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ABSTRACT
Modeling user behavior on a search engine result page is important
for understanding the users and supporting simulation experiments.
As result pages become more complex, click models evolve as well
in order to capture additional aspects of user behavior in response
to new forms of result presentation.

We propose a method for evaluating the intuitiveness of vertical-
aware click models, namely the ability of a click model to capture
key aspects of aggregated result pages, such as vertical selection,
item selection, result presentation and vertical diversity. This method
allows us to isolate model components and therefore gives a multi-
faceted view on a model’s performance. We argue that our method
can be used in conjunction with traditional click model evaluation
metrics such as log-likelihood or perplexity. In order to demonstrate
the power of our method in situations where result pages can contain
more than one type of vertical (e.g., Image and News) we extend
the previously studied Federated Click Model such that it models
user clicks on such pages. Our evaluation method yields non-trivial
yet interpretable conclusions about the intuitiveness of click models,
highlighting their strengths and weaknesses.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
The problem of predicting user clicks has recently gained con-

siderable interest. A click model is a probabilistic model of user
behavior on a search engine result page. It is used to facilitate
simulated experiments when real click data is limited or simply un-
available (see, e.g., [4]). In addition, the parameters of click models
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inferred from real clicks help us understand user behavior [6] and
estimate the relevance of documents shown to the user [1].

Several vertical-aware click models have recently been devel-
oped (e.g., [3, 5]). These models aim to capture different aspects
of user interaction with a so-called aggregated or vertical search
system. The result page of an aggregated search (AS) system usually
contains, in addition to regular Web results, heterogeneous results
federated from different sub-collections or verticals (e.g., Image,
Video or News), which are then presented in a grouped fashion.
These vertical results influence user behavior in new ways [3].

Traditionally, click models have been evaluated on their ability to
predict future clicks from past observations [3, 6]. More is required
for the evaluation of vertical-aware click models, as we need to
assess their ability to capture the peculiarities of the user behavior on
the AS result page such as attention bias. We adapt the intuitiveness
test proposed by Sakai [9] to evaluate vertical-aware click models.
While Sakai’s idea has been adopted before, namely for the setting
of aggregated search metrics [14], our contribution is new in that
we apply it to evaluate click models instead of metrics.

The main research question that we aim to answer is: How can
we evaluate the ability of a click model to capture key aspects of a
vertical (aggregated) search system? In the process of answering
this question we learn that none of the existing click models are
designed to deal with a result page containing multiple verticals (e.g.,
both News and Video). We introduce such a model and evaluate it
using our evaluation method.

2. METHOD
Sakai [9] proposes a way of quantifying “which metric is more in-

tuitive.” This method has been applied to understanding aggregated
search metrics in [14], where four key factors of aggregated search
systems are listed: vertical selection (VS), item selection (IS), result
presentation (RP) and vertical diversity (VD). The authors measure
the preference agreement of a given aggregated search metric with a
“basic” single-component metric for each factor; they also assess the
ability of a metric to capture the combination of these factors.

The main contribution of our work is that we adapt the intuitive-
ness test to evaluate vertical-aware click models instead of aggre-
gated search metrics. In order to apply the intuitiveness test to click
models, we use a simulation setup and proceed as follows. We run a
click model CM to simulate user clicks1 and report the total number
of clicks (CTR) produced by the simulated user as a metric score
for a given ranking. We then compare AS systems by the number

1The code we use to simulate clicks is available as a part of
Lerot [10] at https://bitbucket.org/ilps/lerot.

https://bitbucket.org/ilps/lerot


Disagree = 0; Correct1 = 0; Correct2 = 0;
foreach pair of runs (r1, r2) do

foreach TREC topic t do
δ1 = CTRCM1(t, r1)− CTRCM1(t, r2);
δ2 = CTRCM2(t, r1)− CTRCM2(t, r2);
δGS =MGS (t, r1)−MGS (t, r2);
if (δ1 × δ2) < 0 then // CM 1 and CM 2 disagree

