).
The main idea is to look at queries with sufficient varia-
tion in the ranked lists and then pretend that these different
rankings are the interleaved lists of rankings produced by
some rankers A and B. One of the limitations of this ap-
proach is that we cannot experiment with completely new
document orders that are disallowed by the current produc-
tion ranking algorithms. In particular, we cannot reproduce
the outcomes of an interleaving algorithm that does not re-
spect vertical blocks. Another problem is that the data we
get using this method is skewed towards a relatively small
number of highly frequent queries. Ideally, we would like to
verify our findings using another set of experiments, which
does not have these limitations. For this purpose we also
use a click log simulation that allows for experiments with a
larger amount of data and a broader variety of interleaving
algorithms; see Section 5. One should not completely rely on
the click simulation, however, because simulated user clicks
may not reflect certain aspects of real user behavior.

In this section we address research questions RQ1 and
RQ2 outlined in the introduction. In particular, we com-
pare our interleaving algorithm to the A/B-testing method.
Even though A/B-testing by itself has proved to be inef-
ficient in terms of the amount of data it needs to make a
decision [4], comparing different evaluation metrics to abso-
lute click measures is still quite common [3]. We also look
at how the outcomes of the proposed interleaving algorithm
are different for the vertical and organic results and compare
the latter with the TDI experiment when no vertical block
is present. As a sanity check we also show that our way
of interleaving two lists containing vertical blocks does not
lead to a significant degradation in quality.

4.1 Experimental Setup
For our experiments we used a 2-months click log of the

Yandex search engine. We only kept queries for which we
have a vertical of mobile apps present in a result page. This
vertical is triggered for queries with an information need
related to smartphone or tablet3 applications. While the al-
gorithm used for information need detection is beyond the
scope of the current paper, it is useful to name a few ex-
amples of queries leading to this vertical. These include
queries containing a mobile application name (e.g., “cut the
rope”) or explicit markers of mobile platforms (e.g., “opera
for iphone”). The result items in the vertical block are pre-
sented using a standard text snippet, enhanced with an ap-
plication icon, price and rating. An example of such a snip-
pet is shown in Figure 2.

3That is, iOS or Android devices.



Figure 2: Result item of the mobile application for the query “cityguide San Francisco iPhone.”

Table 1: Filtering parameters setup

N K M

Radlinski and Craswell [18] 4 10 4
current work 10 4 2

Let us call a query together with a result list a configura-
tion. Each configuration that has been shown at least once
to a user counts as an impression. Each impression has zero
or more clicks.

In our evaluation setup we use an approach similar to
the one taken by Radlinski and Craswell [18]. We sample
queries that have sufficient variation in result lists and then
assume that some of these rankings were interleaved lists of
hypothetical A and B rankings. Specifically, we proceed in
the following steps:

1. Keep only impressions that have at least one click on
their top-N documents.

2. Keep only configurations that have at least K such
impressions.

3. Keep only queries that have at least M such configu-
rations.

After that, we name two configurations to be rankings A and
B for each query. Following Radlinski and Craswell [18], we
call the most frequent configuration ranking A and the one
that differs at the highest rank ranking B. In case we have
several candidates for B we choose the most frequent one.
Once we have our rankings A and B, we compute all possible
interleaved lists that can be produced by Algorithm 1 and
proceed with the filtering:

4. Keep only queries for which we have all interleaved
lists that can be produced by VA-TDI in the log.

In order to fully define the experimental setup we have to
define the parameters K, M and N . We summarize the
parameters we use in Table 1. Unlike [18] we cannot use
only the top-4 documents as this is highly likely to be in-
between the vertical block. This is why we are forced to
decrease K and M in order to have a sufficient amount of
log data. With these parameters we have 814 unique queries
which we use in all the experiments in this section. If we
relax the last filtering step and only require at least one
interleaved list to be present in our query log, we obtain
5, 755 queries to experiment with (we consider the missing
interleaved lists as ties). The reason to consider this relaxed
setup is the following: if we require all possible interleaved
lists to be present in the click log, we risk ending up in a
situation where only queries having 2–4 interleaved lists are
left (i.e., queries with very similar rankings A and B).

Given the click log data we compute the following values
for each query:

‚ The average difference of the absolute click metrics for
rankings A and B.

‚ The interleaving score4 for each impression of each rank-
ing allowed by the interleaving algorithm. As some con-
figurations might have more impressions than the inter-
leaving algorithm suggests, we normalize the scores to
the correct probabilities as implied by the interleaving
algorithm. Specifically, we compute the average score
for each configuration, multiply it by the probability of
such a configuration and then average across all found
configurations similar to Radlinski and Craswell [18].

