
5

A Comparative Analysis of Interleaving Methods
for Aggregated Search

ALEKSANDR CHUKLIN and ANNE SCHUTH, University of Amsterdam
KE ZHOU, Yahoo Labs London
MAARTEN DE RIJKE, University of Amsterdam

A result page of a modern search engine often goes beyond a simple list of “10 blue links.” Many specific user
needs (e.g., News, Image, Video) are addressed by so-called aggregated or vertical search solutions: specially
presented documents, often retrieved from specific sources, that stand out from the regular organic Web
search results. When it comes to evaluating ranking systems, such complex result layouts raise their own
challenges. This is especially true for so-called interleaving methods that have arisen as an important type
of online evaluation: by mixing results from two different result pages, interleaving can easily break the
desired Web layout in which vertical documents are grouped together, and hence hurt the user experience.

We conduct an analysis of different interleaving methods as applied to aggregated search engine result
pages. Apart from conventional interleaving methods, we propose two vertical-aware methods: one derived
from the widely used Team-Draft Interleaving method by adjusting it in such a way that it respects vertical
document groupings, and another based on the recently introduced Optimized Interleaving framework. We
show that our proposed methods are better at preserving the user experience than existing interleaving
methods while still performing well as a tool for comparing ranking systems. For evaluating our proposed
vertical-aware interleaving methods, we use real-world click data as well as simulated clicks and simulated
ranking systems.

Categories and Subject Descriptors: H3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

General Terms: Algorithms, Experimentation, Measurement

This research was partially supported by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements 288024 (LiMoSINe) and 312827 (VOX-Pol); the Netherlands Or-
ganisation for Scientific Research (NWO) under project numbers 727.011.005, 612.001.116, HOR-11-10, and
640.006.013; the Center for Creation, Content and Technology (CCCT); the QuaMerdes project funded by
the CLARIN-nl program; the TROVe project funded by the CLARIAH program; the Dutch national program
COMMIT; the ESF Research Network Program ELIAS; the Elite Network Shifts project funded by the Royal
Dutch Academy of Sciences (KNAW); the Netherlands eScience Center under project number 027.012.105;
the Yahoo! Faculty Research and Engagement Program; the Microsoft Research Ph.D. program; and the
HPC Fund.
This article extends work published previously in Chuklin et al. [2013a]. We extend our earlier work by
including a thorough study of the optimized interleaving framework that complements our previous con-
structive approach. We also extend our interleaving methods to handle heterogeneous pages with multiple
vertical blocks of different type. By doing so, we remove limitations present in Chuklin et al. [2013a] and
extend interleaving methods to all currently possible search result pages. We also broaden our study by
considering different aspects of the user experience and different definitions of sensitivity, and by studying
new datasets of model rankers in addition to previously studied simulated and real rankings.
Authors’ addresses: A. Chuklin (corresponding author), A. Schuth, and M. De Rijke, University of Amster-
dam; emails: {a.chuklin, anne.schuth, derijke}@uva.nl; K. Zhou, Yahoo Labs London. Some parts of this work
were done while the first author was at Yandex Russia and Google Switzerland (current affiliation); email:
zhouke.nlp@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1046-8188/2015/02-ART5 $15.00

DOI: http://dx.doi.org/10.1145/2668120

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

http://dx.doi.org/10.1145/2668120

5:2 A. Chuklin et al.

Additional Key Words and Phrases: Information retrieval, interleaved comparison, interleaving, clicks, on-
line evaluation, aggregated search

ACM Reference Format:
Aleksandr Chuklin, Anne Schuth, Ke Zhou, and Maarten de Rijke. 2015. A comparative analysis of inter-
leaving methods for aggregated search. ACM Trans. Inf. Syst. 33, 2, Article 5 (February 2015), 38 pages.
DOI: http://dx.doi.org/10.1145/2668120

1. INTRODUCTION

There is a general trend to aggregate search results from different verticals (e.g., News,
Image, Video) and present them in one search result page together with “general Web”
or “organic Web” results. This new search paradigm is called aggregated search or
federated search and has been adopted by all major commercial search engines. As
much as one third of all queries have an intent that can be answered by a specific
vertical, whereas 10% to 30% of the queries require at least two different types of
vertical. This was first pointed out in a study by Arguello et al. [2009], where human
editors found at least two relevant verticals for 30% of the queries in a random sample of
Yahoo! Search queries. More conservative estimations from other search engines were
later reported by Chen et al. [2012] and Styskin [2013]. With respect to presentation
style, it has become standard to group the results coming from the same vertical and
present them as one coherent block. As was shown by Dumais et al. [2001], presenting
results in a grouped manner simplifies browsing result lists and helps users to navigate
faster.

As web search engines constantly evolve, their quality needs to be evaluated. In-
terleaving [Joachims 2002, 2003] is an evaluation method for comparing the relative
quality of two ranking systems. Users are presented with a mixed or interleaved list of
results from both rankings, and the users’ clicks are used to determine which system
is better. Interleaving methods have proved to be an efficient tool; they allow us to
find preferred system from user clicks faster than other methods, such as A/B-testing
[Radlinski et al. 2008].

How can interleaving methods be used to measure the quality of aggregated search
systems that combine Web and vertical results? We want to achieve the efficiency of con-
ventional interleaving methods while preserving the conventional aggregated search
user experience, in which vertical results are organized in blocks. In this article, we
propose several methods for extending interleaving methods to complex heterogeneous
pages comprising results from different verticals.

Our main research questions are as follows:

RQ1 Influence on the user experience: What effect do different interleaving methods
(both conventional and newly introduced vertical aware) have on the user experi-
ence in the context of aggregated search? Do any of these methods run the risk of
degrading the quality of the results or altering the user experience?

RQ2 Correctness and sensitivity: Do different interleaving methods always draw cor-
rect conclusions about the better system? How fast, in terms of the number of
impressions and amount of feedback needed, can they detect that one aggregated
search system is to be preferred over another?

RQ3 Unbiasedness: Do the interleaving methods that we consider provide a fair and
unbiased comparison, or do some of them erroneously infer a preference for one
aggregated search system over another in situations where implicit feedback is
provided by a randomly clicking user?

To answer RQ1, we consider different pairs of aggregated result pages and analyze
the effect on the user experience imposed by the interleaving methods that we consider.
We go beyond the restricted situation of a single vertical block present in both rankings

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

http://dx.doi.org/10.1145/2668120

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:3

that was considered in Chuklin et al. [2013a] and analyze a more general and more
complex scenario where the aggregated result pages are allowed to have multiple blocks
that originate from different verticals. We also add an evaluation of the quality of the
interleaved list as captured by both click metrics and offline rater-based metrics.

RQ2 concerns the ability of an interleaving method to correctly capture the difference
between two rankers by using the minimal amount of implicit user feedback. We extend
previous work by analyzing the ability to notice not only strong differences between
rankers (formulated in terms of Pareto dominance) but also subtle differences reported
by offline and online quality metrics, including those specific to aggregated search.

Finally, to answer RQ3, we need to check that none of the evaluation methods infer
statistically significant preferences when we assume a randomly clicking user. By
removing limitations on the number of vertical blocks per result page and considering
additional datasets, we make the study substantially more thorough and complete than
in the earlier publication on which this article is based [Chuklin et al. 2013a].

The rest of the article is organized as follows. We discuss related work in Section 2.
In Section 3, we introduce conventional interleaving methods and their limitations as
applied to modern search result pages. In Section 4, we present two vertical-aware
interleaving methods capable of dealing with not just one but many vertical blocks of
different types. In Section 5, we introduce the experimental setups that we use and
discuss their strengths and weaknesses. In Sections 6, 7, and 8, we address the research
questions formulated earlier. We conclude in Section 9.

2. RELATED WORK

Two lines of research relate to this work. One focuses on evaluating aggregated search
engine result pages using different evaluation paradigms (Section 2.1). The other ex-
plores utilizing interleaving methods for evaluating search rankings (Section 2.2).

2.1. Aggregated Search

Aggregated search deals with presenting results from different verticals in one unified
interface. The search engine that introduced this aggregated or faceted search early on
was Naver; there, result pages allow many more than 10 results per query, and results
are always grouped into separate panels, one for each vertical [Seo et al. 2011]. Yahoo!
and Bing historically inserted blocks of vertical documents on fixed positions (slots)
in addition to the organic Web search documents [Arguello et al. 2011a; Ponnuswami
et al. 2011]. Yandex allows vertical blocks to appear in any position [Chuklin et al.
2013c], and the same appears to hold for Google.

Evaluation of aggregated search is complex and challenging, as there is a variety of
compounding factors. Four key components of aggregated search are the key influence
of user’s experience: vertical selection (VS), vertical diversity (VD), item selection (IS),
and result presentation (RP). VS and VD deal with deciding which set of diverse
verticals are implicitly intended by a query. IS deals with selecting a subset of items
from each vertical to present on the aggregated page. RP deals with organizing and
embedding the various types of result on the result page.

There is a growing body of work on evaluating aggregated search engine result pages.
Relatively early work considers VS to be the main criterion of evaluation, and much of
the research [Arguello et al. 2009; Zhou et al. 2012b] aims to measure the quality of the
set of selected verticals, compared with an annotated set obtained by collecting manual
labels from assessors underlying different assumptions [Zhou et al. 2013a, 2014].

In later work, to evaluate both VS and RP, Arguello et al. [2011b] propose to use
pairwise preference evaluation to rank the vertical blocks for a given query. Targeting
a similar objective, Ponnuswami et al. [2011] describe the process of manual assess-
ments of both vertical and organic documents, and propose a click-based assessment

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:4 A. Chuklin et al.

of vertical block placement similar to Joachims [2002]. However, they neither discuss
the combined effect of these two ranking aspects nor suggest a way to compare vertical
documents inside one block to each other (IS). Most of these evaluation methods as-
sume that the vertical block is atomic—that is, it is considered to have no internal
structure. However, this is not always the case. For example, a news block usually
contains a list of headlines. Each of them can be judged separately and compared to
organic Web results.