Disagree++;
if δ1 × δGS ≥ 0 then // CM 1 and MGS agree

Correct1++;
if δ2 × δGS ≥ 0 then // CM 2 and MGS agree

Correct2++;
Intuitiveness(CM 1|CM 2,MGS ) = Correct1/Disagree;
Intuitiveness(CM 2|CM 1,MGS ) = Correct2/Disagree;

Algorithm 1: Computing the intuitiveness scores of click mod-
els CM 1 and CM 2 based on preference agreement with a gold
standard metric MGS .

of clicks they receive according to a click model CM , like in A/B-
testing experiments.2 The outcome of this AS system comparison
determines the intuitiveness of the underlying click model.

Algorithm 1 shows our intuitiveness test algorithm. The algo-
rithm computes relative intuitiveness scores for a pair of click mod-
els CM 1 and CM 2 and a gold standard metric MGS . The latter
represents a basic property that a candidate metric should satisfy.
We consider not one but four metrics as our gold standards, one for
each aggregated search factor; the same metrics were used by [14].
These gold standards are intentionally kept simple. They should be
agnostic to differences across metrics (e.g., different position-based
discounts); their purpose is to separate out and test single factor
properties of more complex click models. The four gold standard
metrics are: (a) VS: vertical precision; (b) VD: vertical recall; (c) IS:
mean precision of vertical result items; and (d) RP: Spearman’s rank
correlation with a “perfect” AS reference page.

We first obtain all pairs of AS result pages for which CM 1 and
CM 2 disagree about which result page should get more clicks. Out
of these disagreements, we count how often each click model’s
CTR scores agree with the gold standard metric(s). The click model
that concords more with the gold standard metric(s) is considered
to be more “intuitive.” An ideal click model should be consistent
with all four gold standards; we therefore add an additional step to
Algorithm 1 by counting how often the model agrees with a subset
or all the four gold standards at the same time.

When compared to traditional perplexity-based click model evalu-
ation [3, 6], our method has the following advantages: (1) it allows
for assessments of individual model components, separating their
contribution to the model’s performance; (2) it assigns explanatory
scores that allow us to assess the ideas underlying a click model;
and (3) it allows us to make use of public test collections and obtain
re-usable scores without need to access a user click log.

3. EXPERIMENTAL SETUP
In this section we present the click models (both traditional and

vertical-aware) that we use to demonstrate our intuitiveness evalua-
tion method. We first introduce the models and then specify their
parameters as well as the aggregated search dataset that we use.

3.1 Click Models
Traditional Click Models. We start with the simple traditional
click models and then move to the more complex vertical-aware
2Alternatively, one can perform an interleaving comparison [2], but
this is beyond the scope of the paper.

models. In order to model the user’s behavior on a search engine
result page (SERP), a click model usually employs two sets of bi-
nary random variables: Ei (examination), which equals 1 if the
user examines the i-th document snippet, Ci (click), which equals
1 if the user clicks the i-th document link. The Random Click
Model (RCM ) assumes that a document is clicked with proba-
bility p = 0.5 regardless of document position and its perceived
relevance: P (Ci = 1) = p. If we take into account the fact
that the documents lower in the SERP have a lower chance of be-
ing examined [12], we obtain a Position-Based Model (PBM ):
P (Ci = 1) = P (Ci = 1 | Ei = 1) · P (Ei = 1), where the exam-
ination probability P (Ei = 1) = pi−1 and the probability of a
click given examination is approximated using relevance labels:3

P (Ci = 1 | Ei = 1) = ri; a similar model was used as a baseline
model in [1]. Following Zhang et al. [12], we set p = 0.73.

Vertical-Aware Click Models. Chen et al. [3] found that about
15% of the search result pages contain more than one type of vertical.
Since this is a significant fraction of the search traffic, we want to
adequately evaluate click models that capture user behavior in such
multi-vertical settings. In order to demonstrate how our method
rates such models, we introduce a multi-vertical Federated Click
Model (mFCM ), a generalization of the Federated Click Model
(FCM ) by Chen et al. [3, 4] in which we allow different vertical
types, each with its own influence on examination probabilities.

