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ABSTRACT
A popular strategy for search result diversification is to first retrieve
a set of documents utilizing a standard retrieval method and then
rerank the results. We adopt a different perspective on the problem,
based on data fusion. Starting from the hypothesis that data fusion
can improve performance in terms of diversity metrics, we examine
the impact of standard data fusion methods on result diversification.
We take the output of a set of rankers, optimized for diversity or
not, and find that data fusion can significantly improve state-of-the
art diversification methods. We also introduce a new data fusion
method, called diversified data fusion, which infers latent topics of
a query using topic modeling, without leveraging outside informa-
tion. Our experiments show that data fusion methods can enhance
the performance of diversification and DDF significantly outper-
forms existing data fusion methods in terms of diversity metrics.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—retrieval models

Keywords
Data fusion; rank aggregation; diversification; ad hoc retrieval

1. INTRODUCTION
Search result diversification is widely being studied as a way of

tackling query ambiguity. Instead of trying to identify the “correct”
interpretation behind a query, the idea is to make the search results
diversified so that users with different backgrounds will find at least
one of these results to be relevant to their information need [2].
In contrast to the traditional assumption of independent document
relevance, search result diversification approaches typically con-
sider the relevance of a document in light of other retrieved docu-
ments [40]. Diversification models try to identify the probable “as-
pects” of the query and return documents for each aspect, thereby
making the result list more diverse.

Data fusion approaches, also called rank aggregation approaches,
consist in combining result lists in order to produce a new and hope-
fully better ranking [16, 42]. Here, results lists can be produced by
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a wide range of ranking approaches, based, e.g., on different query
or document representations. Data fusion methods can improve re-
trieval performance in terms of traditional relevance-oriented met-
rics like MAP and precision@k over the methods used to generate
the individual result lists being fused [17, 26, 27, 49]. One reason
is that retrieval approaches often return very different non-relevant
documents, but many of the same relevant documents [49].

We examine the hypothesis that data fusion can improve per-
formance in terms of diversity metrics by promoting aspects that
are found in disparate ranked lists to the top of the fused list. Our
first step in testing this hypothesis is to examine the impact of ex-
isting data fusion methods in terms of diversity scores when fusing
ranked lists. We find that they tend to improve over individual com-
ponent runs on nearly all of the diversity metrics that we consider:
Prec-IA, MAP-IA, α-NDCG, ERR-IA (all at rank 20).

Building on these findings we propose a new data fusion method,
called diversified data fusion (DDF). Based on latent Dirichlet al-
location (LDA), it operates on documents in the result lists to be
fused, whether the result lists have been diversified or not. DDF
infers latent topics, their probabilities of being relevant and a multi-
nomial distribution of topics over the documents being fused. Thus,
it integrates topic structure and rank information. DDF does not as-
sume the explicit availability of query aspects, but infers these as
well as the latent prior for a given query via the documents be-
ing fused. Experimental results show that DDF can aggregate re-
sult lists—whether produced by diversification or ad hoc retrieval
models—and boost the diversity of the final fused list, outperform-
ing state-of-the-art diversification methods and established data fu-
sion methods, especially in terms of intent-aware precision metrics.

Our contributions in this paper can be summarized as follows:

i. We tackle the challenge of search result diversification in a
novel way by using data fusion methods.

ii. We propose a novel data fusion method that aims at optimiz-
ing diversification measures and that proves to be especially
effective in terms of intent-aware precision metrics.

iii. We analyze the effectiveness of data fusion for result diver-
sification and find that our fusion method as well as other
fusion methods can significantly outperform state-of-the-art
diversification methods.

§2 discusses related work. §3 describes the fusion models that we
use (old and new). §4 describes our experimental setup. §5 is de-
voted to our experimental results and we conclude in §6.

2. RELATED WORK
We distinguish between three directions of related work: search

result diversification, data fusion, and latent topic modeling.



2.1 Search result diversification
Search result diversification is similar to ad hoc search, but dif-

fers in its judging criteria and evaluation measures [8, 12]. The
basic premise in search result diversification is that the relevance of
a set of documents depends not only on the individual relevance of
its members, but also on how they relate to one another [2]. Ide-
ally, users can find at least one relevant document to the underlying
information need. Most previous work on search result diversifica-
tion can be classified as either implicit or explicit [39, 41].

Implicit approaches to result diversification promote diversity by
selecting a document that differs from the documents appearing
before it in terms of vocabulary, as captured by a notion of docu-
ment similarity, such as cosine similarity or Kullback-Leibler diver-
gence. Carbonell and Goldstein [6] propose the maximal marginal
relevance (MMR) method, which reduces redundancy while main-
taining query relevance when selecting a document. Chen and
Karger [7] describe a retrieval method incorporating negative feed-
back in which documents are assumed to be non-relevant once they
are included in the result list, with the goal of maximizing diversity.
Zhai et al. [51] present a subtopic retrieval model where the utility
of a document in a ranking is dependent on other documents in
the ranking and documents that cover many different subtopics of a
query topic are found. Other implicit work includes, e.g., [1] where
set-based recommendation of diverse articles is proposed. We also
tackle the problem of search result diversification implicitly, but in
a different way, i.e., by data fusion.

Explicit approaches to diversification assume that a set of query
aspects is available and return documents for each of them. Past
work has shown that explicit approaches are usually somewhat su-
perior to implicit diversification techniques. Well-known exam-
ples include xQuAD [39], RxQuAD [45], IA-select [2], PM-2 [13],
and, more recently, DSPApprox [14]. Instead of modeling a set
of aspects implicitly, these algorithms obtain the set of aspects ei-
ther manually, e.g., from aspect descriptions [8, 12], or they create
them directly from, e.g., suggested queries generated by commer-
cial search engines [13, 39] or predefined aspect categories [44].
We propose an implicit fusion-based diversification model where
we do not assume that the aspects of the query are available but do
assume that we can infer the underlying topics and the prior rele-
vance of each topic for search result diversification.

2.2 Data fusion
A core concern in data fusion is how to assign a score to a doc-

ument that appears in one of the lists to be fused [17, 19, 42, 49].
Most previous work on data fusion focuses on optimizing a tradi-
tional evaluation metric, like MAP, p@k and nDCG. Fusion ap-
proaches can be categorized into supervised or unsupervised: Su-
pervised data fusion approaches, like λ-Merge [43], first extract a
number of features, either from documents or lists, and then utilize
a machine learning algorithm to train the fusion model [15, 17, 49].