‚ The interleaving scores for the vertical documents and
non-vertical documents separately.

As absolute metrics we use the metrics that are often used
in A/B-testing experiments. We decided to use metrics that
only require clicks and no additional information (like rele-
vance judgements, user information, timestamps or session
information): MaxRR, MinRR, MeanRR, PLC, Clicks@1.
These metrics were also the best at identifying system su-
periority in the experiments performed by Chapelle et al.
[4], who degraded system quality and looked at how often
different metrics point in the right direction.

‚ MaxRR, MinRR, MeanRR — maximum, minimum
and mean reciprocal rank (1{r) of clicks.

‚ PLC (Precision at Lowest Click) — the number of clicks
divided by the rank of the lowest click. This is the op-
posite of pSkip used in [4].

‚ Clicks@1 — equals 1 if there was a click on top-1 docu-
ment, 0 otherwise.

We also add one vertical-specific metric VertClick, which
equals 1 if there was a click on a vertical document and 0
otherwise (15% of the documents in our dataset were vertical
documents). This metric tends to score low for two reasons:
(1) the vertical we study is often placed at the bottom of the
result list; (2) the highly frequent queries we study can usu-
ally be answered by the top (often non-vertical) documents.

4.2 Results of Re-using Click Log Data
First, we analyze the impact of VA-TDI on the user ex-

perience (RQ1). Even though we explicitly group vertical
documents, we might still get a result list of lower quality
and we have to make sure that this is not the case. Second,
we report on how the outcomes of VA-TDI agree (RQ2)
with two commonly used evaluation methods: A/B-testing
and non vertical-aware interleaving (here: TDI).

4.2.1 Impact on User Behavior
He et al. [10] stated that one of the main aspects when

evaluating interleaved comparison methods should be the
interleaved result lists’ utility to users. Ideally, we want
an interleaving method to produce ranked lists that are not
worse than those of A and B (RQ1). Unlike He et al. [10] we
are not using editorial judgements. The main reason is that

4We assume that the score is 1 if ranking A wins a particular
impression, ´1 if B wins and 0 if they tie.
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Figure 3: Absolute click metrics for the rankings A
and B, for the interleaved list L and the MIN system
(worst of A and B for each query).

the way we collect the data already binds us to queries that
are very likely not to be judged by human editors since the
overlap between the queries that a search engine has in order
to train and evaluate its ranking algorithms and a random
sample of queries from the query log is usually very small. At
the same time, judging a large set of query-document pairs
is too costly to do every time we need to justify changes
in our online evaluation algorithm. Moreover, there are no
standard guidelines on how to assess vertical documents and
no universally accepted offline measures for the result pages
containing vertical documents. On the other hand, we have
already collected a click log in the previous step and can
now use it to compare the interleaved list L to the original
rankings A and B using absolute click metrics.

For each query we compute the average value of the click
metrics for the ranked lists A and B as well as for all inter-
leaved lists L. The results are summarized in Figure 3. As
we are not interested in the absolute values of the metrics
(and are not able to disclose them due to the proprietary
nature of such information), we normalize all the metrics
to the corresponding values of the system A. Most of the
changes are not statistically significant when using a 99%
Mann-Whitney U test, except for VertClick whose value for
L is statistically significantly higher than that of B and lower
than that of A. We also determined the worst system (A or
B) for each individual query and showed the average metric
values as MIN. The absolute click metrics for MIN are all
statistically significantly lower than those of L.

We can conclude that the click metrics for the interleaved
list L are always between those of A and B. This means that
we do not have any degradation in user experience compared
to the worst of two systems (B in this case). We should
mention that we do have a degradation (not significantly)
compared to the best system (A), but we cannot avoid that
since we do not know which system is superior beforehand.
It would be interesting to analyze various interleaving algo-
rithms from the point of view of balancing exploration and
exploitation (see, e.g., [12]). This, however, is beyond the
scope of the current work.

4.2.2 Agreement with Other Evaluation Methods
In order to compare the direction of preference indicated

by the absolute click metrics and the interleaving measures
(RQ2) we split the data into six buckets corresponding to
six equal time periods of ten days (t1, t2, t3, t4, t5, t6) and
compute the weighted average of the absolute and interleav-
ing metrics. The outcome for each impression (positive if

Table 2: Agreement between A{B-testing measures
and VA-TDI. All changes are statistically significant
except for ones marked by ˛.