As in [3], P (Ei = 1) is influenced by the distance to different
verticals on the page and the attention bias caused by these verticals.
If there is no attention bias present, the examination probability φi

depends only on the rank of the document i:

P (Ei = 1 | A) = φi + (1− φi)βi(A) (1)
P (Ci = 1 | Ei = 0) = 0 (2)
P (Ci = 1 | Ei = 1) = ri. (3)

Here, A is the vector of independent binary random variables Aj ,
attention bias values for each vertical vertj . The influence of ver-
tical documents on the examination probability of a document i is
represented by a function βi(A). We set it to 1 if document i is
the vertical document itself and decrease it as document i is further
away from the vertical documents [3]. According to Chen et al. [3],
the decrease should depend on the vertical type j, so we introduce
parameters γj that depends solely on the vertical type j:

βi(A) = min

(
1, max
{j:Aj=1}

1

|distj(i)|+ γj

)
, (4)

where distj(i) is the distance from document i to the nearest docu-
ment that belongs to vertj [3, 4].

If we do not distinguish between different verticals in (4), i.e.
set γj = γ for all j, and also assume that for a vertical j, its
attention bias Aj is determined only by its position on the page, i.e.,
P (Aj = 1) = hposvertj , we obtain the FCM model exactly as it
was used in [4]. If we do assume that γj takes different values for
different j, we get the model that we call here mFCM -NO .

In order to further distinguish different verticals we use the verti-
cal orientation of the user, the probability that users prefer a certain
vertical to general web results [13, 14]. We write orient(vertj , q)
to denote the orientation of the user towards the type of vertj , given
query q. Having orientation values, we can further improve our click
model by refining the estimation of attention bias:

P (Aj = 1) = orient(vertj , q) · hposvertj . (5)

3For simplicity we use binary relevance labels, following [4].



The model defined by equations (1)–(5) is called mFCM . The sim-
pler mFCM -NO model that does not use vertical orientation (“NO”
for “no orientation”), is also of interest, since vertical orientation
values are not always available and it is important to understand
their contribution.

3.2 Data and Parameter Settings
For the mFCM model we instantiate the γ, φ and hpos param-

eters similar to [4]. We set γ to 0.1 for multimedia verticals such
as News or Blogs and 0.2 for text-based verticals such as Image
or Video to resemble click heatmaps reported by [3] for the corre-
sponding vertical types. We also set hpos = [.95, .9, .85, .8, .75,
.7, .3, .25, .2, .15] for multimedia verticals as in [4] (assuming the
user cannot see documents below rank 6 without scrolling), and for
text verticals hpos = [.95, .3, .25, .15, .10, .05, .05, .05, .05, .05],
since Chen et al. [3] suggest that a text vertical, unlike multimedia
verticals, does not substantially influence user clicks if it is not at the
top of the page; this is also supported by [11]. As in [4], φ equals
[.68, .61, .48, .34, .28, .2, .11, .1, .08, .06] based on the eye fixation
probabilities reported by Joachims et al. [7].

To complete the experimental setup we need to specify the ag-
gregated search systems and document dataset that we use. We
use simulated aggregated systems from [14], which are built by
systematically varying the quality of key aggregated search compo-
nents. Specifically, we use 4 state-of-the-art VS systems, 3 ranking
functions for selecting vertical items for IS and 3 ways to embed
vertical result blocks on the final AS pages (RP). In total, we have
simulated 36 AS systems (4 × 3 × 3). As a document collection
we use a public aggregated search dataset [8] for which relevance
judgements of documents and vertical orientation preference judg-
ments are available for each topic. There are 50 test topics in our
collection, so with 36 simulated AS systems runs we have a total of
C2

36 = 630 run pairs and 50 · 630 = 31, 500 pairs of result pages.