In contrast, unsupervised data fusion methods mainly use either
retrieval scores or ranks of documents in the lists to be merged, with
the CombSUM family of fusion methods being the oldest and one
of the most successful ones in many information retrieval tasks [26,
42]. State-of-the-art data fusion methods ClustFuseCombSUM and
ClustFuseCombMNZ (both cluster-based methods) are proposed
in [23]. Methods utilizing retrieval scores take score information
from the lists to be fused as input, while those utilizing rank infor-
mation only use order information of the documents appearing in
the lists to be fused as input. Data fusion methods utilizing rank in-
formation have many uses and applications in information retrieval,
including, e.g., expert search [30, 35], query reformulations [43],
meta-search [4, 17] and microblog search [31, 32].

We do not make the assumption that labeled data is available but
integrate standard unsupervised data fusion information into our
diversified fusion model for search result diversification via a latent
topic model.

2.3 Topic modeling
Topic models have been proposed for reducing the high dimen-

sionality of words appearing in documents into low-dimensional
“latent topics.” From the first work on topic models [21], the Prob-
ablistic LSI model, topic models have received significant attention
[5, 18, 22] and have proved to be effective in many information
retrieval tasks [24, 47, 50]. Latent dirichlet allocation (LDA) [5]
represents each document as a finite mixture over “latent” topics
where each topic is represented as a finite mixture over words exist-
ing in that document. Based on LDA, many extensions have been
proposed, e.g., to handle users’ connections with particular doc-
uments and topics [37], to learn relations among different topics
[25, 29], for topic over time [46], for dynamic mixture model [48],
or tweet summarization [36]. LDA has also been extended to sen-
timent analysis [28]. We propose a novel topic model where fusion
scores of each document appearing in lists to be fused are used to
boost the performance of state-of-the-art diversification methods.

Our work adds the following to the work discussed above. We
propose a fusion-based approach to the search result diversification
task. We find that existing unsupervised fusion methods signifi-
cantly outperform state-of-the-art diversification methods. In ad-
dition, we propose a novel fusion method, diversified data fusion,
that uses the output of a fusion step and a topic modeling step as
input to a diversification step. To the best of our knowledge, ours
is the first attempt to utilize data fusion for diversification.

3. FUSION METHODS
We first review our notation and terminology. Then we introduce

the task to be addressed, as well as the baseline fusion methods that
we use in this paper plus a new fusion method.

3.1 Notation and terminology
We summarize the main notation used in this paper in Table 1. In

the remainder, we distinguish between queries, aspects and topics.
A query is an expression of an information need; in our experi-
mental evaluation below, queries are provided as part of a TREC
test collection. An aspect (sometimes called subtopic at the TREC
Web track) is an interpretation of an information need. We use topic
to refer to latent topics as identified by a topic modeling method, in
our case LDA. A component list is a ranked list that serves as input
for a data fusion method. A fused list is a list that is the result of
applying a fusion method to component lists.

3.2 The diversified data fusion task
The diversified data fusion task that we address is this: given a

query, an index of documents, and a set of ranked lists of docu-
ments produced in response to a query, aggregate the lists into a
final result list where documents should be diversified. The com-
ponent lists may or may not have been diversified themselves or
ranked by relevance only.

The underlying data fusion problem consists of running a rank-
ing function FX that satisfies:

L = {L1, L2, . . . , Lm}, q, C
FX−→ Lf ,

where L is a set of components lists, m = |L| is their number, C
the document corpus, q a query, and Lf the final fused list.



Table 1: Basic notation used in the paper.
Notation Gloss

C document corpus
q query
z topic
d document
w a token
Nd number of tokens in d
Li i-th ranked list of documents
L set of ranked lists to be fused
m number of ranked lists to be fused, i.e., m = |L|
CL set of documents that appear in the lists L
|CL| number of documents in CL
FX a data fusion method
FX(d; q) score of document d for query q according to a data fusion

method FX

RLid rank-based score of d in list Li
rank(d, Li) rank of d in list Li
|Li| length of list Li
R set of top ranked documents
qt[z|q] quotient score for z given q in PM-2 algorithm [13]
vz|q probability of z given q
sz|q “portion” of seat occupied by z given q in PM-2
λ a free trade-off parameter in PM-2
α the parameter of topic Dirichlet prior
β the parameter of token Dirichlet prior
T number of topics
V number of unique tokens in CL
θd multinomial distribution of topics specific to d
φz multinomial distribution of tokens specific to topic z
µz mean of Log-normal distribution of fusion scores for topic z
σz deviation of Log-normal distribution of fusion scores for z
zdi topic associated with the i-th token in the document d
wdi i-th token in document d
fdi fusion score for token wdi

3.3 Baseline data fusion methods
Let RLid denote the score of document d based on the rank

of d in list Li; in the literature on data fusion, one often finds
RLid = 0 if d /∈ Li (d still in the combined set of documents
CL :=

⋃m
i=1 Li). In both CombSUM and CombMNZ, RLid is

often defined as:

RLid =

{
(1+|Li|)−rank(d,Li)

|Li|
d ∈ Li

0 d /∈ Li,
(1)

where |Li| is the length of Li and rank(d, Li) ∈ {1, . . . , |Li|} is
the rank of d inLi. The well-known CombSUM fusion method [17,
49], for instance, scores d by the sum of its rank scores in the lists:

FCombSUM(d; q) :=
∑
Li

RLid,

while CombMNZ [17, 49] rewards d that ranks high in many lists:

FCombMNZ(d; q) := |{Li : d ∈ Li}| · FCombSUM(d; q),

where |{Li : d ∈ Li}| is the number of lists in which d appears.
We consider CombSUM, CombMNZ and two state-of-the-art

data fusion methods, ClustFuseCombSUM and ClustFuseComb-
MNZ [23], that integrate cluster information into CombSUM and
CombMNZ, respectively, as baseline fusion methods.