Measure t1 t2 t3 t4 t5 t6

Absolute Metrics
Clicks@1 B˛ B B A A B
MaxRR A B B A A B
MeanRR A˛ B B˛ A A B
MinRR A˛ B A˛ A A B
PLC A B B˛ A A B
VertClick B B B B B B

Interleaving Algorithms
total B B B A A B
organic only B B B A A B
vert only A A˛ A˛ B B B

A wins, negative if B wins, zero if it is a tie) is multiplied
by the total frequency of the query5 and summed up over
all the queries. We report the winning system according to
each measure in Table 2. Note that we consider three ways
of interpreting clicks in the interleaving method: total — all
clicks are counted, organic only — only the clicks on non-
vertical documents are taken into account, and vertical only
— only the clicks on vertical documents are counted. For
example, if we want to evaluate only changes in the organic
ranking we may want to look at organic only results. On the
other hand, we risk having an unbalanced team assignment
if we just skip the vertical block.

Table 2 shows that in most cases VA-TDI (total and or-
ganic only) agrees with the majority of the absolute met-
rics. Similar to what was reported in [19], the cases of dis-
agreement between absolute click metrics and interleaving
outcomes are always accompanied by the lack of statistical
significance. We mark such cases where the winning system
is not statistically significantly better with the ˛ sign.6 We
can also note that the agreement between the vertical-only
interleaving measure and the VertClick absolute metric is
low. Again, two of the three cases with disagreement do not
detect a statistically significant preference. That means that
either VertClick is too simple to correctly capture the rank-
ing changes or vertical-only is not the right way to interpret
interleaving outcomes (or both).

We also look at per-query correlations between interleav-
ing measures and absolute click metrics. For the i-th query,
let xi be the value of some absolute metric, yi the value of
an interleaving measure and ni the total query frequency.
Following Chapelle et al. [3], where similar sets of absolute
click metrics were used, we use a weighted correlation:7

Corrpx, y, nq “

ř

i nipxi ´ x̄qpyi ´ ȳq
a

ř

i nipxi ´ x̄q2
a

ř

i nipyi ´ ȳq2
,

where

x̄ “

ř

i nixi
ř

i ni
, ȳ “

ř

i niyi
ř

i ni
.

5Remember that we previously normalized configurations to
the correct probabilities.
6Here and below we use a bootstrap test with 1000 bootstrap
samples and a significance level of 99%.
7Because we may miss some configuration when simulating
interleaving we weight queries, not configurations.



Table 3: Correlation of VA-TDI and absolute click metrics. The upper left index here means that the values
are computed using the combined dataset featuring both organic web (W) and vertical (V) documents.

pW`V qClicks@1 pW`V qMaxRR pW`V qMeanRR pW`V qMinRR pW`V qPLC pW`V qV ertClick

pW`V qtotal 0.746˘ 0.006 0.684˘ 0.006 0.709˘ 0.007 0.662˘ 0.008 0.714˘ 0.007 0.048˘ 0.008
pW`V qorganic only 0.728˘ 0.007 0.672˘ 0.008 0.704˘ 0.008 0.665˘ 0.009 0.696˘ 0.007 ´0.060˘ 0.011
pW`V qvertical only ´0.005˘ 0.012 ´0.026˘ 0.015 ´0.058˘ 0.009 ´0.087˘ 0.008 ´0.001˘ 0.012 0.472˘ 0.026

Table 4: Weighted correlation of VA-TDI with click metrics and TDI for the combined (W+V) and vertical-free
(W) datasets. The upper left index indicates which dataset is used to compute the corresponding metric.

pW qClicks@1 pW qMaxRR pW qMeanRR pW qMinRR pW qPLC pW qTDI

pW qTDI 0.606˘ 0.015 0.650˘ 0.013 0.894˘ 0.006 0.927˘ 0.005 0.787˘ 0.012 1
pW`V qtotal 0.501˘ 0.042 0.576˘ 0.030 0.570˘ 0.019 0.536˘ 0.017 0.608˘ 0.034 0.649˘ 0.015
pW`V qorganic only 0.515˘ 0.044 0.590˘ 0.029 0.589˘ 0.019 0.555˘ 0.016 0.617˘ 0.033 0.665˘ 0.017

The results are summarized in Table 3. We can see that
VA-TDI (total and organic only) is correlated with all con-
ventional absolute metrics (except for VertClick), i.e., it
measures the right thing. And the fact that an interleav-
ing method, as a rule, needs much less data than A{B-
testing [19] makes it a useful tool for comparing ranking
algorithms. We also confirm that the vertical only method
correlates only with the vertical metric VertClick. More
interestingly, only vertical only is correlated with the user
preferences within the vertical block: the total interleaving
method shows a small positive correlation with the VertClick
metric, while organic only is even negatively correlated with
this metric. We can conclude that our interleaving algorithm
(total) is indeed sensitive to changes in the vertical ranking,
but the main signal originates from the organic ranking.