Recently, Zhou et al. [2012a] followed the Cranfield paradigm [Cleverdon et al.
1966] and proposed an evaluation framework for measuring aggregated search engine
result page quality by modeling all, or a subset, of the four aggregated search key
components discussed earlier (VS, VD, IS, and RP). The main differences between
these proposed metrics are the way in which they model each factor and the way that
they combine them. A list of diversity metrics such as α-NDCG [Clarke et al. 2008]
is also adapted to evaluate aggregated search. By meta-evaluating those metrics on
their reliability and intuitiveness, Zhou et al. [2013b] conclude that the ASRBP metric
[Zhou et al. 2012a] is the preferred metric.

In contrast to previous work, we base our methods on an efficient interleaving
method, which was proven to accurately infer user preferences from implicit feedback.
Most of the preceding evaluation approaches rely on offline editorial assessments;
in contrast, our proposed approach only needs naturally occurring user interactions,
which is cheap and useful in an online environment. Similar to Zhou et al. [2012a],
we aim to capture the four key components of aggregated search together when we
conduct our evaluations. To answer RQ1, we also utilize a set of offline metrics (e.g.,
ASRBP) to quantify the quality of the results to verify that our proposed approaches do
not degrade the user experience.

2.2. Interleaving

Although the traditional Cranfield approach [Cleverdon et al. 1966] to ranker evalua-
tion is still widely used, there is a growing trend to use implicit feedback from users to
evaluate and learn ranking models. Starting with the work of Joachims [2002, 2003],
the idea of interleaving methods has become increasingly popular.

The two most commonly used interleaving methods are Team-Draft Interleaving
(TDI) [Radlinski et al. 2008] and Balanced Interleaving (BI) [Joachims 2003]. TDI
can be described as follows. For each user query, we build an interleaved list L whose
documents are contributed by rankings A and B—the two rankings that we want
to compare. This interleaved list is then shown to the user, and the user’s clicks are
recorded. The system that contributes most of the documents clicked by the user is
inferred to be the winner for the particular query-user pair; the system that wins
for most such pairs is then considered to be the better system. BI uses a different
algorithm to build an interleaved list L and a more sophisticated procedure for
determining the winner. These interleaving methods, as well as their modifications,
were extensively studied in Chapelle et al. [2012] and Hofmann et al. [2013b].

Other interleaving methods include Document Constraints Interleaving (DCI) by He
et al. [2009] and Probabilistic Interleaving (PI) by Hofmann et al. [2011]. DCI produces
interleaved lists similar to BI, but it has a different and more involved way of determin-
ing the winner by computing which ranking violates the smallest number of constraints.
PI has the advantage that historical interaction data can be reused using importance
sampling, such as in an online learning to rank setting [Hofmann et al. 2013a] or
potentially also in an evaluation setting. In principle, PI with importance sampling
could also be adapted to be vertical aware. However, because PI relies on probabilistic
rankers, it risks showing the user poor rankers that are not related to the original
rankers being interleaved, which may affect user experience [Hofmann et al. 2013a].

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:5

Optimized Interleaving (OI), a very recent approach to generating interleaved
pages, is proposed by Radlinski and Craswell [2013]. This method does not have the
drawbacks of PI. Unlike TDI, it first enumerates all possible interleaved lists and then
assigns probabilities according to which an interleaved list is drawn. This probability
distribution is selected such that the comparison is unbiased and has optimal
sensitivity. We build vertical-aware interleaving methods on top of both TDI and OI.

Most interleaving methods presented until now were evaluated in terms of sensitiv-
ity and correctness, which corresponds to our RQ2. Radlinski and Craswell [2010] show
that interleaving is more accurate and more sensitive than standard offline metrics
such as NDCG or MAP. Radlinski and Craswell [2013] apply the same evaluation
method to show that OI is more sensitive than TDI if the right credit function is used.
They also analyze typical biases of different interleaving methods (related to our RQ3).

Another meta-evaluation method was proposed by He et al. [2009], where different
interleaving methods were compared in terms of their effect on the user experience
(related to our RQ1). Unfortunately, they do not report any difference between
interleaving methods nor do they compare the quality of the interleaved system
to the original A and B systems being interleaved. We substantially extend this
meta-evaluation method in Section 6 (RQ1).

A comprehensive study with a systematic analysis of interleaving methods and their
meta-evaluation was suggested by Hofmann et al. [2013b]. The main questions that
we aim to answer are related to, but different from, the notions of fidelity, soundness,
and efficiency studied by Hofmann et al. [2013b]. First of all, we put more focus on
the user experience aspect (RQ1), which was not analyzed in Hofmann et al. [2013b].
Second, our RQ2 unites two closely related questions of sensitivity and correctness,
which in Hofmann et al. [2013b] were split across definitions of efficiency and fidelity
(their Definitions 4.4 and 4.2(2), respectively). Finally, we separate the question of
unbiasedness, which in Hofmann et al. [2013b] was bundled with correctness (their
Definition 4.2(1)). In addition, we do not study the notion of soundness introduced by
Hofmann et al. [2013b], as it is trivially satisfied for the interleaving methods that we
use.

Our work differs in important ways from the work just discussed. In contrast to pre-
vious work on evaluating aggregated search, we perform online evaluations based on
interleaving methods that allow us to evaluate aggregated system as a whole and to do
so efficiently. In contrast to previous work on interleaving, we propose an interleaving
method that preserves the user experience on complex aggregated search engine result
pages while maintaining a high degree of sensitivity and preserving unbiasedness.

3. CONVENTIONAL INTERLEAVING

To design a new interleaving method, one can follow one of two possible ways. The
first way, followed by the majority of the interleaving methods [Hofmann et al. 2011;
Joachims 2003; Radlinski et al. 2008], assumes that the designer of the interleav-
ing method specifies the probability distribution over possible interleaved lists. This
probability distribution was made explicit in PI [Hofmann et al. 2011] and left implicit,
although easily reconstructible, in BI [Joachims 2003] and TDI [Radlinski et al. 2008].1
Another approach introduced by Radlinski and Craswell [2013] specifies an interleav-
ing method as an optimization problem that allows us to explicitly tune the method for
better sensitivity.

According to Joachims [2003], a good interleaving method should be blind to the user
and have a low usability impact. This is particularly important for vertical search,

1The distribution is uniform among allowed rankings in these two methods.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:6 A. Chuklin et al.

Fig. 1. Two rankings with a vertical block and one of the possible interleaved lists (TDI). Vertical documents
are shown as dotted lines.

because as we will show later, conventional interleaving methods do not fully satisfy
these conditions.

We will use two conventional interleaving methods as baseline methods: TDI and
OI. The former is widely used in commercial settings [Chuklin et al. 2013b; Radlinski
and Craswell 2010], whereas the latter has good flexibility that enables us to naturally
extend it to the aggregated search setup. The same two interleaving methods were also
extended in Schuth et al. [2014] to allow for comparisons of multiple rankers at once.

3.1. Team-Draft Interleaving

Conventional TDI (Algorithm 1) allows rankings Aand B to contribute documents turn
by turn and keeps track of which side contributes which document (TeamA or TeamB).
By flipping a coin (after each side has added two documents), the algorithm ensures
a fair and unbiased team assignment and sufficient variability in the result list L.

ALGORITHM 1: Conventional Team-Draft Interleaving (TDI).
1: function TDI(ranking A, ranking B)
2: L ← []; TeamA ← ∅; TeamB ← ∅

3: while |L| < N do
4: if |TeamA| < |TeamB| + RANDOMINTEGER(0, 1) then
5: k ← min{i : A[i] �∈ L}
6: TeamA ← TeamA + A[k] � add A[k] to TeamA
7: L ← L + A[k] � append A[k] to the list L
8: else
9: k ← min{i : B[i] �∈ L}

10: TeamB ← TeamB + B[k] � add B[k] to TeamB
11: L ← L + B[k] � append A[k] to the list L
12: return L

As we can see in Algorithm 1, there is nothing that prevents result list L from mixing
up documents from different verticals with Web documents. Even when we have only
one vertical block of the same type in Aand B, the algorithm may give rise to two blocks
in the interleaved list and therefore affect the user experience. For instance, Figure 1
shows a schematic representation of two ranked lists A, B and one of the possible
interleaved lists. In this example, vertical documents d3, d4, and d5 are not grouped,
which deviates from the traditional user experience.

3.2. Optimized Interleaving

Radlinski and Craswell [2013] propose formalizing the “low usability impact”
constraint (our RQ1) using a prefix condition (called c′ there):

∀k ∃i, j such that Lk = Ai ∪ Bj, (3.1)

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:7

where Ai is the set of top i documents returned by system A, Bj is the set of top
j documents returned by system B, and Lk is the set of top k documents of the
interleaved ranking L.2

When we fix a prefix condition, all we need to do is assign probabilities to all pos-
sible interleaved lists L that conform to this condition (we denote the set of possible
interleaved lists as L). Radlinski and Craswell [2013] suggest choosing this probability
distribution to maximize the method’s sensitivity while preserving its unbiasedness.3
We also need to specify a credit function δ(d) that assigns a particular credit to docu-
ment d depending on its rank in rankings Aand B. If we assume for now that the credit
function is fixed, we can write down the following optimization problem [Radlinski and
Craswell 2013, Section 3]:

pi ∈ [0, 1] (3.2)

|L|∑

i=1

pi = 1 (3.3)

∀k ∈ {1, . . . , N} :
|L|∑

i=1

piδk(Li) = 0 (3.4)

|L|∑

i=1

pis(Li) → max, (3.5)

where s is an estimated sensitivity function defined as

s(L) = − 1 − wT

wA + wB
· (wA log wA + wB log wB − (wA + wB) log(wA + wB))

wA =
∑

i:δi>0

f (i)

wB =
∑

i:δi<0

f (i)

wT =
∑

i:δi=0

f (i)

f (i) = 1/i
∑N

k=1 1/k
.

We use the same constraints as Radlinski and Craswell [2013] for the credit function.
Given a document d, let δ(d) denote the credit assigned to system A for this document.4
Thus, when δ(d) is positive, then A receives credit; if it is negative, then B receives
credit. The credit function should satisfy the following:

rank(d, A) < rank(d, B) ⇔ δ(d) > 0 (3.6)

rank(d, A) > rank(d, B) ⇔ δ(d) < 0, (3.7)

2Note that interleaved lists produced by TDI also satisfy the prefix condition (3.1).
3Radlinski and Craswell use a different formalization of the unbiasedness, which is, however, mathematically
equivalent to our condition (3.4).
4For simplicity, we use the same names for rankers (ranking systems) and the ranking lists that they
generate. It should be clear from the context what we refer to.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:8 A. Chuklin et al.