In addition, a natural and direct way of diversifying a result list
in the setting of data fusion is this: first rank the documents in the
component lists by their estimated relevance to the query through
a standard data fusion method, such as CombSUM, and then di-
versify the ranking through effective search result diversification
models, such as MMR [6] and PM-2 [13]. In our experiments,
we implement two more baselines, called CombSUMMMR and

CombSUMPM-2. They first use CombSUM to obtain a fused list
and then use MMR and PM-2, respectively, to diversify the list.

3.4 Diversified data fusion
We propose a diversified data fusion (DDF) method that not only

inherits the merits of traditional data fusion methods, i.e., it can
improve the performance on relevance orientated metrics, but also
considers a query as a compound rather than a single representation
of an underlying information need, and regards documents appear-
ing in the component lists as mixtures of latent topics.

3.4.1 Overview of DDF
DDF consists of three main parts: (I) perform standard data fu-

sion; (II) infer latent topics; (III) perform diversification; see Algo-
rithm 1. In the first part (“Part I” in Algorithm 1), DDF computes
the fusion scores of the documents in the component lists based on
an existing unsupervised data fusion method (steps 1 and 2 in Al-
gorithm 1); in this paper we use CombSUM, as our experimental
results in §5.1 and §5.2 show that CombSUM outperforms other
plain fusion methods in most cases. In the second part (“Part II”
in Algorithm 1), DDF integrates fusion scores into an LDA topic
model such that latent topics of the documents, their corresponding
estimated relevance scores, and the multinomial distribution of the
topics specific to each document can be inferred (steps 3–15 in Al-
gorithm 1). In the last part (“Part III” in Algorithm 1), DDF uses
the outputs of Parts I and II as input for an existing diversification
method; in this paper, we use PM-2 [13] because it is a the state-of-
the-art search result diversification model. Some concepts in PM-2,
such as “quotient” and “seat,” play important roles in the definition
of the diversification step; they will be discussed in §3.4.3.

Below we describe how to infer latent topics (“Part II” in Al-
gorithm 1) in §3.4.2 and how we utilize the information generated
from latent topics and fusion scores (“Part III”) in §3.4.3.

3.4.2 Part II: Inferring latent topics
Previous work on search result diversification shows that explic-

itly computing the probabilities of aspects of a query can improve
diversification performance [1, 20, 39]. We do not assume that as-
pect information is explicitly available; we infer latent topics and
their probabilities of being relevant using topic modeling.

Topic discovery in DDF is influenced not only by token co-oc-
currences, but also by the fusion scores of documents in the com-
ponent lists. To avoid normalization and because fusion scores of
the documents theoretically belong to (0,+∞), we employ a log-
normal distribution for fusion scores to infer latent topics of the
query via the documents and their relevance probabilities.

The latent topic model used in DDF is a generative model of
relevance and the tokens in the documents that appear in the com-
ponent individual lists. The generative process used in Gibbs sam-
pling [34] for parameter estimation, is as follows:

i. Draw T multinomials φz from a Dirichlet prior β, one for
each topic z;

ii. For each document d ∈ CL, draw a multinomial θd from a
Dirichlet prior α; then for each token wdi in document d:

(a) Draw a topic zdi from multinomial θd;
(b) Draw a token wdi from multinomial φzdi ;
(c) Draw a fusion score fdi forwdi from Log-normalN (µzdi ,

σzdi).

Fig. 1 shows a graphical representation of our model. In the gen-
erative process, the fusion scores of tokens observed in the same
document are the same and computed by a data fusion method, like



Algorithm 1: Diversified data fusion
Input : A query q

Ranked lists to be fused, L1, L2, . . . , Lm
The combined set of documents CL :=

⋃m
i=1 Li

A standard fusion method X
A tradeoff parameter λ
Number of latent topics T
Hyperparameters α, β

Output: A final fused diversified list of documents Lf .
/* Part I: Perform standard data fusion */

1 for d = 1, 2, . . . , |CL| do
2 Initialize FX(d|L, q) using a standard fusion method X

/* Part II: Infer latent topics */
3 Randomly initialize topic assignment for all tokens in w
4 for z = 1, 2, . . . , T do
5 Initialize µz and σz randomly for topic z

6 for iter = 1, 2, . . . , Niter do
7 for d = 1, 2, . . . , |CL| do
8 for i = 1, 2, . . . , Nd do
9 draw zdi from P (zdi|w, r, z−di, α, β, µ, σ,L, q)

10 update nzdiwdi and mdzdi

11 for z = 1, 2, . . . , T do
12 update µz and σz

13 Compute the posterior estimate of θ
14 for z = 1, 2, . . . , T do

15 vz|q ←
exp{uz+

1
2
σ2
z}∑T

z′=1
exp{uz′+

1
2
σ2
z′}

/* Part III: Perform diversification */
16 Lf ← ∅
17 R← CL
18 for z = 1, 2, . . . , T do
19 sz|q ← 0

20 for all positions in the ranked list Lf do
21 for z = 1, 2, . . . , T do
22 qt[z|q] =

vz|q
2sz|q+1

23 z∗ ← arg maxz qt[z|q]
24 d∗ ← arg maxd∈R λ× qt[z∗|q]× P (d|z∗, q)+
25 (1− λ)

∑
z 6=z∗ qt[z|q]× P (d|z, q)

26 Lf ← Lf ∪ {d∗} /* append d∗ to Lf */
27 R← R\{d∗}
28 for z = 1, 2, . . . , T do
29 sz|q ← sz|q +

P (d∗|z,q)∑
z′ P (d∗|z′,q)

CombSUM, for the document, although a fusion score is generated
for each token from the log-normal distribution. We use a fixed
number of latent topics, T , although a non-parametric Bayes ver-
sion of DDF that automatically integrates over the number of top-
ics would certainly be possible. The posterior distribution of topics
depends on the information from two modalities—both tokens and
the fusion scores of the documents.