We also analyze the relaxed setup discussed at the end
of Section 4.1, where we keep all queries for which at least
one possible interleaving is observed in the log. The results
are very similar to the ones shown above, so we do not in-
clude them in the paper. However, the fact that they are
similar supports the validity of our experimental setup, and
confirms that we do not introduce any additional bias by
requiring all the possible lists to be in a click log.

For each query we also look for configurations that miss
the vertical block, but share the same top-4 non-vertical
documents with rankings A or B.8 These situations are
mainly due to different experiments running in parallel (with
some of them experimenting with excluding vertical docu-
ments from search results) and system instability. We treat
these configurations without vertical blocks as interleaved
lists of the organic documents of the systems A and B de-
fined above. By doing so we can see how the presence of the
vertical block influences user behavior on the non-vertical
documents. After all the filtering steps we have 820 unique
queries featuring both combined and vertical-free impres-
sions.9 This additional, vertical-free data set for the same
queries allows us to answer the following question:

‚ Do different online experiments agree when comparing
general web results with and without a vertical block?

8Here we mimic the setup of Radlinski and Craswell [18]
to obtain a reasonable amount of data (see Table 1). If
we required a perfect match we would obtain less than 100
unique queries.
9These queries correspond to 1, 293 configurations allowed
by our interleaving method. Of these 820 queries, 72 have
all possible interleaving lists present in the filtered log.

We answer this question by comparing the outcomes of VA-
TDI to those obtained in the vertical-free setup.10 We com-
pute the weighted correlation of the interleaving outcomes
on the combined dataset to the TDI outcomes and absolute
click metrics on the vertical-free dataset.

The results are presented in Table 4. We can see that
the organic only results are slightly better correlated with
the vertical-free dataset metrics than total ; however, none
of these differences are statistically significant. This means
that when we want to evaluate changes in the organic web
ranking only, we can either skip clicks on the vertical docu-
ments or treat them as usual. The first approach (organic
only) is closer to what we want to measure, but might poten-
tially suffer from uneven team assignments (cf. Algorithm 1).
For comparison we also included the correlation of the TDI
algorithm to the absolute click metrics computed on the
same vertical-free dataset (we still use weights from the com-
bined dataset). We see that the correlation between VA-TDI
and TDI in a vertical-free setup is not perfect. However,
given that the filtering procedure requires only the top-4
documents to match between both interleaved rankings, we
would not expect a perfect correlation.

To summarize, we have shown that:

‚ VA-TDI does not degrade the user experience compared
to either ranking A or B (Figure 3).

‚ VA-TDI is reasonably correlated with TDI and conven-
tional absolute click metrics (A/B-testing metrics) (Ta-
bles 2, 3, 4).

‚ The outcomes of VA-TDI are influenced by changes in
the vertical block, but interleaving of vertical-only results
best correlates with vertical-only click metrics (Table 3).

We conclude that VA-TDI can be applied to comparing two
ranking systems in situations where only the organic web
ranking has changed, only the vertical ranking or placement
has changed, or they have both been altered.

5. SIMULATION EXPERIMENTS
Our experiments using real-life interaction data provide

insights into the performance of VA-TDI in one specific set-
ting. To assess VA-TDI under a wider range of conditions,
we also address research questions 1, 2 and 3 (formulated
in the introduction) using a simulation setup. In contrast

10Not to be confused with the organic only computation
scheme.



to our experiments on real log data (presented in Section 4)
our simulation experiments allow us to generate a wide range
of result lists, without the risk of hurting the user experi-
ence in a production system. We test several vertical block
sizes, several block placements and different levels of rele-
vance within the block. We compare VA-TDI to TDI [19].11

5.1 Experimental Setup
Our simulation approach is based on the experimental

setup proposed in [11, 13]. Briefly, we first generate two
ranked lists with blocks of vertical documents, then apply
an interleaving method, and subsequently offer the inter-
leaved list to a simulated user that produces clicks. Then it
is up to the interleaving method to select a winning ranker.
We measure how often the interleaving algorithm correctly
identifies the correct winner and in how far an interleaving
algorithm degrades the user experience.