Fig. 2. Two rankings with a vertical block at the same position.

where rank(d, X) is a position of the document d in ranking X (we set rank(d, X) = +∞
if d �∈ X). In particular, we set δ to linear rank difference, which is the most sensitive
setting in Radlinski and Craswell [2013, Equation (14)]:

δk(L) = rank(dk, A) − rank(dk, B). (3.8)

The interleaving method then proceeds as specified in Algorithm 2.

ALGORITHM 2: Conventional Optimized Interleaving (OI).
1: function OI(ranking A, ranking B, credit function δi)
2: L ← {L | L satisfies (3.1)}
3: Find a distribution {pL | L ∈ L} that conforms to the constraints (3.2), (3.3), (3.4) and

maximizes the average sensitivity (3.5).
4: Sample L from L according to the probability distribution pL
5: return L

If we are to add a constraint that discards all rankings L that split vertical documents
of the same type, we will end up with a very biased list of rankings L. Consider the
example provided in Figure 2. In this example, each ranking A and B has exactly
one vertical block—say, News, which consists of different documents and resides on
positions 4 and 5 in both rankings A and B. We also assume that organic rankings
are sufficiently different in A and B. We can easily see that the prefix condition (3.1)
does not allow system B to contribute its vertical documents until it has contributed
all documents before the block. The same holds for system A. This means that if we
want both systems to contribute to the resulting vertical block of L, we are forced to
place the block lower in the ranking because we first need to show the union of before-
block documents from A and B. This implies that, in Figure 2, we need to present
d1, d2, d3, d6, d7 before the vertical block whenever we want both d4 and d8 to both be
present in the resulting ranking. But if we do so, we change the user experience by
pushing the vertical block to the bottom of the result page and hence influence the user
experience (RQ1) in a negative way. We also risk having a bigger vertical block than in
either ranking A or ranking B for the same reason.

4. VERTICAL-AWARE INTERLEAVING

In this section, we discuss vertical-aware extensions of the two interleaving methods
that we study: TDI and OI. We modify these interleaving methods such that the vertical
documents of the same type are guaranteed to be grouped.

4.1. Vertical-Aware Team-Draft Interleaving

We describe an algorithm that may be viewed as a generalization of the conventional
TDI method by Radlinski et al. [2008]. The intuition is to start with the standard TDI
method and then alter it to meet the following requirements:

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:9

(1) Both of the ranked lists being interleaved should contribute to the vertical block
placement size and position in the interleaved list;

(2) Both ranked lists should contribute vertical and organic Web documents;
(3) Team assignment should be “fair”; and
(4) The resulting interleaved list should not degrade the user experience.

We propose the vertical-aware team-draft interleaving (VA-TDI) method (Algorithm 3),
which generalizes Algorithm 1 in Chuklin et al. [2013a] to the case of multiple vertical
blocks. The main idea is to enforce the grouping of vertical documents. Therefore, our
algorithm proceeds like the conventional TDI method until it hits the first vertical
document. After that, it interleaves only vertical documents of this type (line 29) until
the block has been formed (line 18)—that is, there are no vertical documents left or the
desired block size is reached.5 After that, the algorithm continues as usual but ignores
the vertical documents whose blocks have already been formed (line 33).

If we look back to our original goals, we see that Algorithm 3 explicitly chooses block
sizes between those of A and B (with some smoothing to do exploration) while the
position of the block is contributed implicitly (although both ranked lists can influence
it). Requirements 2 and 3 are met automatically due to the TDI procedure that we
reuse (after one ranked list wins the coin flip and contributes the document, the other
ranked list has to contribute the next document), although we also verify them along
with requirement 4 in our experiments.

On the other hand, the algorithm proposed has some weaknesses. First of all, it
assumes a rejection sampling procedure: if the selected block size cannot be achieved,
we reject the list being built and start a new one with another randomization (line 31).
This usually happens when Aand B have very different block sizes and we cannot build
a big enough vertical block, as VA-TDI assumes that A and B contribute roughly the
same number of vertical documents (Algorithm 3, line 14). Using synthetic rankings
(Section 5.1.3), we identify that rejection happens on average 3.8 times per interleaving
function invocation with slightly over 100 in the worst case. This could lead to unwanted
delays in building the interleaved search engine result page and may potentially affect
the user if the search is run on slow hardware. It is worth noting, however, that the
TDI method normally takes a negligible amount of query processing time, and even a
100-fold increase should not lead to a visible degradation.6 Another issue of the VA-TDI
method appears when we consider Aand B with different vertical blocks. The method’s
nature prevents one ranked list from contributing more than two documents in a row,
which means that if A has a vertical of type t and size n (n ≥ 3) while B does not
have a vertical of type t, the interleaved list will only be able to include one or two top
documents from this block. As we will see later, this leads to smaller vertical blocks
(Section 6.1), which may affect the user experience. This also limits the sensitivity of
VA-TDI (because it may skip vertical documents)—as we will see in Section 7, VA-TDI
is unable to break the limit of sensitivity 0.8 even when we consider strong cases where
APareto dominates B. Having these limitations in mind, in the next section we propose
another interleaving method, VA-OI, that does not suffer from them.

4.2. Vertical-Aware Optimized Interleaving

To extend the OI method presented in Section 3.2, we extend Equation (3.1) and add
an additional constraint that guarantees that vertical documents of the same type are
presented in a grouped manner (Equation (4.8)).

5We pick the desired block size beforehand (line 7) to ensure that requirement (1) is met.
6For practical purposes, we can also introduce a cut-off and skip interleaving if it takes too much time to
build. However, this would lead to a biased sample and requires a separate analysis.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:10 A. Chuklin et al.

ALGORITHM 3: Vertical-Aware Team-Draft Interleaving (VA-TDI).
1: function VATDI(ranking A, ranking B)
2: vLeft ← ∅ � verticals left (not yet present in L)
3: for every vertical type t present in either A or B do
4: At ← {d ∈ A | d is a vertical doc of type t}
5: Bt ← {d ∈ B | d is a vertical doc of type t}
6: SizeA

t ← |At|; SizeB
t ← |Bt|

7: SizeL
t ← SAMPLESMOOTHLY(SizeA

t , SizeB
t)

8: if SizeL
t �= 0 then

9: vLeft ← vLeft ∪ {t}
10: L ← []
11: TeamA ← ∅; TeamB ← ∅

12: t ← NULL � current vertical type
13: while |L| < N do
14: if |TeamA| < |TeamB| + RANDOMINTEGER(0, 1) then
15: ADDNEXTDOCFROM(A, t, vLeft)
16: else
17: ADDNEXTDOCFROM(B, t, vLeft)
18: if t �= NULL and |{d ∈ L | d is a vertical doc of type t}| = SizeL

t then
19: vLeft ← vLeft\{t} � this vertical is finished in L
20: t ← NULL

21: return L

22: function SAMPLESMOOTHLY(integer a, integer b)
23: if a > b then
24: SWAP(a, b)
25: Sample r randomly from [a−1, b+1] where all integers from [a, b] have equal probability

p; (a − 1) and (b + 1), each has probability p
2

26: return r

27: procedure ADDNEXTDOCFROM(ranking X, current vertical type t, vLeft)
� X is either A or B

28: if t �= NULL then
29: Xlef t ← {i | X[i] ∈ Xt\L}
30: if Xlef t = ∅ then
31: return � interleaved list is rejected, start a new one
32: else
33: Xlef t ← {

i | X[i] ∈ X\L and (X[i] is a Web doc or ∃t′ ∈ vLeft : X[i] ∈ At′)
}

34: k ← min Xlef t � select the document with the min rank
35: TeamX ← TeamX ∪ {

X[k]
} � add the document to the team

36: if X[k] is a vertical doc of type t′ then
37: t ← t′

38: L ← L + X[k] � append the document to L

Consider a list of documents A, containing multiple blocks of vertical documents of
different types. Let AWeb be the list of organic Web results in A, so A stripped of all
vertical blocks. For any vertical type t ∈ {Image, News, . . .}, let At be the list of vertical
documents of that type in A. This list may be empty. We assume that all vertical
documents of one type occur in A in one group, so all of those documents are grouped
together in the search engine result page.

Let Ak
Web be the list of the k documents in AWeb having the smallest rank values

(ranked higher). So for AWeb = (d1, . . . , dn), we have Ak
Web = (d1, . . . , dk). For any vertical

type t, define Ak
t in a similar way. Note that it is not necessarily so that a document di

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:11

in AWeb = (d1, . . . , dn) is ranked at position i, as there may be vertical documents above
di, pushing it to a higher rank (lower position). Therefore, there may be documents
in Ak that are ranked below position k. For a document d, let rank(d, A) denote its
rank in A, with rank(d, A) = +∞ if d is not in A. For a set of documents S, we define
rank(S, A) = mind∈S rank(d, A).

From two lists A and B, we generate a new list L that is a combination of the two.
We define similar lists and functions for B and L as earlier for A. The constraints that
should be satisfied by any generated list are as follows:

∀k ∃i, j : Lk
Web = Ai

Web ∪ Bj
Web (4.1)

∀t, k ∃i, j : Lk
t = Ai

t ∪ Bj
t (4.2)

∀t s.t. Lt �= ∅ : min
(|At|, |Bt|

) ≤ |Lt| ≤ max
(|At|, |Bt|

)
(4.3)

∀t s.t. Lt �= ∅ : rank(Lt, L) ≥ min(rank(At, A), rank(Bt, B)) (4.4)

∀t s.t. Lt �= ∅ : rank(Lt, L) ≤ max(rank(At, A), rank(Bt, B)) (4.5)

|{t | Lt �= ∅}| ≥ min
(|{t | At �= ∅}|, |{t | Bt �= ∅}|) (4.6)

|{t | Lt �= ∅}| ≤ max
(|{t | At �= ∅}|, |{t | Bt �= ∅}|) (4.7)

∀t ∃m, n : ∀k ∈ [m, n] : ∃d ∈ Lt : rank(d, L) = k. (4.8)

Constraint (4.1) is the prefix constraint introduced by Radlinski and Craswell [2013]. It
requires any prefix of LWeb to be a combination of the top i and top j documents of AWeb
and BWeb. This essentially means that the new list could be constructed by repeatedly
taking the top document that is not used yet from either AWeb or BWeb. Constraint (4.2)
is an adaptation of the prefix constraint for verticals. It requires that the prefix of any
vertical block Lt is a combination of top documents of the lists of verticals of the same
type in A and B. Constraint (4.3) requires the size of each vertical block to be between
the sizes of the vertical blocks of the same type in Aand in B. Constraints (4.4) through
(4.5) control the position of each vertical block. The rank of the vertical block should be
between the ranks of the blocks of the same type in A and B.