Inference is intractable in this model. Following [18, 24, 34, 36,
46, 47, 50], we employ Gibbs sampling to perform approximate in-
ference. We adopt a conjugate prior (Dirichlet) for the multinomial
distributions, and thus we can easily integrate out θ and φ, analyt-
ically capturing the uncertainty associated with them. In this way
we facilitate the sampling, i.e., we need not sample θ and φ at all.
Because we use the continuous log-normal distribution rather than
discretizing fusion scores, sparsity is not a big concern in fitting
the model. For simplicity and speed we estimate these log-normal
distributions µ and σ by the method of moments, once per iteration
of Gibbs sampling (see the Appendix). We find that the sensitivity
of the hyper-parameters α and β is limited. Thus, for simplicity,

φ w f µ

β z

θ

σ

L

α q

Nd

|CL|
T T

T

Figure 1: DDF graphical model for Gibbs sampling.

we use fixed symmetric Dirichlet distributions (α = 50/T and
β = 0.1) in all our experiments.

In the Gibbs sampling procedure above, we need to calculate the
conditional distribution P (zdi|w, r, z−di, α, β, µ, σ,L, q) (step 9
in Algorithm 1), where z−di represents the topic assignments for
all tokens except wdi. We begin with the joint probability of doc-
uments to be fused, and using the chain rule, we can obtain the
conditional probability conveniently as

P (zdi|w, r, z−di, α, β, µ, σ,L, q) ∝

(mdzdi + αzdi − 1)× nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

×

1

FX(d|L, q)σzdi
√
2π

exp{− (lnFX(d|L, q)− µzdi)
2

2σ2
zdi

},

where nzv is the total number of tokens v that are assigned to topic
z, mdz represents the number of tokens in document d that are
assigned to topic z. An overview of the Gibbs sampling procedure
we use is shown from step 3 to step 12 in Algorithm 1; details are
provided in the Appendix.

One merit of our generative model for DDF is that we can predict
a fusion score for any document once the tokens in the document
have been observed. Given a document, we predict its fusion score
by choosing the discretized fusion score that maximizes the poste-
rior which is calculated by multiplying the fusion score probability
of all tokens from their corresponding topic-wise log-normal dis-
tributions, i.e., argmaxf

∏Nd
i=1 p(f |µzi , σzi).

More importantly, after the Gibbs sampling procedure, we can
easily infer the multinomial distribution of topics specific to each
document d ∈ CL as (step 13 in Algorithm 1):

θd,z =
nd,z + αz∑T

z=1(nd,z + αz)
, (2)

where nd,z is the number of tokens assigned to latent topic z in
document d; we can also conveniently estimate the probability of
a topic being relevant to the query, denoted as vz|q , by (step 15 in
Algorithm 1):

vz|q :=
E[f |z]∑T

z′=1 E[f |z′]
=

exp{uz + 1
2
σ2
z}∑T

z′=1 exp{uz′ +
1
2
σ2
z′}

, (3)

where E denotes the expectation.

3.4.3 Part III: Diversification
In Part III of our DDF model we propose a modification of PM-

2. Before we discuss the details of this modification, we briefly
describe PM-2. PM-2 is a probabilistic adaptation of the Sainte-
Laguë method for assigning seats (positions in the ranked list) to



members of competing political parties (aspects) such that the num-
ber of seats for each party is proportional to the votes (aspect pop-
ularity, also called aspect probabilities, i.e., p(z|q)) they receive.
PM-2 starts with a ranked list Lf with k empty seats. For each of
these seats, it computes the quotient qt[z|q] for each topic z given
q following the Sainte-Laguë formula:

qt[z|q] =
vz|q

2sz|q + 1
, (4)

where vz|q is the probability of topic z given q, i.e., the weight of
topic z. According to the Sainte-Laguë method, this seat should
be awarded to the topic with the largest quotient in order to best
maintain the proportionality of the list. Therefore, PM-2 assigns the
current seat to the topic z∗ with the largest quotient. The document
to fill this seat is the one that is not only relevant to z∗ but to other
topics as well:

d∗ = argmax
d∈R

(
λ× qt[z∗|q]× P (d|z∗, q) + (5)

(1− λ)
∑
z 6=z∗qt[z|q]× P (d|z, q)

)
,

where P (d|z, q) is the probability of d talking about topic z for
a given q. After the document d∗ is selected, PM-2 increases the
“portion” of seats occupied by each of the topics z by its normal-
ized relevance to d∗:

sz|q ← sz|q +
P (d∗|z, q)∑
z′ P (d∗|z′, q) .

This process repeats until we get k documents for Lf or we are
out of candidate documents. The order in which a document is
appended to Lf determines its ranking.

We face two challenges in PM-2: it is non-trivial to get the as-
pect probability vz|q (i.e., p(z|q)), which is often set to be uniform,
and it is non-trivial to compute p(d|z, q), which usually requires
explicit access to additional information. To address the first chal-
lenge, we compute vz|q by (3), such that (4) can be modified as:

qt[z|q] = p(z|q)
2sz|q + 1

=
exp{uz + 1

2
σ2
z}

(2sz|q + 1)
∑T
z′=1 exp{uz′ +

1
2
σ2
z′}

.

For the second challenge, instead of computing P (d|z, q) explic-
itly, we modify P (d|z, q) and apply Bayes’ Theorem so that

P (d|z, q) = p(z|d, q)p(d|q)
p(z|q) =

p(z|d, q)p(d|q)
vz|q

. (6)

Then we integrate the fused score generated by CombSUM into our
model, i.e., we set

p(d|q) rank= FCombSUM(d; q)

in (6). As a result, after applying (6) to (5), DDF selects a candidate
document by:

d∗ =argmax
d∈R

λ · qt[z∗|q] · p(z
∗|d, q) · FCombSUM(d; q)

vz∗|q
+

(1− λ)
∑
z 6=z∗ qt[z|q] ·

p(z|d,q)·FCombSUM(d;q)
vz|q

,

(7)

where p(z|d; q) is the probability of document d belonging to topic
z, which can easily be inferred in our DDF model by (2) (i.e.,
p(z|d, q) = θd,z). Therefore, after applying (2) and (3), (7) can
be rewritten as:

d∗ =argmax
d∈R

λ · qt[z∗|q] · θd,z
∗ · FCombSUM(d; q)

exp{µ∗z + 1
2
σ∗2z }

+

(1− λ)
∑
z 6=z∗ qt[z|q] ·

θd,z ·FCombSUM(d;q)

exp{µz+
1
2
σ2
z}

,

(8)

where it should be noted that we ignore the constant term∑T
z=1 exp{µz +

1
2
σ2
z},

as it has no impact on selecting the candidate document d∗.