5.1.1 Generating Synthetic Rankings
More precisely, we start with a synthetic list of organic

documents, and randomly designate 1–3 of the organic doc-
uments as relevant to the simulated users’ query. Then, two
permutations of these documents are selected at random.
We insert blocks of vertical documents in both rankings un-
der several conditions. These blocks vary in size from 0 to 8
documents and in the position of the block. This position is
based on the distribution reported by Chen et al. [5],12 and is
either (1) the same for both rankings (condition dependent);
or (2) selected independently (condition independent). The
ranking of the vertical documents within the block is always
fixed, i.e., the same for both rankings. Vertical documents
are either (1) non-relevant (condition non relevant); or (2) a
number of them, proportional to the relevant non vertical
documents, is relevant (condition relevant).

We repeat this process of generating two rankings and in-
serting vertical blocks until one ranking Pareto-dominates13

the other in terms of how it ranks relevant documents. Be-
cause the rankings are constructed in such a way that one
dominates the other, we know which ranking should be pre-
ferred by an interleaving algorithm.

5.1.2 Simulating Clicks
In order to see whether an interleaving algorithm indeed

prefers the ranking that is known to be better, we do the
following. Given the two generated rankings, we apply inter-
leaving to generate an interleaved result list that is presented
to the user. We simulate users’ click behavior on the inter-
leaved list using click models. Simulated users are always
presented with the top 10 documents from the interleaved
list.

11The code of our simulation experiments, including a refer-
ence implementation of VA-TDI, is made publicly available
at https://bitbucket.org/ilps/lerot [20].

12We take the distribution from Figure 2 in [5] and scale it
back to the [1,10] interval.

13As in [13], we re-rank documents by examination probabil-
ity P pEi “ 1q. In [13], P pEi “ 1q is implicitly defined by
the cascade click model. In our case, it is dictated by the
federated click model [5]; we marginalize over A, using (1),
(2) and (3) below. We say that ranking A dominates B if
and only if—re-ranked with P pEi “ 1q—it ranks all relevant
documents at least as high as B and at least one relevant
document higher than B.

We have two types of user simulations. First, the random
click model (RCM) assumes that users click on each doc-
ument in the presented ranking with probability 0.5, such
that—in expectation—half the documents are clicked. Rel-
evance or presentation of documents is not taken into ac-
count. This model is used to answer RQ3. Second, the
federated click model (FCM), used to answer RQ2, imple-
ments the attention model in [5]. This click model is de-
signed to capture user behavior when result pages contain
vertical documents. It assumes that blocks of these vertical
documents attract users’ attention. We instantiate FCM in
the following way, where A denotes the attention bias, and
E denotes the examination probability:

P pA “ 1q “ P pA “ 1|posvq “ hposv (1)

P pEi “ 1|A “ 0q “ φi (2)

P pEi “ 1|A “ 1q “ φi ` p1´ φiqβdist (3)

P pCi “ 1|Ei “ 0q “ 0 (4)

P pCi “ 1|Ei “ 1q “ ri, (5)

The attention bias A in (1) depends only on posv, the posi-
tion of the highest vertical document in the ranking. Also,
hpos “ r.95, .9, .85, .8, .75, .7, .3, .25, .2, .15s; we assume the
fold to be after document 6 (i.e., the user can usually see
6 documents without scrolling the result page). In the ab-
sence of the attention bias, in (2), the probability Ei of ex-
amining document i depends only on its position. We use
φ “ r.68, .61, .48, .34, .28, .2, .11, .1, .08, .06s, based on the
fixations reported in [16]. If there is attention bias (A “ 1),
in (3), the probability of examining document i, Ei, is cal-
culated using both φi and βdist, where dist is the distance
to the nearest vertical document. We take βdist such that
resulting clicks resemble those reported in [5] and such that
the click model in expectation slightly prefers rankings with
vertical documents present over rankings without.

βdist “

#

1 if dist “ 0
1

|dist|`.1
otherwise.

Then, a document i that is examined and relevant (ri “ 1)
is always clicked (Ci “ 1), see (5).

5.1.3 Measurements
We generate 500 pairs of rankings, with one ranking dom-

inating the other, as described above. These pairs are each
interleaved 500 times by both VA-TDI and TDI. We repeat
this process for several combinations of the conditions de-
scribed in Section 5.1.1. We observe the portion of correctly
identified ranking preferences (i.e., the accuracy) by each
interleaving method. We calculate the mean and 95% bino-
mial confidence bounds.