We need additional constraints to control the number of vertical blocks in the list L.
If we only had constraints (4.1) through (4.5), it might be the case that there are three
vertical blocks in A, three vertical blocks of different types in B, and six vertical blocks
in the result list L. This would change the user experience a lot. Therefore, constraints
(4.6) and (4.7) limit the number of vertical blocks in L to be between the number of
vertical blocks in A and the number of vertical blocks in B.

Finally, constraint (4.8) ensures that ranks of the vertical documents of the same
vertical type t are adjacent numbers—that is, there are no gaps in the ranks.

The interleaving method then proceeds as described in Algorithm 4.
With these constraints, we require all aspects of the interleaved list (document place-

ment in the regular result list, document placement inside the vertical block, size of
the vertical block, position of the vertical blocks, and number of vertical blocks) to be
somewhere between A and B. This allows for exploration of all possible rankings that
can possibly be considered a combination of A and B.

It is worth noting that constraints (4.1) through (4.8) are more limiting than the
original constraints in the conventional OI method. As a consequence, the problem of

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:12 A. Chuklin et al.

ALGORITHM 4: Vertical-Aware Optimized Interleaving (VA-OI).
1: function VAOI(ranking A, ranking B, credit function δi)
2: L ← {L | L satisfies (4.1)–(4.8)}
3: Find a distribution {pL | L ∈ L} that conforms to constraints (3.2), (3.3), and (3.4) and

maximizes the average sensitivity (3.5).
4: Sample L from L according to the probability distribution pL
5: return L

forming an interleaved list becomes overconstrained more often than for the conven-
tional OI method: it happens about 10% of the time for VA-OI versus less than 0.1% for
OI (experiments with the real dataset, which is introduced in Section 5.1.1). In cases
where the problem becomes overconstrained, we relax it by replacing constraint (3.4)
by the aggregated version:

N∑

k=1

|L|∑

i=1

piδk(Li) = 0. (4.9)

By doing so, we guarantee that the problem has a solution. Note that A and B are
always present in L, so we have at least two variables (p1 and p2) and at most two
linear equations, Equations (3.3) and (4.9). We can also see that the interleaving method
stays unbiased for the randomly clicking user, which we also confirm experimentally
in Section 8.

We also considered altering the credit function to account for the fact that we are deal-
ing with aggregated result pages. Vertical documents are often visually more salient
than organic Web documents, which changes the examination probabilities and in some
cases even the examination order. We take this into account by redefining the rank(d, X)
function in (3.8) as rank(d, examination(X)), which represents the rank of document
d in ranking X, where X is reordered in descending order by examination probability
according to a click model. Preliminary experiments with this adapted credit function
showed that it makes no change for the sensitivity and correctness as measured with
the offline and online reference metrics (Sections 7.2 and 7.3). We did see the difference
in sensitivity if Pareto dominance is used as ground truth (Section 7.1), but we treat
this result as an artifact of our experimental setup, an artifact that stems from the fact
that both the click model and Pareto dominance rely on the same examination order
implied by the same click model.

To summarize, we have introduced two interleaving methods that respect verti-
cal blocks within aggregated search scenarios. In Sections 6, 7, and 8, we evaluate
these methods experimentally and show how they compare to conventional interleav-
ing methods.

5. EXPERIMENTAL SETUP

Each of the interleaving methods that we study (Algorithms 1, 2, 3, and 4) takes
two ranked lists as an input, generates an interleaved list, observes user clicks on it,
and infers which system’s rankings are better as its outcome. Therefore, to answer the
three research questions listed in the Introduction (Section 1), we need two ingredients:
pairs of ranked lists (rankings) and clicks. Next, we present different ways to obtain
ranked lists and clicks that we will later use in our experiments. The breakdown of
the experimental setups that we use is presented in Table I. We also present a table
showing which experiments use which datasets (Table II). Basically, we aim to choose
the most appropriate dataset(s) that provide most valuable insights to answer each
specific experiment that we perform.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:13

Table I. Characteristics of Different Experimental Setups (Documents, Queries, Verticals, and Systems)

Queries Aggregated Description
Data Documents (TREC Topics) Verticals Search Systems Rankings Clicks
Real 2 months of

log data
814 (5,755∗)
queries

1 vertical 2 systems 5.1.1 5.2.1

Model TREC
FedWeb13
data
Demeester
et al. [2013]

50 topics 12 verticals† 36 model
systems

5.1.2 5.2.2

Synthetic Artificial
documents
with
simulated
relevance

Any number
of synthetic
topics

3 verticals Any number of
synthetic
aggregated
search systems

5.1.3 5.2.2

∗ We have more queries for the relaxed setup (see Section 5.2.1).
† Verticals are manually classified from the 108 FedWeb sources. Details of the classification can be
referred in Zhou et al. [2013b].

Table II. Experiments Performed to Answer Each Research Question and the Datasets Used

Data
Research Question Experiment Section Real Model Synthetic
RQ1: Influence on the user Visual aspects 6.1 � � �

Offline quality 6.2 �
Online quality 6.3 � �

RQ2: Correctness and sensitivity Pareto dominance 7.1 � �
Offline metrics 7.2 �
Online metrics 7.3 �
A/B testing 7.4 �

RQ3: Unbiasedness Random clicks 8.1 � � �

5.1. Rankings

We use three different sources of rankings: from real rankings of a commercial search
system through model rankings emitted by rather simplistic model aggregated search
systems to completely synthetic rankings targeted to approximate realistic aggregated
search result pages while having more control.

The reason to use different setups lies in the need to find a trade-off between reality,
variability, and the amount of data that we have (Figure 3). Although desirable, we
are not in possession of a single setup that would cover all aspects (dotted line in
Figure 3). Instead, we have three different setups. First, real rankings allow us to
assess interleaving methods on real-world ranking systems that serve real users and
give us access to a good amount of data. However, variability of the data is low (e.g., we
only have access to a single vertical and hence cannot assess our interleaving methods
in a multivertical environment). Second, model rankings represent near real-world
ranking systems that allow for greater variability, as we use simulated users and do
not run the risk of hurting real users’ experiences here. The data, however, is limited
by the number of model aggregated search systems (36 in our case) and the number
of TREC FedWeb topics (50 in our case). Last, synthetic rankings allow us to generate
endless amounts of data with any variability that we want, but the relation to the
real world is limited to what we explicitly include in our synthetic ranking generation
procedure.

5.1.1. Real Rankings. We use a 2-month click log of the Yandex search engine recorded
during winter 2012–2013. Due to limited access to the click log data, we were only able
to collect data with one vertical block. We picked the vertical of Mobile Applications

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:14 A. Chuklin et al.

Fig. 3. Radar chart of the different data characteristics covered by the different experimental setups (real,
model, and synthetic data). The farther from the center, the more pronounced this property is in a particular
dataset. Note that for illustrative purposes, the intersection of the three axes denotes that all characteristics
are low, but not zero. For example, model data exhibits relatively high variability and reality with amount
of data being low.

Fig. 4. A vertical result item from the Mobile Applications vertical for the query “learn languages for free
iphone.”

because it is visually different from normal Web results and does not have additional
aspects such as freshness (so we ruled out the News vertical) or horizontal document
layout within a vertical block (that ruled out the Image and Video verticals). The
Mobile Applications vertical is triggered for queries with an information need related
to smartphone or tablet applications.7 Although the algorithm used for information
need detection is beyond the scope of this article, it is useful to name a few examples
of queries triggering the appearance of this vertical. These include queries containing
a mobile application name (e.g., “cut the rope”) or explicit markers of mobile platforms
(e.g., “Opera for iPhone”). The result items in the vertical block are presented using a
standard text snippet, enhanced with an application icon, price, and rating. An example
of such a snippet is shown in Figure 4.

One of the limitations of this approach is that we cannot experiment with completely
new document orders that are disallowed by the current production ranking algorithms.
In particular, we cannot reproduce the outcomes of an interleaving method that does
not respect vertical block grouping. Another limitation is that we do not have data with
multiple verticals and hence can only reproduce part of the analysis that we are able
to conduct with model or synthetic rankings introduced later. On the other hand, even

7Currently limited to iOS or Android devices.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:15

limited experiments with real data allow us to validate the key findings of the more
comprehensive but less realistic setups.

5.1.2. Model Rankings. A broader but less realistic scope of rankings can be obtained by
implementing model aggregated search systems. As in Zhou et al. [2013b], we imple-
ment near-real-world aggregated search systems that we can apply to rank documents
and emit rankings with vertical blocks. The basic idea is that we implement state-
of-the-art aggregated search components, and by combining different components, we
develop a set of aggregated search pages with varying qualities.

First, we assume that an aggregated search page consists of 10 Web blocks (a single
organic Web document is viewed as a block) and up to three vertical blocks dispersed
throughout those 10 blocks (where each vertical block consists of a fixed number of
three items).

Second, as described in previous work [Zhou et al. 2013b], we simulate a set of
systems by implementing existing algorithms. We develop four state-of-the-art VS
systems; two utilize vertical term distribution evidence and the other two use user
intent information by mining query logs. For IS, we simulate three potentially different
levels of relevance by using different ranking weighting schemes: Perfect (all vertical
items are relevant), BM25 (with PageRank as a prior), and TF (with PageRank as a
prior). We also simulate three approaches for RP: Perfect, Random, and Bad. Perfect
places the vertical blocks on the page so that gain could potentially be maximized,
whereas Bad reverses the perfectly presented page.