4. EXPERIMENTAL SETUP
In this section, we describe our experimental setup; §4.1 lists our

research questions; §4.2 describes our data set; §4.3 lists the met-
rics and the baselines; §4.4 details the settings of the experiments.

4.1 Research questions
The research questions guiding the remainder of the paper are:

RQ1 Do fusion methods help improve state-of-the-art search di-
versification methods? Do they help in terms of intent-aware
precision, as our main metric? Does DDF beat standard and
state-of-the-art fusion methods? (See §5.1 and §5.2.)

RQ2 What is the effect on the diversification performance of DDF
and fusion methods of the number of component lists? Does
the contribution of fusion to diversification performance de-
pend on the quality of the component lists? (See §5.3)

RQ3 Does DDF outperform the best diversification and fusion meth-
ods on each query? (See §5.4.)

RQ4 How do the rankings of DDF differ from those produced by
other fusion methods? (See §5.5.)

RQ5 What is the effect on the diversification performance of DDF
of the number of latent topics used by DDF? (See §5.6.)

4.2 Data set
In order to answer our research questions we work with the runs

submitted to the TREC 2009, 2010, 2011 and 2012 Web tracks,
and the billion-page ClueWeb09 collection.1 There are two tasks
in these tracks: an ad hoc search task and a search result diversifi-
cation task [8, 10–12]. We only focus on the diversification task,
where the top-k documents returned should not only be relevant but
also cover as many aspects as possible in response to a given query.
In total, we have 200 ambiguous queries from the four years, with 2
queries (#95 and #100 in the 2010 edition) not having relevant doc-
uments. Typically, each query has 2 to 5 aspects, and some relevant
documents are relevant to more than 2 aspects of the query.

Many of the runs submitted to these four years of the Web track
for the diversification task were generated by state-of-the-art diver-
sification methods. In total, we have 119, 88, 62 and 48 runs from
the 2009, 2010, 2011 and 2012 editions, respectively.2

4.3 Evaluation metrics and baselines
We evaluate our component runs and fused runs using several

standard metrics that are official evaluation metrics in the diver-
sification tasks at TREC Web tracks [8, 10–12] and are widely
used in the literature on search result diversification [2, 3, 13, 14,
38, 40]: Prec-IA@k [2], MAP-IA@k [2], ERR-IA@k [2] and α-
nDCG@k [9]. The former two are set-based and indicate, respec-
tively, the precision and mean average precision across all aspects
of the query in the search results, whereas the remaining ones are
cascade measures that penalize redundancy at each position in the
ranked list based on how much of that information the user has
already seen from documents at earlier ranks.

1Available from http://boston.lti.cs.cmu.edu/
Data/clueweb09.

2All runs are available from http://trec.nist.gov.

http://boston.lti.cs.cmu.edu/Data/clueweb09
http://boston.lti.cs.cmu.edu/Data/clueweb09
http://trec.nist.gov


We follow published work on search result diversification and
mainly compute the metric scores at depth 20. Statistical signifi-
cance of observed differences between the performance of two runs
is tested using a two-tailed paired t-test and is denoted using N (or
H) for significant differences for α = .01, or M (and O) for α = .05.

When assessing a fusion method X we will prefer fusion meth-
ods that are safe, where we say that X is safe for metric M if ap-
plying X to a set of component runs always yields a fused run that
scores at least as high as the highest scoring component run in the
set (according to M ).

We consider several baselines. Two standard fusion methods [26],
CombSUM and CombMNZ; two state-of-the-art fusion methods
[23], ClustFuseCombSUM and ClustFuseCombMNZ; each year’s
best performing runs in the diversification tasks at the TREC Web
track [8, 10–12], and state-of-the-art plain diversification meth-
ods, xQuAD [39] and PM-2 [13]. As DDF builds on both fusion
and diversification methods, we also consider two fusion methods,
CombSUMMMR and CombSUMPM-2, that integrate plain diver-
sification methods MMR [6] and PM-2 into CombSUM for diver-
sification, respectively.

4.4 Experiments
We report on five main experiments aimed at answering the re-

search questions listed in §4.1. In our first experiment, aimed at de-
termining whether fusion methods help diversification, we fuse the
five top performing diversification result lists from the TREC Web
2009, 2010, 2011 and 2012 submitted runs (some lists are gener-
ated by the implementation of PM-2) by our baselines, viz., Comb-
SUM, CombMNZ, ClustFuseCombSUM, ClustFuseCombMNZ,
CombSUMMMR and CombSUMPM-2 (see §4.3). The perfor-
mance of the baselines is compared against that of DDF.

Our second experiment is aimed at understanding the effect on
the diversification performance of DDF and fusion methods of the
number of component lists; we randomly sample k ∈ {2, 4, . . . ,
26} component runs from the submitted runs in the TREC Web
2012 track and fuse them. We repeat the experiments 20 times
and report the average results and the standard deviations. We also
show one sample’s result when fusing 4 runs.

Next, in order to understand how DDF outperforms the best com-
ponent run and the fusion methods per query, our third experiment
provides a query-level analysis. Our fourth experiment is aimed at
understanding how the runs generated by DDF differ from those
produced by other fusion methods; we zoom in on the differences
between DDF and the next best performing fusion method, Comb-
SUMPM-2, in terms of the documents (and aspects) retrieved by
one, but not the other, or by both.

Finally, to understand the influence of the number of latent topics
used in DDF, we vary the number of latent topics and assess the
performance of DDF. We also use an oracle variant of DDF, called
DDF2, where for every test query we consider as many latent topics
as there are aspects according to the ground truth. The number of
topics used in DDF is set to 10, unless stated otherwise.

5. RESULTS
In §5.1 we examine the performance of baseline fusion methods

on the diversification task, which we follow with a section on the
performance of DDF in §5.2. §5.3 details the effect of the number
of lists; §5.4 provides a query-level analysis; §5.5 zooms in on the
effect on ranking of DDF compared to the next best fusion method;
§5.6 examines the effect of the number of latent topics on DDF.