We measure the impact on the user experience by mea-
suring the number of vertical blocks in the interleaved list.
Consecutive vertical documents count as one block. Finally,
we assess bias in terms of the number of incorrectly detected
statistically significant preferences under random clicks.

5.2 Results of Simulation Experiments
We describe three sets of experiments. We validate that

VA-TDI preserves the quality of the interleaved list and com-
pare this to non vertical-aware algorithms (5.2.1). We as-
sess the outcomes inferred by VA-TDI (5.2.2). We examine
whether bias is introduced by vertical-awareness (5.2.3).

https://bitbucket.org/ilps/lerot


Figure 4: The number of blocks of vertical docu-
ments for block sizes 1–8 for VA-TDI (red) and TDI
(blue, higher) under the dependent (ˆ) and inde-
pendent (˝) block placement conditions. Error bars
correspond to one standard deviation.

5.2.1 Impact on the User Experience
We first turn our attention to the impact of interleaving on

the user experience (RQ1). Here, we assume that the major
factor impacting the user experience is the number and size
of vertical blocks. While vertical-aware interleaving is de-
signed to generate interleaved result lists with only up to one
vertical block, other methods may break up the block into
individual results (which can be considered smaller blocks).
Thus, we measure the effect of interleaving methods on the
user experience in terms of the number of blocks that verti-
cal results are broken up into during interleaving.

Figure 4 shows our results. Two methods are compared
under the dependent and independent conditions (see Sec-
tion 5.1.1). For the two vertical-aware runs, independent
and dependent VA-TDI, we see that the number of gener-
ated vertical blocks is typically close to 1, as designed. When
vertical blocks in the lists we interleave are small, the block
may not be included in the interleaved list, resulting in an
average number of blocks smaller than 1 (cf. Algorithm 1,
line 16). This can also occur when the vertical blocks are
placed in the lower halves of the original lists.

For TDI, we observe different behavior under dependent
and independent block placement. When the compared lists
place vertical blocks independently, TDI tends to generate
several smaller blocks. The largest number of blocks is gen-
erated for original block sizes 4 and 5. These are split into 2
blocks on average. Variance is high; the minimum number of
blocks shown is 1 and the maximum is 5 blocks. For all block
sizes greater than 1, TDI with independent block placement
produces a substantial number of impressions for which the
vertical block is split up (52–67%). Under dependent block
placement, the number of blocks generated by TDI is much
lower. For large blocks of size 4 to 8 the vertical block is
split up in 14–27% of the cases, respectively. The remaining
impressions produce only one vertical block.

We conclude that VA-TDI keeps vertical documents to-
gether, as designed. It produces up to one vertical block
per result list, thus bounding the impact of interleaving on
the user experience. When vertical blocks are placed inde-
pendently, the impact of TDI without vertical awareness is
high. However, when blocks are placed at the same posi-
tions, the impact on the user experience is much lower (but
still substantially higher than for VA-TDI).

5.2.2 Agreement with Other Evaluation Methods
Our second experiment measures to what degree VA-TDI

can detect differences in the quality of result lists. This is,
of course, the key test for our new interleaving method.
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Figure 5: Portion of correctly identified ranker pref-
erences (vertical axis) by VA-TDI (red, solid) ver-
sus TDI (blue, dashed) after 1–500 user impression
(horizontal axis, log-scale). The dashed horizontal
line at 0.5 denotes random preference. All figures
have independent block placement. Error bars cor-
respond to binomial confidence intervals.

We compare our vertical-aware interleaving method VA-
TDI to the non-vertical-aware baseline TDI in terms of the
accuracy of the identified ranker preferences (RQ2). Figure 5
shows the portion of correctly identified ranker preferences
by VA-TDI and TDI after 1 to 500 user impressions modeled
by the federated click model FCM (see Section 5.1.2). Fig-
ure 5(a) shows results averaged over all possible positions of
a block of size 2 (independent block placement) under the
assumption that none of the vertical documents are relevant.
We see that TDI and VA-TDI converge to correctly identify
82% and 84% of the true preferences correctly, respectively.
There is no significant difference in the number of impres-
sions the two methods need to make these comparisons.

Figure 5(b) shows results in the setting with relevant ver-
tical documents. Again, both TDI and VA-TDI converge to
the same level of accuracy after observing 10–20 impressions.
VA-TDI initially requires more sample data on average: TDI
is significantly more accurate when we have a really small
number of impressions (less than 10). We believe that the
reason for this is the noise added by the drop-out of the rel-
evant vertical documents when doing exploration on line 16
of Algorithm 1. Since this is noise—and not bias towards
either ranking—this levels out as the number of observed
impressions increases. However, this need for more samples
is a small loss in efficiency for a method that preserves the
original user experience as much as possible.