By utilizing this approach, we can generate 4×3×3 = 36 aggregated search systems,
which gives us 36 × 35/2 = 630 system pairs.

As a source of documents, we use the TREC FedWeb13 dataset [Demeester et al.
2013], which has topical relevance labels as well as vertical orientation labels—that is,
the probability that the user prefers documents of this vertical type to the organic Web
documents.

5.1.3. Synthetic Rankings. Although the model aggregated search systems allow us to
have broader variety and a larger amount of data than real rankings, they still provide
a limited setup. To make reliable judgments about the sensitivity of an interleaving
method (RQ2) or about its unbiasedness (RQ3), we would like to be able to generate as
much data as we need. For this purpose, we introduce a synthetic ranking generation
procedure that does not require any document dataset or pool of aggregated search
systems.

First, we want to mention that two ranking systems, when compared, may or may
not differ in how they present vertical documents. In particular, the systems being
compared may use the same method of building and presenting the vertical blocks and
only differ in the nonvertical (organic) ranking. We believe that this is an important
special case for search engine evaluation that deserves a separate analysis. Our early
experiments with the real click log [Chuklin et al. 2013a, Table 4] showed that the out-
come of the interleaving method is correlated with, but different from, the interleaving
in situations where no verticals are distorting user clicks.

For the synthetic experiments, we design two different algorithms to simulate rank-
ings: those with fixed vertical blocks (position and contents of the vertical blocks is the
same in A and B rankings) and those with nonfixed vertical blocks (vertical blocks may
have different contents and positions in A and B). These two settings also correspond
to two different approaches to the construction of an aggregated search page. The first
approach [Arguello et al. 2011a, 2011b] assumes that we have an organic Web ranking
in place and that vertical documents are being added on top of it, regardless of the Web
ranking. Another approach [Sushmita et al. 2010; Zhou et al. 2013b] assumes that the
vertical documents also have topical relevance labels that can be compared to those of

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:16 A. Chuklin et al.

the Web documents. This approach has started gaining popularity with the recently
established TREC FedWeb track [Demeester et al. 2013; Nguyen et al. 2012].

For the fixed vertical blocks, we first generate a pair of organic rankings and then
randomly insert blocks of vertical documents at the same place in both rankings. These
blocks vary in size from zero to eight documents and in the positions of the blocks.8
The ranking of the vertical documents within a block is always fixed (i.e., the same for
both rankings). Vertical documents are either (1) nonrelevant (condition nonrelevant)
or (2) a number of them, proportional to the relevant organic Web documents, are
relevant (condition relevant).

For the nonfixed vertical blocks, we generate two lists that contain vertical documents
straight away. We slightly modify the earlier procedure that we use for organic ranking
generation: when constructing the ranking of all documents, both vertical and organic
Web documents are generated; if the vertical documents end up not being grouped, we
reorder them accordingly (see Algorithm 7).

When generating pairs of rankings A and B, we also ensure that the difference be-
tween a generated pair of rankings resembles the typical differences that we encounter
in real-world interleaving experiments while allowing for ample variety. A particular
procedure of generating synthetic ranking pairs is described in Appendix A.

5.2. Clicks

For clicks, we use both real click data from the 2-month click log described earlier
(Section 5.1.1) and simulated clicks derived from a state-of-the-art click model for
aggregated search. The click log setup is closely tied to the ranking setup: the real
clicks can only be used with the real rankings, whereas the other ranking setups
require modeling the user clicks with a click model.

5.2.1. Real Clicks. One problem that we face with click data is that we need to have
clicks on the interleaved document list. If the particular interleaving method that we
want to study has not been deployed to production, we do not necessarily have the
clicks that we need. To address this problem, we adopt the setup proposed by Radlinski
and Craswell [2013] that makes use of historic user clicks to evaluate new interleaving
methods. The main idea of the method is to look at queries with sufficient variation in
the ranked lists and then pretend that these different ranked lists are the interleaved
lists for some rankers A and B.

Let us call a query together with a result list a configuration. Each configuration
that has been shown at least once to a user counts as an impression. Each impression
has zero or more clicks. We proceed in the following steps:

(1) Keep only impressions that have at least one click on their top N documents.
(2) Keep only configurations that have at least K such impressions.
(3) Keep only queries that have at least M such configurations.

After that, we name two configurations to be rankings A and B for each query. Fol-
lowing Radlinski and Craswell [2013], we call the most frequent configuration ranking
A and the one that differs at the highest rank ranking B. In case we have several
candidates for B, we choose the most frequent one. Once we have our rankings A and
B, we compute all possible interleaved lists that can be produced by Algorithm 3 and
proceed with the filtering:

8We randomly assign block positions based on the distribution obtained from the TREC FedWeb data
[Demeester et al. 2013].

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:17

Table III. Filtering Parameters Setup

N K M
Radlinski and Craswell [2013] 4 10 4
This article 10 4 2

(4) Keep only queries for which we have all interleaved lists that can be produced by
VA-TDI in the log.9

To fully define the experimental setup, we have to define the parameters K, M,
and N. We summarize the parameters that we use in Table III. Unlike Radlinski and
Craswell [2013], we cannot use only the top four documents, as this is highly likely
to be in between the vertical block. This is why we are forced to decrease K and M
to have a sufficient amount of log data. With these parameters, we have 814 unique
queries, which we use in all experiments in this section. If we relax the last filtering
step and only require at least one interleaved list to be present in our query log, we
obtain 5,755 queries with which to experiment (we consider the missing interleaved
lists as ties). The reason to consider this relaxed setup is as follows: if we required all
possible interleaved lists to be present in the click log, we would end up in a situation
where only very similar rankings A and B are left, which is an additional bias that we
want to avoid.

The main limitation of this approach is that we have a very limited amount of data,
which is not the case for the click simulation (Section 5.2.2). We should also take into
account that the data we get using this method is skewed toward a relatively small
number of highly frequent queries. The variety of rankings is also limited by those
extracted from the click log (Section 5.1.1)—we cannot combine real clicks with model
or synthetic rankings.

5.2.2. Simulated Clicks. We simulate users’ click behavior on an interleaved list using
click models. Simulated users are always presented with the top 10 documents from
the interleaved list. We have two types of user simulations.

Random user. The random click model assumes that users click on each document
in the presented ranking with probability 0.5, such that—in expectation—half the doc-
uments are clicked. Relevance or presentation of documents is not taken into account.
This model is used to answer RQ3.

Federated click model. The multivertical federated click model (mFCM) [Chuklin
et al. 2014] is used to answer RQ1 and RQ2. This click model is designed to capture
user behavior when result pages contain vertical documents of different vertical types.
It assumes that user attention may be attracted to vertical documents as well as
documents adjacent to a block. Formally, the model can be described as follows:

P(Ei = 1 | A) = φi + (1 − φi)βi(A) (5.1)

P(Ci = 1 | Ei = 0) = 0 (5.2)

P(Ci = 1 | Ei = 1) = ri (5.3)

P(Aj = 1) = orient(vert j, q) · hposvert j
. (5.4)

Here, Ci is a set of observed variables corresponding to a click on the i-th document; Ei
is a hidden variable corresponding to a user’s examination of the i-th document; and A
is the vector of independent binary random variables Aj , attention bias values for each

9For historical reasons, we report only on VA-TDI, as it was the only interleaving method considered during
the period when the authors had access to the click log.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:18 A. Chuklin et al.

vertical vert j . Further, ri is the relevance of the document (binary), and orient(vert j, q)
is a vertical orientation given the query q to the vertical vert j (spans from 0 to 1). φ,
β, and hpos are the model parameters that we instantiate as in Chuklin et al. [2014].
This model is an extension of the FCM model used in Chuklin et al. [2013a] for the case
of multiple verticals. Unlike the simple model of position bias used in Hofmann et al.
[2013b], we also take into account the fact that vertical blocks and adjacent documents
draw additional attention of the user, and more so if the vertical orientation is high.

6. INFLUENCE ON THE USER EXPERIENCE (RQ1)

When one wants to evaluate an interleaving method, its effect on the user experience
needs to be evaluated first. We formulate this as one of our research questions (RQ1)
and conduct three experiments.

First, we look at the visual changes of the interleaved list in Section 6.1. Second,
we evaluate the quality of the interleaved list as captured by offline editorial metrics
and compare it to the quality of the systems being interleaved (Section 6.2). Finally,
in Section 6.3, we perform a similar quality comparison using absolute click metrics
based on data produced by real search engine users as well as by simulated users.

6.1. Visual Changes in Result Page

6.1.1. Setup. A good online evaluation method should be invisible to the user. In other
words, the user should not notice any interface changes when interacting with an
interleaved list as opposed to a base ranking system. We identified several particularly
prominent features of aggregated search systems related to vertical blocks, namely the
number of vertical blocks per vertical and the size of a vertical block, and track how
they change when we use different interleaving methods. If an interleaving method
shows smaller or bigger vertical blocks, or especially if it splits a vertical block into two
(thus, increasing the number of blocks), then we consider this to affect the user, which
we want to avoid.

As a source of rankings we use real, model, and synthetic rankings (see Sections 5.1.1,
5.1.2, and 5.1.3).

6.1.2. Results.

Synthetic rankings. We start with synthetic rankings (Section 5.1.3), as they allow us
to vary the target block size of the ranking lists being interleaved. Namely, we can set
the block size exactly if we use fixed vertical placement (see Algorithm 6, each vertical
has a block of the specified size). For nonfixed placement, the target block size is an
expected number of vertical documents per block, specified using the distribution q in
Algorithm 7 (i.e., for target block size 2, we set qt = 2/10 for each vertical t). We also
considered the case of up to one vertical type and a multivertical case where up to three
verticals are allowed. In the latter case, the smaller target block sizes are considered,
because a result page of 10 documents cannot have more than 10 vertical documents,
as shown later in Algorithm 7.