5.1 Performance of baseline fusion methods
In Table 2 we list the diversity scores of the baseline fusion

methods on the diversity task: CombSUM, CombMNZ, ClustFuse-
CombSUM, ClustFuseCombMNZ, CombSUMMMR, CombSUM-
PM-2, with the 5 best performing component lists from the TREC
Web 2009, 2010, 2011 and 2012 tracks, respectively.3 For all met-
rics and in all years, almost all baseline fusion methods outperform
the state-of-the-art diversification methods, and in many cases sig-
nificantly so. Note, however, that none of the baseline methods
is safe in the sense defined in §4.3. Additionally, Table 3 shows
the diversity scores of the baseline fusion methods when we fuse
4 randomly sampled runs from the 2012 data set, which confirms
that fusion does help diversification.

5.2 The performance of DDF
Inspired by the success of baseline fusion methods on the diversi-

fication task, we now consider our newly proposed fusion method,
DDF. Returning to Tables 2 and 3, two types of conclusion emerge.
First, DDF outperforms all component runs (note that component
runs in Table 2 are the best runs in the tracks), on all metrics, for all
years. In other words, it is safe in the sense defined in Section 4.3.
The difference between DDF and the best performing component
run is always significant. We believe that the strong performance
of DDF is due to the fact that DDF not only focuses on improving
the relevance score of fused run but also explicitly tries to diversify
the fused run.

Second, DDF outperforms all baseline fusion methods, on all
metrics. In many cases, CombSUMPM-2 and CombSUM yield
the second and third best performance, respectively, but DDF out-
performs them in every case, and often significantly so. DDF can
beat CombSUMPM-2 as it tackles two main challenges in PM-2
(see §3.4.3), although they build on the same framework. Comb-
SUMMMR follows a similar strategy as DDF but its performance
is worse than that of DDF. This is due to the fact that MMR models
documents as if they are centered around a single topic only. It is
clear from Tables 2 and 3 that cluster-based data fusion methods
(ClustFuseCombSUM, ClustFuseCombMNZ) sometimes perform
a little worse than the standard fusion method they build on (Comb-
SUM, CombMNZ). This is because cluster-based fusion focuses on
relevance of the documents rather than on diversification.

5.3 Effect of the number of component lists
Next, we zoom in on DDF. In particular, we explore the effect of

varying the number of lists to be fused on its performance. Fig. 2
shows the fusion results of randomly sampling k ∈ {2, 4, . . . , 26}
lists from the 48 runs submitted to the TREC Web 2012 track plus
the PM-2 runs (due to space limitations, we only report results us-
ing the 2012 runs; the findings on other years are qualitatively sim-
ilar). For each k, we repeat the experiment 20 times and report on
the average scores and the corresponding standard deviations indi-
cated by the error bars in the figure. We use CombSUM as a repre-
sentative example for comparison with DDF, as the results of other
baseline fusion methods are worse or have qualitatively similar re-
sults to those of CombSUM. As shown in Fig. 2, DDF always out-
performs CombSUM in terms of the Prec-IA, α-nDCG and ERR-
IA evaluation metrics and the performance gaps remain almost un-
changed, in absolute terms, no matter how many component lists
are fused. One reason for this is that as DDF builds on CombSUM,
it inherits the merits of the fusion method, and more importantly,
at the same time it tries to infer latent topics and rerank the high

3The run “PM-2 (TREC)” is the run that utilizes aspect infor-
mation from the ground truth in the PM-2 model and the run “PM-2
(engine)” is produced using information from a commercial search
engine. The run “xQuAD (uogTrX)” is a uogTrX TREC edition
run generated using the xQuAD algorithm; see [33].



Table 2: Performance obtained using the 2009–2012 editions
of the TREC Web tracks. The best performing run per met-
ric per year is in boldface. Statistically significant differences
between fusion method and the best component run, between
DDF and CombSUM, and between DDF and CombSUMPM-2,
are marked in the upper right hand corner of the fusion method
score, in the upper left hand corner of DDF’s score, and in the
lower left hand corner of DDF’s score, respectively.

Prec-IA MAP-IA α-nDCG ERR-IA

2012 DFalah120A .3241 .0990 .5291 .4259
DFalah120D .3241 .0990 .5291 .4259
xQuAD (uogTrA44xi) .3349 .1345 .5917 .4873
xQuAD (uogTrA44xu) .3504 .1360 .6061 .5048
xQuAD (uogTrB44xu) .3389 .1339 .5795 .4785
ClustFuseCombMNZ .3533 .1488N .6010 .5105
ClustFuseCombSUM .3545 .1495N .5965 .5049
CombSUMMMR .3558 .1544N .6106 .5115
CombSUMPM-2 .3718N .1826N .6228N .5179M
CombMNZ .3663N .1785N .6154M .5153M
CombSUM .3592M .1767N .6114M .5126M
DDF N

N.3904N N
N.1910N N

N.6334N N
N.5266N

2011 ICTNET11ADR2 .2993 .1328 .5725 .4658
umassGQdist .3003 .1313 .5513 .4530
xQuAD (uogTrA45Nmx2) .3039 .1365 .6298 .5284
xQuAD (uogTrA45Vmx) .3030 .1323 .6304 .5238
UWatMDSdm .3214 .1350 .5979 .4875
ClustFuseCombMNZ .3303N .1757N .6221O .5001
ClustFuseCombSUM .3296M .1775N .6307 .5110
CombSUMMMR .3395N .1830N .6341 .5107
CombSUMPM-2 .3450N .2024N .6448N .5196
CombMNZ .3413N .1943N .6430N .5209
CombSUM .3376N .1966N .6423N .5216
DDF N

N.3596N N
N.2102N .6496N N.5295

2010 CSE.pm2.run .1832 .0351 .4165 .3052
cmuWi10D .1879 .0599 .3452 .2484
xQuAD (uogTrA42x) .1845 .0529 .3558 .2454
PM-2 (engine) .2009 .0414 .3660 .2581
PM-2 (TREC) .2026 .0430 .4449 .3320
ClustFuseCombMNZ .2105 .0845N .4313 .3221
ClustFuseCombSUM .2072 .0825N .4257O .3148O
CombSUMMMR .2115M .0836N .4366 .3189
CombSUMPM-2 .2129N .0839N .4379 .3193
CombMNZ .2177N .0899N .4471 .3411M
CombSUM .2159 .0875N .4454 .3350
DDF N