4. RESULTS
We report on the intuitiveness scores computed for a variety of

click models, using Algorithm 1. For each click model we test
intuitiveness with respect to the four AS factors individually, as
well as the ability to capture a combination of multiple AS factors.
The models that we test are: mFCM , mFCM -NO , FCM , PBM ,
RCM , all of which are described in Section 3.1. Table 1 lists our
results. For every gold standard metric and every pair of click
models, we give the intuitiveness scores of both models and the
percentage of result page pairs for which the models disagree.

For example, Table 1 (a) shows that if we compare mFCM and
mFCM -NO in terms of the component VS (the ability to select
relevant verticals), there are 14.7% (4, 620 out of 31, 500 pairs)
disagreements. The intuitiveness score for mFCM is 0.870, which
is the fraction of these disagreements for which mFCM agrees with
the gold standard metric. The score for mFCM -NO is only 0.833,
so mFCM is more likely to agree with VS metric than mFCM -NO .
Note that the scores of two competing models do not add up to 1;
when the gold standard judges two result pages to be equally good,
both click models agree with the gold standard. That is also why the
scores for a very simple RCM are relatively high in Table 1 (a). We
can also observe that as two click models differ more, the percentage
of disagreements increases. For instance, the more complex click
models tend to have a substantial disagreement with the random
click model RCM .

Let “CM 1 > CM 2” denote the relationship “click model CM 1

statistically significantly outperforms click model CM 2 in terms of
concordance with a given gold-standard metric.” Our findings can
be summarized as follows:

• VS: mFCM >mFCM -NO , FCM ;
• VD: mFCM , mFCM -NO > PBM > FCM > RCM ;
• IS: mFCM >mFCM -NO > FCM > PBM > RCM ;
• RP: FCM > PBM >mFCM , mFCM -NO > RCM ;
• VS and IS: mFCM >mFCM -NO >FCM >PBM >RCM ;
• VS, IS, VD: mFCM >mFCM -NO >FCM >PBM >RCM ;
• VS, IS, RP, VD (all four metrics): mFCM > PBM > RCM ,
FCM >mFCM -NO > PBM > RCM .

For single-component evaluation, mFCM outperforms the other
models on VS, VD and IS, with mFCM -NO as a second-best alter-
native. The same holds for the combinations VS + IS and VS + IS +
VD. For RP, FCM performs best, with PBM ranking second. The
RP factor is measured as correlation with a “perfect” result page
in which highly oriented verticals are put on top. However, this
order does not necessarily emit the maximum number of clicks in
FCM -like click models. For example, if there is a vertical lower
on the page that attracts a lot of attention, it may be better to place
the relevant document just above or below this vertical. The ta-
ble suggests that the intrinsic “optimal” result orders for mFCM
and mFCM -NO are further from the “perfect” order than PBM ’s.
When we look at all gold standard metrics combined, FCM and
mFCM are almost equally good, with mFCM -NO again as a
second-best alternative.

Our evaluation method implies that mFCM captures the VS, IS
and VD factors very well, better than any other model we tested.
Even without orientation values, mFCM -NO is able to capture
these factors. mFCM performs worse at capturing result presen-
tation as measured by our RP metric, which is unsurprising as the
multiple vertical click model focuses less on putting relevant results
on top and better accounts for attention bias caused by multiple
vertical blocks. This shows that our intuitiveness evaluation method
is able to draw non-trivial detailed conclusions about model’s per-
formance. These conclusions do not contradict our prior knowledge
about the click models and can always be explained.

5. CONCLUSION AND DISCUSSION
We introduced an evaluation method that can be used to assess

a vertical-aware click model’s ability to capture key components
of an aggregated search system and demonstrated it using different
vertical-aware as well as traditional click models. We also showed
that click models that account for multiple vertical blocks within a
single result page typically get higher intuitiveness scores, which
indicates that our evaluation method measures the right thing.