Figure 5(c) and (d) show results for the same conditions
as (a) and (b), respectively, but with a block size of 5 instead
of 2. The number of correctly identified preferences drops
significantly to around 70%, which is a trend we also observe
for other block sizes. This drop is due to the fact that the
within block ordering is the same for both ranking A and
B, making them less different and thus less distinguishable
when the block size goes up. Note that this is an artifact
stemming from the way we construct these rankings. Also
with these larger block sizes, VA-TDI needs more impres-
sions than TDI to reach the same level of accuracy when we
have relevant vertical documents (Figure 5(d)).



Table 5: Percentage of significant differences be-
tween rankers detected under the random click
model RCM for VA-TDI and TDI for p ă 0.05 on 500
ranker pairs after 100–500 user impression (left col-
umn) under all combinations of conditions for block
size 2. With p ă 0.05, an interleaving method is ex-
pected to detect around 5% significant differences.
Only for TDI for the relevant dependent condition,
this is significantly higher (˚) after 100 impressions.

non relevant relevant

dependent indep. dependent indep.

VA TDI VA TDI VA TDI VA TDI

100 4.4% 5.8% 5.2% 3.6% 4.2% 7.6%˚ 4.0% 5.0%
200 3.2% 4.4% 5.0% 5.4% 5.4% 7.2% 5.0% 4.4%
300 3.8% 4.0% 4.4% 3.4% 4.8% 6.4% 5.0% 5.8%
400 2.6% 6.8% 5.4% 4.6% 4.2% 5.2% 5.6% 4.2%
500 4.2% 5.8% 5.8% 5.2% 5.8% 6.6% 4.6% 4.0%

Our results on simulated result lists and interaction data
confirm our results obtained on log data. We have shown
that VA-TDI can accurately compare result lists while pre-
serving vertical blocks. Accuracy is as high as under TDI,
with only small losses in efficiency for small sample sizes.

5.2.3 Lack of Bias
Our final simulated experiment assesses the unbiasedness

of VA-TDI under random clicks (RQ3). It is important that
accounting for vertical documents does not introduce bias,
as it may otherwise lead to wrong interpretations of inter-
leaving results. VA-TDI was designed to be unbiased under
many forms of noise; here we validate that our implementa-
tion does indeed fulfill this requirement.

Under the random click model RCM (Section 5.1.2), an
unbiased interleaved comparison method should not system-
atically prefer either ranker, i.e., the rankers should tie in
expectation. We measure this following the methodology
proposed in [13], by counting the number of comparisons for
which a method detects a significant preference towards one
of the rankers. For an unbiased method, this number should
be close to the number expected due to noise. For example,
a significance test with a p-value of 0.05 should detect statis-
tically significant differences between rankers under random
clicks in 5% of the comparisons.

Table 5 shows the results: the percentage of detected sig-
nificant differences for TDI and VA-TDI with dependent and
independent block placement and for relevant and no rel-
evant vertical documents at 100 to 500 impressions (p “
0.05). For both methods and all conditions we see that the
number of significant differences detected is in line with the
expected 5%. Using a one-tailed binomial confidence test
(also with p “ 0.05), we confirm that this number is only
once significantly higher than 5%. The lowest number of sig-
nificant differences is detected for VA-TDI under indepen-
dent block placement after 400 impressions (13 differences or
2.6%), the highest value—and the only significantly higher
value—is observed for TDI (38 differences or 7.6%), under
dependent block placement and with relevant vertical docu-
ments, after 100 impressions. We also see that the number
of detected significant differences does not increase with the

number of impressions. This confirms that, like TDI, VA-
TDI is unbiased under the RCM under all tested conditions.

To summarize, with our simulation experiments, we have
shown that:

‚ VA-TDI does not degrade the user experience, as it does
not break vertical blocks (Figure 4);

‚ VA-TDI can compare rankings, while preserving vertical
blocks, as accurately as TDI (Figure 5); and

‚ VA-TDI, like TDI, is unbiased under random clicks (Ta-
ble 5).

Based on these findings, we conclude that VA-TDI should
be used instead of TDI for comparing two ranking systems
in situations where there are vertical documents present.

6. DISCUSSION
We now discuss alternative design choices for vertical-

aware interleaving and show how vertical-awareness can be
integrated with interleaving algorithms other than TDI.