N.2285N M
N.0910N N

N.4627N N
N.3406N

2009 NeuDiv1 .1343 .0458 .2781 .1705
NeuDivW75 .1239 .0397 .2501 .1598
xQuAD(uogTrDPCQcdB) .1302 .0463 .2968 .1848
xQuAD (uogTrDYCcsB) .1268 .0444 .3081 .1922
uwgym .1224 .0456 .2798 .1701
ClustFuseCombMNZ .1381 .0681N .3076 .1937
ClustFuseCombSUM .1379 .0680N .3223N .2005
CombSUMMMR .1424M .0682N .3343N .2028M
CombSUMPM-2 .1588N .0754N .3887N .2674N
CombMNZ .1400M .0666N .3343N .2033M
CombSUM .1400M .0664N .3482N .2080M
DDF N

N.1631N N
N.0731N N

N.4005N N.2713N

ranked documents in terms of novelty of the documents. For the
MAP-IA metric, however, the gaps increase with more component
lists being fused. The performance of both DDF and CombSUM
increases faster when the number of component lists increases but
is ≤ 10 than when the number of component lists is > 10, for all
the metrics. This seems to be inherent to the underlying CombSUM
method and is due to the fact that with smaller numbers of compo-
nent lists, there is simply more space available at depth 20 to obtain
improvements than with larger numbers of component lists.

Table 3: Performance obtained using the 2012 editions of the
TREC Web track. The best performing run per metric is in
boldface. Other notational conventions as in Table 2.

Prec-IA MAP-IA α-nDCG ERR-IA

2012 QUTparaBline .2261 .0639 .5270 .4185
xQuAD (uogTrA44xl) .2957 .1077 .5161 .4009
utw2012c1 .1637 .0439 .5075 .4046
PM-2 (TREC) .2631 .0601 .5245 .4155
ClustFuseCombMNZ .2735O .1155N .5717N .4608N
ClustFuseCombSUM .2752 .1172N .5726N .4674N
CombSUMMMR .2783O .1189N .5799N .4633N
CombSUMPM-2 .2934 .1305N .6013N .4877N
CombMNZ .2864 .1267N .5851N .4708N
CombSUM .2884 .1275N .5944N .4803N
DDF N

N.3193N N
N.1409N M

N.6107N M
N.4919N

5.4 Query-level analysis
We take a closer look at per test query improvements of DDF

over the best baseline fusion run when fusing the best 5 runs in
2012, viz., CombSUMPM-2, which outperforms the best compo-
nent list. Fig. 3 shows the per query performance differences in
terms of Prec-IA, MAP-IA, α-nDCG and ERR-IA, respectively,
of DDF against CombSUMPM-2. DDF achieves performance im-
provements for many queries when compared against CombSUM-
PM-2, although the differences are sometimes relatively small.

In a very small number of cases, DDF performs poorer than
CombSUMPM-2. This appears to be due to the fact that DDF
“over-diversifies” documents in runs produced by CombSUM that
have very few relevant document to start with, so that DDF ends up
promoting different but non-relevant documents.

5.5 Zooming in on Prec-IA@k

Next, we zoom in on one of the metrics that shows the biggest
relative differences between DDF and the next best performing fu-
sion method, Prec-IA, so as to understand how the runs generated
by DDF differ from those by other fusion-based methods. Here,
again, we use CombSUMPM-2 as a representative, as it tends to
outperform or equal the other fusion methods. Specifically, we re-
port changes in the number of relevant documents for DDF against
CombSUMPM-2 when fusing the 2012 runs in Table 2 in 2012;
see Fig. 4. Red bars indicate the number of relevant documents
that appear in the run of DDF but not the run of CombSUMPM-2,
white bars indicate the number of relevant documents in both runs,
whereas blue bars indicate the number of relevant documents that
appear not in DDF but in CombSUMPM-2; topics are ordered first
by the size of the red bar, then the size of the white bar, and finally
the size of the blue bar.

Clearly, the differences between DDF and CombSUMPM-2 in
the top 5 and 10 are more limited than the differences in the top-15
and 20, but in all cases DDF outperforms CombSUMPM-2. E.g.,
in total there are 45 more relevant documents in the top 20 of the
run produced by DDF than those in the CombSUMPM-2 run (49
relevant documents in DDF but not in CombSUMPM-2, 4 relevant
documents in CombSUMPM-2 but not in DDF). We examine the
matter further by comparing the Prec-AI@5, 10, 15, 20 scores of
the DDF and CombSUMPM-2 runs for the 2012 data; see Table 4.
The differences at small depths (5, 10) are weakly statistically sig-
nificant while those at bigger depths are significant, confirming our
observations in Fig. 4; we also find that DDF statistically signifi-
cantly outperforms CombSUMPM-2 in terms of Prec-IA scores at
depth 5, 10, 15 and 20, which again confirms the above observa-
tions based on Fig. 4.
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Table 4: Prec-IA@5, 10, 15, 20 performance comparison be-
tween CombSUMPM-2 and DDF. A statistically significant dif-
ference between DDF and CombSUMPM-2 is marked in the
upper left hand corner of the DDF score.

Prec-IA@ 5 10 15 20

CombSUMPM-2 .4367 .4066 .3887 .3718
DDF M.4555 M.4194 N.4060 N.3904

5.6 Effect of the number of topics
Finally, we examine the effect on the overall performance of the

number of latent topics used in DDF, and contrast the performance
of DDF with varying number of latent topics against DDF2, Comb-
SUM and CombSUMPM-2. Here, DDF2 is the same algorithm as
DDF except that for every test query it considers as many latent
topics as there are aspects according to the ground truth. We use
DDF2, DDF, CombSUM and CombSUMPM-2 to fuse the compo-
nent result runs listed in Table 2 in 2012 as an example. We vary
the number of latent topics in DDF from 2 to 16. See Fig. 5.