Figures 5 and 6 show our results for different numbers of blocks per vertical10 and
Figures 7 and 8 for vertical size. For VA-TDI, we see that the number of generated
vertical blocks is typically close to and never higher than 1, as designed. Due to Equa-
tions (4.6) and (4.7), VA-OI always has exactly one vertical block per vertical if the fixed
placement scheme is used. When the vertical blocks in the lists that we interleave are
small, the block may not be included in the interleaved list at all, resulting in an

10Figure 5 differs from the corresponding figure in Chuklin et al. [2013a] (Figure 4 there) due to different
settings of the synthetic generation procedure. Previous results can be obtained if we set d = 0 and τ = 0—
that is, two generated rankings are just two random permutations of the same documents. However, we
believe that the settings we use in this article (Appendix A) are more realistic.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:19

Fig. 5. Average number of vertical blocks per vertical; target block sizes 1 through 8, up to one vertical type.
Error bars correspond to 5th and 95th percentiles.

Fig. 6. Average number of vertical blocks per vertical; target block sizes 1–4, up to three different vertical
types. Error bars correspond to 5th and 95th percentiles.

average number of blocks smaller than one (cf. Algorithm 3, line 22). This can also
occur when the vertical blocks are placed in the lower halves of the original lists. For
TDI, we observe different behaviors under fixed and nonfixed block placement. When
the rankers that we compare have different vertical blocks (condition nonfixed), TDI
tends to generate several smaller blocks that result in a higher average number of
blocks. The same goes for OI.

All interleaving methods behave similarly with respect to block size. When two
verticals have the same vertical block (fixed block placement), the block size can only
become smaller after the ranked lists in which they are contained have been interleaved
(values less than 1 in Figures 7 and 8) because some of the vertical documents are
pushed outside the top 10. This effect is more visible when multiple vertical blocks
from multiple verticals are present (Figure 8). When the verticals are generated using
the nonfixed scheme (see Algorithm 7), the resulting block size to target block size ratio
on average is the same or even smaller than in the fixed scheme. It also has a wider
distribution. The reason is that the target block size is not always equal to the exact
size of the corresponding vertical block in A and B rankers; in fact, A and B can have
different block sizes.

Real and model rankings. Now we repeat the same experiments for the model and
real datasets (Sections 5.1.2 and 5.1.3). In those cases, we no longer have control over
the size, position, or contents of the vertical blocks in the Aand B rankers, so we simply
plot the overall picture that includes blocks of different sizes.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:20 A. Chuklin et al.

Fig. 7. Average vertical block size divided by the target block size; target block sizes 1 through 8, up to one
vertical type. Error bars correspond to 5th and 95th percentiles.

Fig. 8. Average vertical block size divided by the target block size; target block sizes 1 through 4, up to three
different vertical types. Error bars correspond to 5th and 95th percentiles.

Figure 9 shows the results for the real data. We can see that VA-TDI only has slightly
less than one block per vertical on average, whereas it never exceeds 1—that is, the
vertical block is not broken. We can also confirm that VA-TDI results in smaller vertical
blocks than the other interleaving methods (TDI, OI, VA-OI). VA-OI always yields one
vertical block, as is guaranteed by Equations (4.6) and (4.7), and the fact that we only
have one vertical in the real dataset.

Figure 10 reports similar results for the model data. We see the same pattern that
VA-TDI tends to have smaller blocks and misses a block completely (number of blocks
zero) more often than TDI and OI, which in turn often have a vertical block split up into
two or even three smaller blocks. Now VA-OI also has less than one block per vertical
on average, which is normal because A and B can have different verticals and not
all of them should be present in the interleaved list. The difference between average
number of blocks of OI and TDI is not observed for the real data but is observed for
the model data, which suggests that the difference between these methods depends on
the ranking systems being compared and number of different verticals present in the
dataset (remember that real data rankings have only one vertical). In addition, vertical-
aware methods (VA-TDI and VA-OI) are more conservative about the vertical blocks
and yield smaller blocks and fewer blocks than conventional interleaving methods. We
believe this to be a less visible and less disturbing effect on the user experience than
splitting the block of the same vertical type.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:21

Fig. 9. Average number of vertical blocks per vertical and the vertical block size of each vertical; real data.
Error bars correspond to 5th and 95th percentiles.

Fig. 10. Average number of vertical blocks per vertical and the vertical block size of each vertical; model
data. Error bars correspond to 5th and 95th percentiles.

We conclude that VA-TDI and VA-OI keep vertical documents together, as designed.
These methods produce up to one vertical block per result list, thus bounding the impact
of interleaving on the user experience. When vertical blocks are placed independently,
the impact of TDI and OI without vertical awareness is high. However, when blocks
are placed at the same fixed positions, the impact is much lower, especially for OI (but
still higher than for its vertical-aware extension, VA-OI).

6.2. Offline Quality Measures of the Interleaved Page

6.2.1. Setup. Our second and third sets of experiments involve comparing an inter-
leaved system’s performance to that of the systems A and B that are being interleaved.
Ideally, we want an interleaving method to produce ranked lists that are not worse
than those of A and B. We see it as one of the main contributions of our work and claim
that every new interleaving method should be tested for that.

In this section, concerning offline quality measures, we only use model rankings
(Section 5.1.2) since these rankers, unlike synthetic rankers, have topical relevance
and vertical orientation labels that we can use for quality comparison.11 We do not use
real rankings, since only a small fraction of these documents have relevance judgments.

11More details on the topical relevance and vertical orientation labels available for the model rankings can
be found in Zhou et al. [2012a].

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:22 A. Chuklin et al.

Fig. 11. Average value of offline quality measures for the interleaved lists and original rankings A (better
system) and B (worse system).

Given two rankings A and B, we can compute a relevance-based quality measure for
A, B and for the interleaved lists similar to He et al. [2009]. As our quality metrics,
we use a classic evaluation metric, NDCG [Järvelin and Kekäläinen 2002], as well as
a metric specific to aggregated search, ASRBP [Zhou et al. 2012a]. Separately, we also
analyze simple one-component aggregated search metrics [Zhou et al. 2013b] to verify
that our interleaving procedure does not lead to degradation in any of the aspects
of aggregated search (VS, VD, IS, RP). The choice of ASRBP is motivated by the fact
that this metric is the best at capturing all four aggregated search aspects (provided
that they are all treated equally important) and at discriminating different aggregated
search systems [Zhou et al. 2013b]. The simple single-component aggregated search
metrics that we use are adopted from the aggregated search meta-evaluation study
by Zhou et al. [2013b]; they independently reflect basic aggregated search properties
and are as simple as possible to be agnostic to potential differences in the interleaving
methods (e.g., the credit function choice):

(1) VS metric—selected vertical precision on relevant verticals with high vertical ori-
entation (orientation values more than 0.5)

(2) VD metric—selected vertical recall on all available verticals
(3) IS metric—mean precision of retrieved vertical documents
(4) RP metric—Spearman’s rank correlation with a “perfect” aggregated search refer-

ence page.

For each offline metric M and each pair of 36 model rankers (Table I), we first determine
which ranker in the pair has a higher average value of M. This ranker is named A and
the other one B. Ideally, our interleaved system should have an average value of quality
metric M that lies in between those of A and B, respectively. We also perform a paired
t-test (two-tailed 95%) to see how many interleaving experiments (out of C2

36 = 630
experiments corresponding to pairs of model rankers) result in an interleaved systems
being statistically significantly worse than B (i.e., the worst out of two systems). We do
not perform multiple testing corrections, as we are not interested in the absolute values
here. Instead, we compare the number of detected significant differences for different
interleaving algorithms: if the null hypothesis is indeed true (i.e., two systems have
the same quality), the odds of erroneously reporting N significant differences decreases
with N (exponentially if we assume that the tests are independent).

6.2.2. Results. Figure 11 and Table IV summarize our results. All interleaving meth-
ods, on average, perform better than B and worse than A. It is also worth noting

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:23

Table IV. Percentage of Pairwise Comparisons (out of 630) Where the Interleaved Ranking
Scores Are Statistically Significantly Lower Than B as Measured by the Offline

Quality Measures

NDCG ASRBP VS VD IS RP
OI 9.5% 13.2% 0.0% 0.8% 0.0% 0.5%
TDI 11.6% 21.4% 0.0% 3.3% 0.0% 0.2%
VA-OI 0.2% 0.8% 0.5% 0.3% 0.2% 0.5%
VA-TDI 0.2% 0.2% 0.0% 0.6% 0.2% 3.0%

that VA-TDI and VA-OI perform substantially better than TDI and OI if measured
by the classic NDCG metric. We believe this to be an artifact of the model dataset
(Section 5.1.2) that we are using. We noticed that in general, there are more relevant
organic Web documents than there are relevant vertical documents [Demeester et al.
2013], and since vertical-aware methods produce smaller vertical blocks (Figure 10),
and those blocks tend to be lower in the ranking than they are for TDI and OI, we
conclude that this leads to higher NDCG scores.

Table IV, in particular, tells us that only a small fraction of the model systems, once
interleaved using VA-TDI, would suffer from quality degradation. The same holds for
VA-OI, although degradation in terms of ASRBP is slightly higher. On the other hand,
we will much more likely have a quality degradation for a big portion of system pairs
if we use OI, and even more likely if we use TDI. As to the one-component metrics, VS,
VD, IS, and RP, we only notice a small degradation of VD of the TDI rankings (possibly
because some verticals are pushed out of the top 10 documents presented to the user)
and RP of the VA-TDI rankings.

In summary, when evaluating offline, we conclude that our VA-TDI and VA-OI meth-
ods outperform TDI and OI in preserving user experience.

6.3. Online Quality Measures of the Interleaved Page

6.3.1. Setup. Next we repeat the experiments from the previous section, but instead of
computing offline relevance-based metrics, we compute online click-based metrics. This
type of analysis is less precise but can be used in situations when we do not possess
relevance labels. This time we use the real and model datasets. For the real dataset
(Section 5.1.1), we compute click metrics for all impressions of all interleaved lists L
that appear in our click log (Section 5.2.1). For the model dataset (Section 5.1.2), we
simulate user clicks using the mFCM click model (Section 5.2.2), repeated 50 times.
The real dataset allows us to work with real user clicks, whereas the model dataset
gives us variability. Since the amount of data is not an issue here, we do not need to
use synthetic data in this experiment (cf. Figure 3).