One limitation of the work presented here is that we do not use raw
click data to infer the parameters of the click models we experiment
with. However, we set these parameters using previous work that
does use real click and eye gaze data [3, 7, 11].

As a direction for future work we want to compare the findings
of the intuitiveness test with conventional model performance tests
(e.g., perplexity of click prediction) and see whether good intuitive-
ness scores also imply good click prediction results and vice-versa.
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Table 1: Intuitiveness test results. For each pair of click models, the higher score is shown in bold, with the fraction of disagreements
in parentheses. Results (a)–(d) show click model performance w.r.t. individual AS components; results (e)–(g) concern a click model’s
ability to capture multiple components. Significant differences (sign test) are indicated with M (α = 0.05) and N (α = 0.01).

Evaluation Criteria mFCM -NO FCM PBM RCM

(a). (VS)
gold standard: vertical selection
precision

mFCM
0.870/0.833M 0.865/0.842M 0.873/0.856 0.851/0.865

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.843/0.850 0.868/0.877 0.845/0.870

(17.0%) (23.1%) (44.3%)

FCM
- - 0.879/0.885 0.849/0.871

(22.0%) (44.2%)

PBM
- - - 0.848/0.868

(45.3%)

(b). (VD)
gold standard: vertical recall

mFCM
0.819/0.812 0.879/0.713N 0.832/0.748N 0.860/0.678N

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.884/0.715N 0.817/0.743N 0.858/0.677N

(17.0%) (23.1%) (44.3%)

FCM
- - 0.763/0.819O 0.822/0.708N

(22.0%) (44.2%)

PBM
- - - 0.828/0.688N

(45.3%)

(c). (IS)
gold standard: mean precision of
vertical retrieved items

mFCM
0.765/0.732M 0.754/0.691N 0.832/0.515N 0.918/0.349N

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.745/0.706M 0.815/0.542N 0.912/0.352N

(17.0%) (23.1%) (44.3%)

FCM
- - 0.805/0.549N 0.902/0.357N

(22.0%) (44.2%)

PBM
- - - 0.828/0.423N

(45.3%)

(d). (RP)
gold standard: Spearman Correlation
with “perfect” aggregated search page

mFCM
0.601/0.592 0.493/0.691H 0.575/0.649H 0.643/0.551N

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.477/0.702H 0.569/0.644H 0.642/0.553N

(17.0%) (23.1%) (44.3%)

FCM
- - 0.653/0.576N 0.683/0.513N

(22.0%) (44.2%)

PBM
- - - 0.650/0.527N

(45.3%)

(e). (VS + IS)
gold standard: vertical selection
precision AND vertical item mean
precision

mFCM
0.666/0.606M 0.651/0.584N 0.728/0.432N 0.782/0.294N

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.630/0.608M 0.709/0.474N 0.772/0.301N

(17.0%) (23.1%) (44.3%)

FCM
- - 0.714/0.486N 0.766/0.303N

(22.0%) (44.2%)

PBM
- - - 0.700/0.362N

(45.3%)

(f). (VS + IS + VD)
gold standard: vertical selection
precision AND vertical item mean
precision AND vertical recall

mFCM
0.567/0.522M 0.585/0.456N 0.605/0.347N 0.680/0.248N

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.569/0.469N 0.580/0.372N 0.673/0.253N

(17.0%) (23.1%) (44.3%)

FCM
- - 0.568/0.430N 0.649/0.269N

(22.0%) (44.2%)

PBM
- - - 0.601/0.300N

(45.3%)

(g). (VS + IS + RP + VD)
gold standard: ALL single-component
metrics

mFCM
0.372/0.373 0.346/0.366 0.394/0.257N 0.485/0.164N

(14.7%) (18.2%) (21.5%) (44.5%)

mFCM -NO
- 0.350/0.370O 0.390/0.263N 0.488/0.164N

(17.0%) (23.1%) (44.3%)

FCM
- - 0.414/0.269N 0.486/0.155N

(22.0%) (44.2%)

PBM
- - - 0.435/0.187N

(45.3%)
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