When the number of latent topics used in DDF increases from 2
to 6, the performance of DDF increases dramatically. When only 2
latent topics are used, the performance is worse than that of Comb-
SUM and CombSUMPM-2; e.g., Prec-IA@20 for DDF is 0.3404,
while the scores of CombSUM and CombSUMPM-2 are 0.3592
and 0.3718, respectively. In contrast, when the number of latent
topics varies between 8 to 16, the performance of DDF seems to
level off. This demonstrates another merit of our fusion model,
DDF: it is robust and not sensitive to the number of latent topics
once the number of latent topics is “large enough.” Another impor-
tant finding from Fig. 5 is that DDF2 always enhances the perfor-
mance of DDF, CombSUM and CombSUMPM-2, for all metrics,
which demonstrates the fact that latent topics can enhance the per-
formance. The performance differences between DDF2 and DDF
are quite marginal and not statistically significant. We leave it as
future work to dynamically estimate the number of aspects (and la-
tent topics) of an incoming query and to use this estimate in DDF.

6. CONCLUSION
Most previous work on search result diversification focuses on

the content of the documents returned by an ad hoc algorithm to
diversify the results implicitly or explicitly, i.e., using implicit or
explicit representations of aspects. In this paper we have adopted
a different perspective on the search result diversification prob-
lem, based on data fusion. We proposed to use traditional un-
supervised and state-of-the-art data fusion methods, CombSUM,
CombMNZ, ClustFuseCombSUM, ClustFuseCombMNZ, Comb-
SUMMMR and CombSUMPM-2 to diversify result lists. This led
to the insight that fusion does aid diversification. We also pro-
posed a fusion-based diversification method, DDF, which infers
latent topics from ranked lists of documents produced by a stan-
dard fusion method, and combines this with a state-of-the-art re-
sult diversification model. We found that data fusion approaches
outperform state-of-the-art search result diversification algorithms,
with DDF invariably giving rise to the highest scores on all of the
metrics that we have considered in this paper. DDF was shown to
behave well with different numbers of component lists. We also
found that DDF is insensitive to the number of latent topics of a
query, once a sufficiently large number was chosen, e.g., 10.

As to future work, we aim to incorporate into DDF methods for
automatically estimating the number of aspects, which will be used
to set the number of latent topics. The last and third part of DDF
is based on a particular choice of method, viz. PM-2, and we only
apply rank-based fusion methods for diversification. In future work
we plan to compare these choices with alternative choices, and ap-
ply other fusion alternatives, e.g., score-based fusion methods.
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APPENDIX
Gibbs sampling derivation for DDF model
We begin with the joint distribution P (w, f , z|α, β, µ, σ,L) and use con-
jugate priors to simplify the integrals. Notation defined in §3.

P (w, f , z|α, β, µ, σ,L, q) = P (w|z, β)p(f |µ, σ, z,L)P (z|α)

=

∫
P (w|Φ, z)p(Φ|β)dΦ× p(f |µ, σ, z,L, q)

∫
P (z|Θ)P (Θ|α)dΘ

=

∫ |CL|∏
d=1

Nd∏
i=1

P (wdi|φzdi )
T∏
z=1

p(φz |β)dΦ

×
|CL|∏
d=1

Nd∏
i=1

p(fdi|µzdi , σzdi ,L, q)

×
∫ |CL|∏

d=1

Nd∏
i=1

P (zdi|θd)p(θd|α)

 dΘ

=

∫ T∏
z=1

V∏
v=1

φ
nzv
zv

T∏
z=1

(
Γ(
∑V
v=1 βv)∏V

v=1 Γ(βv)

V∏
v=1

φβv−1
zv

)
dΦ

×
|CL|∏
d=1

Nd∏
i=1

p(fdi|µzdi , σzdi ,L, q)

×
∫ |CL|∏

d=1

T∏
z=1

θ
mdz
dz

|CL|∏
d=1

(
Γ(
∑T
z=1 αz)∏T

z=1 Γ(αz)

T∏
z=1

θαz−1
dz

)
dΘ

=

(
Γ(
∑V
v=1 βv)∏V

v=1 Γ(βv)

)T (
Γ(
∑T
z=1 αz)∏T

z=1 Γ(αz)

)|CL|

×
|CL|∏
d=1

Nd∏
i=1

p(fdi|µzdi , σzdi ,L, q)

×
T∏
z=1

∏V
v=1 Γ(nzv + βv)

Γ(
∑V
v=1(nzv + βv))

|CL|∏
d=1

∏T
z=1 Γ(mdz + αz)

Γ(
∑T
z=1(mzd + αz))

Using the chain rule, we can obtain the conditional probability conveniently,

P (zdi|w, f , z−di, α, β, µ, σ,L, q)

=
P (zdi, wdi, fdi|w−di, f−di, z−di, α, β, µ, σ,L, q)
P (wdi, fdi|w−di, f−di, z−di, α, β, µ, σ,L, q)

=
P (w, f , z|α, β, µ, σ,L, q)

P (w, f , z−di|α, β, µ, σ,L, q)
because zdi depends only on wdi and fdi

∝
P (w, f , z|α, β, µ, σ,L, q)

P (w−di, f−di, z−di, |α, β, µ, σ,L, q)

∝ (mdzdi + αzdi − 1)
nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

×
1

fdiσzdi
√

2π
exp{−

(ln fdi − µzdi )2

2σ2
zdi

}

∝ (mdzdi + αzdi − 1)
nzdiwdi + βwdi − 1∑V
v=1(nzdiv + βv)− 1

×
1

FX(d|L, q)σzdi
√

2π
exp{−

(lnFX(d|L, q)− µzdi )2

2σ2
zdi

},

where FX(d|L, q) ∈ (0,+∞) is a fusion score generated by a standard
fusion method FX for document d ∈ CL given the observation of lists L to
be merged and query q. We use FCombSUM(d|L, q).

Since the data fusion score of a token that appears in d when fusing all
the lists in L given a query q and the latent topics of which is zdi, is drawn
from log-normal distributions, sparsity is not a big problem for parameter
estimation of both µzdi and σzdi . For simplicity, we update both µzdi and
σzdi after each Gibbs sample iteration by maximum likelihood estimation:

µ̂zdi =

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

ln fd′i′

nzdi

=

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

lnFX(d′|L, q)

nzdi

σ̂2
zdi

=

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

(ln fd′i′ − µ̂)2

nzdi

=

∑|CL|
d′=1

∑Nd
i′∧(zd′i′=zdi)

(lnFX(d′|L, q)− µ̂)2

nzdi
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