As absolute metrics we use the metrics that are often used in A/B-testing experi-
ments. We decided to use metrics that only require clicks and no additional information
(like relevance judgments, user information, timestamps, or session information):
Clicks@1, MaxRR, MeanRR, MinRR, PLC. These metrics were also used in the in-
terleaving study by Chapelle et al. [2012]:

(1) MaxRR, MinRR, MeanRR—maximum, minimum, and mean reciprocal rank (1/r)
of clicks.

(2) PLC (precision at lowest click)—the number of clicks divided by the rank of the
lowest click. This is the opposite of pSkip used in Chapelle et al. [2012].

(3) Clicks@1—equals 1 if there was a click on the top 1 document, 0 otherwise.

We also add one vertical-specific metric, VertClick, which equals 1 if there was a click
on a vertical document and 0 otherwise. Unlike previous metrics, this one measures
less of the quality of the result page, but rather how much attention is being drawn to
the vertical documents.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:24 A. Chuklin et al.

Fig. 12. Normalized scores for online click metrics for the rankings A and B and for the interleaved list
obtained using VA-TDI (real dataset).

Fig. 13. Average online click metric scores for the rankings A and B and for the interleaved list obtained
using different interleaving methods (model rankings, simulated clicks).

6.3.2. Results.

Real rankings. The results for the real dataset are summarized in Figure 12. As we
are not interested in the absolute values of the metrics (and are not able to disclose
them due to the proprietary nature of such information), we normalize all metrics to
the corresponding values of the system A, which also happens to perform better than
B according to all of those metrics.

We can see from the plot that the click metric values for the interleaved list L
are between those of A and B. The differences between them are not statistically
significant when using a 95% paired two-tailed t-test. We conclude that we do not have
any degradation in user experience compared to the worst of two systems (B in this
case). We should mention that we do have a degradation (not significantly) compared to
the best system (A); however, this cannot be avoided, as we do not know which system
is superior beforehand since finding this is the purpose of performing the evaluation
in the first place.

Model rankings. Figure 13 shows that, on average, every interleaving method pro-
duces a system that scores between A and B according to all online metrics. We can see

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:25

Table V. Percentage of Pairwise Comparisons (out of 630 Model Ranking Pairs)
Where the Interleaved Ranking Scores Are Statistically Significantly Lower

Than B as Measured by Online Quality Measures

Clicks@1 MaxRR MeanRR MinRR PLC VertClick
OI 7.1% 1.7% 4.9% 5.7% 4.3% 4.0%
TDI 7.6% 3.2% 6.8% 10.0% 8.1% 4.0%
VA-OI 4.9% 1.1% 0.8% 0.3% 0.5% 20.0%
VA-TDI 4.6% 0.5% 0.8% 1.6% 0.8% 27.9%

that VA-TDI and VA-OI are slightly better than TDI and OI according to all metrics
except VertClick, where VA-TDI and VA-OI have substantially lower scores. This is
also supported by Table V; like Table IV, it shows how many comparisons result in
statistically significantly lower metric values for the interleaved system using a paired
two-tailed 95% t-test. One explanation for the low VertClick values for VA-TDI and
VA-OI is that they tend to produce smaller blocks (see Figure 10), so we have fewer
vertical documents, and therefore they have a lower probability of being clicked.

In this section, we presented a thorough analysis of the influence that an interleaving
method has on the user experience, on both visual and quality aspects. Such an anal-
ysis should be at the core of evaluating any new interleaving method, even though it
was largely ignored until now. In answer to RQ1 about the influence of interleaving
on the user experience, we demonstrated that the newly introduced vertical-aware
interleaving methods not only preserve the user experience but also preserve the qual-
ity of the ranking systems being interleaved.

7. CORRECTNESS AND SENSITIVITY (RQ2)

Our second research question (RQ2) concerns the amount of data we need to be able to
draw conclusions about the system quality (sensitivity) and how accurate this conclu-
sion is (correctness). Typically, before a new ranking algorithm in a commercial search
engine setting is launched to the public, it is compared to the previous version of the
algorithm using interleaving or some other method. It is therefore crucial that we can
quickly and accurately decide if the new ranking algorithm is better or worse than the
current one.

In Sections 7.1, 7.2, and 7.3, we analyze how the fraction of correctly identified
preference pairs depends on the number of user impressions. We first look at the strong
cases where one ranker Pareto dominates the other (Section 7.1) and then analyze more
relaxed settings where instead of Pareto dominance we use offline quality metrics like
NDCG or ASRBP (Section 7.2), or online metrics like MeanRR or Clicks@1 (Section 7.3).
In Section 7.4, we consider typical 10-day experiments and see how often interleaving
methods can come to a statistically significant decision in this time frame and how they
compare to A/B-testing in terms of sensitivity.

7.1. Finding Strong Differences: Pareto Dominance

7.1.1. Setup. Our simulation approach is based on the experimental setup proposed
by Hofmann et al. [2011, 2013a]. We first take two synthetic (Section 5.1.3) or model
(Section 5.1.2) ranked lists, apply an interleaving method, and subsequently offer the
interleaved list to a simulated user that produces clicks (Section 5.2.2). Then it is up
to the interleaving method to select a winning ranker. Our experiment measures to
what degree an interleaving method can detect differences in the quality of result
lists. Specifically, we look at how the confidence about the preferred ranker depends
on the number of user impressions (sensitivity) and what the final correctness level is.
The fewer impressions are needed for an interleaving method to determine the winner,
the more sensitive the method is.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:26 A. Chuklin et al.

Fig. 14. Portion of correctly identified ranker preferences (vertical axis) by different interleaving methods
after 1 to 500 user impressions (horizontal axis, log scale). The dashed horizontal line at 0.5 denotes random
preference. All figures have independent block placement. Error bars correspond to 95% binomial confidence
intervals. All rankings have one or zero verticals.

We repeat the process of generating two synthetic rankings (or randomly drawing a
pair of model rankers and a query) until one ranking Pareto dominates12 the other in
terms of how it ranks relevant documents. Because the rankings are chosen in such a
way that one dominates the other, we know which ranking should be preferred by an
interleaving method.

We generate 500 pairs of rankings, with one ranking dominating the other, as de-
scribed earlier. These pairs are each interleaved 500 times by different interleaving
methods. For synthetic rankings, we repeat this process for several combinations of
the conditions described in Section 5.1.3. We observe the portion of correctly identified
ranking preferences (i.e., the accuracy) by each interleaving method. We calculate the
mean and 95% binomial confidence bounds.

7.1.2. Results.

Synthetic rankings. We compare our vertical-aware interleaving methods (VA-TDI
and VA-OI) to the non–vertical-aware baselines (TDI and OI) in terms of the accuracy
of the identified ranker preferences. Figures 14 and 15 show the portion of correctly

12As in Hofmann et al. [2013a], we re-rank documents by examination probability P(Ei = 1). In Hofmann
et al. [2013a], P(Ei = 1) is implicitly defined by the cascade click model. In our case, it is dictated by the
mFCM model (Section 5.2.2); we marginalize over attention bias, using (5.1) and (5.4). We say that ranking
A dominates B, if and only if re-ranked with P(Ei = 1), A ranks all relevant documents at least as high as B
and at least one relevant document higher than B.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:27

Fig. 15. Portion of correctly identified ranker preferences (vertical axis) by different interleaving methods
after 1 to 500 user impressions (horizontal axis, log scale). The dashed horizontal line at 0.5 denotes random
preference. All figures have independent block placement. Error bars correspond to 95% binomial confidence
intervals. All rankings have up to three different verticals.

identified ranker preferences by TDI, OI, VA-TDI, and VA-OI after 1 to 500 user im-
pressions modeled by the federated click model, mFCM (see Section 5.2.2).13

In Figure 14, we only consider cases where rankings are allowed to have verticals of
one type (e.g., News), whereas in Figure 15, up to three different types of vertical are
allowed.

Figure 14(a) shows results averaged over all possible positions of a block of size 2
(nonfixed block placement) under the assumption that none of the vertical documents
are relevant. We see that TDI and VA-TDI converge to correctly identify about 90% of
the true preferences correctly, whereas OI and VA-OI converge to about 98%. There
is no significant difference in the number of impressions between conventional and
vertical-aware methods.

Figure 14(b) shows results in the setting with relevant vertical documents. Results
are almost identical to the case of nonrelevant vertical documents with only subtle
differences. The difference is more visible when allowing more verticals (Figure 15(a)
vs. (b))—the final converged accuracy level is higher when there are relevant vertical
documents.

VA-TDI initially requires more sample data than TDI: TDI is significantly more ac-
curate when we have a very small number of impressions (fewer than 10). We believe
that the reason for this is the noise added by vertical documents dropping out—the

13In all of our experiments, all methods plateaued after several hundred user impressions.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:28 A. Chuklin et al.

Fig. 16. Portion of correctly identified ranker preferences (vertical axis) by different interleaving methods
after 1 to 500 user impressions (horizontal axis, log-scale). The dashed horizontal line at 0.5 denotes random
preference. Error bars correspond to binomial confidence intervals.

problem discussed at the end of Section 4.1. Since this is noise and not bias toward
either ranking, this levels out as the number of observed impressions increases. How-
ever, this need for more samples by VA-TDI is a small loss in efficiency for a method
that preserves the original user experience as much as possible compared to TDI.

Figure 14(c) and (d) show results for the same conditions as (a) and (b), respectively,
but with a block size of 5 instead of 2. The only difference with Figure 14(a) and (b) is
the increased gap between TDI and OI families, which suggests that the latter should
be preferred, especially in situations when we have many vertical documents. The same
holds for Figure 15, where up to three different verticals are allowed.

Model rankings. Figure 16 shows the same experiment for the model data. This is a
more realistic dataset than the synthetic one studied earlier. It contains many different
vertical blocks of different types (see Table I). From the figure, we see that VA-TDI
performs significantly worse than the other interleaving methods. As we explained
at the end of Section 4.1, this is because vertical documents often drop out of the
interleaved list, thereby limiting the sensitivity of VA-TDI. This is especially true if
the difference between lists being interleaved is large, which is often the case for the
model data.