The design decisions for our VA-TDI method were made
to preserve the user experience as much as possible. Two
natural alternatives can be considered, but these impact the
user experience in different ways. First, the interleaving al-
gorithm could decompose the problem of block placement by
first sampling the size and position of the vertical block, and
then interleaving vertical and non-vertical documents sepa-
rately (Alternative 1 ). Second, the algorithm could treat the
vertical block as one pseudo-document during interleaving.
Vertical documents would again be interleaved separately,
and then inserted into the overall list at the place where the
pseudo-document would naturally occur (Alternative 2 ).

A drawback of Alternatives 1 and 2 is that they assume
that the rankings of the vertical documents are indepen-
dent of the placement of the vertical block. We may end
up in a situation where we place a vertical block at a posi-
tion advised by A and then start the block with a vertical
document contributed by B which in turn may not be suit-
able for such a position. For example, if A “ rd˚1 , d2, d3, d4s,
B “ rd2, d3, d4, d

˚
5 s (where d˚1 , d˚5 are vertical documents)

we may end up with the interleaved list L “ rd˚5 , d2, d3, d4s
which is a significant degradation of the user experience, as-
suming both A and B rankings are good and d˚5 should not
be above d2, d3 and d4. In contrast, as shown in Algorithm 1
VA-TDI makes sure that the first vertical document is con-
tributed by the system that would contribute it in a regular
TDI (e.g., the system that places the vertical block higher).

The OI approach by Radlinski and Craswell [18] speci-
fies an interleaving algorithm as an optimization problem.
OI starts from a set of constraints that a document list
should fulfill, and formulates interleaving as an optimiza-
tion problem that minimizes the number of samples required
to make reliable comparisons while respecting the specified
constraints. However, the most straightforward way of en-
suring vertical document grouping has its issues. If we want
both systems to contribute to the resulting vertical rank-
ing we are forced to place the block lower in the interleaved
list, because we first need to show the union of before-block
documents from A and B. If we do so, we change the user
experience and hence violate the requirement that interleav-
ing should have a “Low Usability Impact,” as formulated by
Joachims. The same holds for the documents inside a ver-
tical block. We cannot start adding non-vertical documents



from the ranking A until it yields all of its vertical docu-
ments. This may lead to a bigger vertical block.

To extend OI to account for vertical blocks, we need to re-
lax its constraints on permissible ranking prefixes and allow
the vertical block to begin anywhere between its placement
in ranking A or B. The constraints need to be extended to
account for maintaining one contiguous vertical block, and
to determine the size of the vertical block. After formulating
these constraints, OI can correctly interleave and compare
result lists with vertical blocks. Due to space restrictions we
leave a detailed formulation of this extension to future work.

7. CONCLUSION
In this paper we have proposed the first vertical-aware in-

terleaved comparison method, VA-TDI. In contrast to pre-
vious interleaved comparison methods, VA-TDI is designed
to account for the placement of vertical result lists as one
contiguous block, thus preserving this important aspect of
the user experience.

We validated this method in two sets of experiments, first
using real-life click log data, and second using simulations.
This combination enabled us to validate the method both in
a specific realistic search setting, and in a broader simulation
setup. Limitations of the log approach include that only one
specific type of vertical could be tested. Future work should
validate the approach in additional search settings, possibly
including results with several vertical blocks from a variety
of vertical search engines. The simulation approach is based
on a state of the art federated click model, but as new in-
sights are gained into users’ click behavior with and without
vertical results, the simulations should be further refined.
Nevertheless, we found no qualitative differences between
our experiments on log data and using the simulation setup.
This suggests that the obtained results are reliable.

VA-TDI preserves the quality of the user experience. Our
experiments on click log data showed that the user behav-
ior (as captured by click metrics) on vertical-aware inter-
leaved lists falls between that on the original rankings A
and B. Our simulations confirmed that, in contrast to non
vertical-aware interleaving, VA-TDI consistently produces
one coherent block of vertical results. In addition, VA-TDI
is able to reliably detect preferences in the quality of web-
only, vertical-only, or overall result list quality. On click
log data, we observed good correlation with commonly-used
click metrics. In our simulations, we found that VA-TDI
achieves the same accuracy as TDI, while preserving the
quality of the user experience. Finally, our simulation ex-
periments showed that VA-TDI preserves unbiasedness un-
der random clicks. Our results confirm that VA-TDI opens
up the way for applying interleaved comparison methods to
search engine results with vertical or aggregated results, re-
moving a major limitation of previous methods.
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