7.2. Finding Weak Differences: Offline Metrics

7.2.1. Setup. In this section, we use a setup similar to the previous section, but instead
of requiring that one ranker Pareto dominates another, we only require a nonzero
difference in terms of an offline quality metric. This resembles the so-called live data
simulations by Hofmann et al. [2013b], where interleaving methods are compared in
terms of how well they can predict the direction of NDCG preference. On the one hand,
offline metrics are less reliable as reference metrics than Pareto dominance. On the
other hand, by using offline metrics, we evaluate our interleaving methods’ ability to
find weak differences between rankings as opposed to strong cases of Pareto dominance.

We picked NDCG and ASRBP to use in our experiments. We also experimented
with the one-component aggregated search metrics (VS, VD, IS, RP) but found that

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:29

Fig. 17. Portion of ranker preferences that agree with the offline metric (vertical axis) by different inter-
leaving methods after 1 to 500 user impressions (horizontal axis, log scale). The dashed horizontal line at
0.5 denotes random preference. Error bars correspond to binomial confidence intervals.

only IS differences can be identified by the interleaving methods; only for this one-
component reference metric is the agreement level more than 0.5. This is because the
one-component metrics are too simple to be used as reference metrics for system prefer-
ence. One system can be better according to a one-component metric, but worse overall.
Interleaving, in turn, considers the ranked list as a whole and is not required to agree
with one-component metrics.

Here we only use model rankings (Section 5.1.2), as this is the only dataset that has
meaningful relevance and vertical orientation labels.

7.2.2. Results. Results are presented in Figure 17. The error bars are big, and it is hard
to state that some method is more accurate than another, with the only exception of
VA-TDI, which converges much slower than VA-OI. In fact, for the first 10 impressions
with the NDCG reference metric (Figure 17(a)), the error bars do not overlap, indicating
that VA-OI identifies significantly more correct ranker preferences than VA-TDI does.
A similar picture is observed for ASRBP (Figure 17(b)).

We also observe that all of the interleaving methods agree better with the NDCG
reference metric than the with ASRBP. This demonstrates that it is more challenging
to use interleaving methods to derive the preference of aggregated search pages. The
loss of agreeing with ASRBP might be because the assumptions made in assigning
credits of documents in interleaving methods align better with the NDCG position-
based discount than with the more complex assumptions of ASRBP. It may also stem
from the fact that the mFCM click model we utilize still assigns more value to topical
relevance than to vertical orientation: Equations (5.2) and (5.3) guarantee that only
topically relevant documents are clicked, whereas vertical orientation simply increases
the chances of examining some documents.

7.3. Finding Weak Differences: Online Metrics

7.3.1. Setup. In this section, we reuse the setup from the previous section but use on-
line click metrics as reference metrics instead of offline metrics: we identify the better
ranking by comparing average values of an online metric from 50 query sessions, sim-
ulated using the mFCM click model (Section 5.2.2). We picked two online metrics: the
very simple Clicks@1 metric and position-aware MeanRR. These are also the metrics
that, as we will see later, do not have statistically significant disagreement with the
interleaving in the real A/B-testing settings (Section 7.4). Since the metrics values now
vary more, we increased the number of comparisons to 10,000 to reduce the churn due

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:30 A. Chuklin et al.

Fig. 18. Portion of ranker preferences that agree with the online metric (vertical axis) by different inter-
leaving methods after 1 to 500 user impressions (horizontal axis, log scale). The dashed horizontal line at
0.5 denotes random preference. Error bars correspond to binomial confidence intervals.

to randomness present in the metrics. This also helped us overcome problems stem-
ming from the fact that Clicks@1 is a binary metric and hence is often the same for A
and B (we exclude such cases).

As in the previous section, we only use model rankings (Section 5.1.2) because the
click models heavily rely on the relevance labels and it is crucial for these relevance
labels to be meaningful. Our preliminary experiments with synthetic rankings showed
that the click metrics are very noisy in that case, and all interleaving methods only
marginally agree with them.

7.3.2. Results. Results are shown in Figure 18. We see that all interleaving methods
converge to the same level of accuracy of about 0.85 as measured by the Clicks@1
reference metric. The agreement between the more complex MeanRR reference metric
and the interleaving methods is less, but it confirms the previous finding (see Figure 16)
that VA-TDI is significantly less discriminative than the other interleaving methods.

7.4. Time-Constrained Experiments and A/B-Testing

7.4.1. Setup. In a real-world setting of a search engine evaluation experiment, the
experiment is run for a certain period of time within which our interleaving method
needs to reach a conclusion. In this section, we reproduce such a time-constrained
experiment setting using our real dataset (Sections 5.1.1 and 5.2.1).

One issue of live experiments is that we do not have ground-truth labeling of the
better system. Usually, online click metrics are used to find the better system (e.g.,
in A/B-testing experiments), but these metrics may contradict each other or lack sta-
tistical significance. Therefore, one should not blindly use them as ground truth, but
rather should examine the full picture of their agreement and disagreement with the
interleaving outcomes and with each other.

Given the click log data to which we have access (Section 5.2.1), we compute the
following values for each query:

(1) The average difference of the absolute click metrics for rankings A and B.
(2) The interleaving score14 for each impression of each ranking implied by VA-TDI.

As some configurations might have more impressions in our click log than the
interleaving method suggests, we normalize the scores to the correct probabilities
as implied by the interleaving method. Specifically, we compute the average score

14We assume that the score is 1 if ranking A wins a particular impression, −1 if B wins, and 0 if they tie.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:31

Table VI. Agreement between A/B-Testing Measures and VA-TDI

Measure t1 t2 t3 t4 t5 t6
Absolute Metrics
Clicks@1 B� B B A A B
MaxRR A B B A A B
MeanRR A� B B� A A B
MinRR A� B A� A A B
PLC A B B� A A B
VertClick B B B B B B
VA-TDI (different variants)
Total B B B A A B
Organic only B B B A A B
Vertical only A A� A� B B B
Note: All changes are statistically significant except for ones
marked by �.

for each configuration, multiply it by the probability of such a configuration, and
then average across all found configurations similar to Radlinski and Craswell
[2013].

(3) The interleaving scores for vertical documents and nonvertical (organic) documents
separately—that is, interleaving scores computed while only taking vertical (non-
vertical) clicks into account.

To compare the direction of preference indicated by the absolute click metrics and the
interleaving methods, we split the data into six buckets corresponding to six equal
time periods of 10 days (t1, t2, t3, t4, t5, t6) and compute the weighted average of the
absolute metrics and interleaving methods. The outcome for each impression (positive
if A wins, negative if B wins, zero if it is a tie) is multiplied by the total frequency of
the query15 and summed up over all queries. We report the winning system according
to each measure in Table VI. Note that we consider three ways of interpreting clicks
in the interleaving method: total—all clicks are counted, organic only—only the clicks
on nonvertical documents are taken into account, and vertical only—only the clicks on
vertical documents are counted. For example, if we want to evaluate only changes in
the organic ranking, we may want to look at the organic only results. On the other
hand, we risk having an unbalanced team assignment if we skip the vertical block.

We also computed a per-query correlation between interleaving and A/B-testing met-
rics and performed a detailed analysis of the influence of the vertical block on this
correlation (total vs. organic only). This analysis can be found in our previous work
[Chuklin et al. 2013a, Section 4.2.2].

7.4.2. Results. Table VI shows that in most cases, VA-TDI (total and organic only)
agrees with the majority of the absolute metrics. Similar to what was reported in
Radlinski et al. [2008], the cases of disagreement between absolute click metrics and
interleaving outcomes are always accompanied by the lack of statistical significance.
We mark such cases where the winning system is not statistically significantly better
with the � sign.16 We can also note that the agreement between the vertical-only VA-
TDI and the VertClick absolute metric is low. However, in two of the three cases with
disagreement VA-TDI does not detect a statistically significant preference. This means
that either VertClick is too simple to correctly capture the ranking changes or vertical-
only is not the right way to interpret interleaving outcomes (or both).

15Remember that we previously normalized configurations to the correct probabilities.
16Here we use a bootstrap test with 1,000 bootstrap samples and a significance level of 99%.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:32 A. Chuklin et al.

In this section, we analyzed the sensitivity and correctness of conventional and
vertical-aware interleaving methods under different settings and with different
datasets. We showed that vertical-aware interleaving methods are in most cases as
accurate as their conventional counterparts with the exception of VA-TDI, which in
some rare cases may be less sensitive than TDI because of vertical documents drop-
ping out. Some of our findings support the fact that OI and VA-OI are more sensitive
and more accurate than TDI and VA-TDI, whereas others suggest that they are at least
as sensitive as TDI and VA-TDI. We also confirmed that interleaving methods are more
sensitive than A/B-testing and demonstrated that these two approaches often disagree
with each other.

8. UNBIASEDNESS (RQ3)

Our third research question (RQ3) concerns unbiasedness of the interleaving methods.
We investigate whether any of the interleaving methods identifies preferences for a
ranker when there is no evidence in the data. For this purpose, we employ randomly
clicking users to show that there is no systematic bias in the algorithm.17

8.1. Randomly Clicking User

8.1.1. Setup. Our final simulated experiment assesses the unbiasedness of different
interleaving methods under random clicks (Section 5.2.2). It is important that account-
ing for vertical documents does not introduce bias, as it may otherwise lead to wrong
interpretations of interleaving results. VA-TDI and VA-OI (Algorithms 3 and 4) were
designed to be unbiased under many forms of noise; here, we validate that our imple-
mentation does indeed fulfill this requirement.

Under the random click model (Section 5.2.2), an unbiased interleaved comparison
method should not systematically prefer either ranker—that is, the rankers should
tie in expectation. We measure this following the methodology proposed by Hofmann
et al. [2013a] by counting the number of comparisons for which a method detects a
significant preference toward one of the rankers. For an unbiased method, this number
should be close to the number expected due to noise. For example, a significance test
with a p-value of 0.05 should detect statistically significant differences between rankers
under random clicks in 5% of the comparisons. We repeat the test for different document
datasets (synthetic, model, real) for different numbers of impressions (from 100 to 500).

8.1.2. Results. Tables VII, VIII, and IX show the results—the percentage of detected
significant differences—for synthetic, model, and real datasets, respectively. For all
methods and all datasets, we see that the number of significant differences detected is
in line with the expected 5%.

Using a one-tailed binomial confidence test (also with p = 0.05), we confirm that
this number is only once significantly higher than 5%, in the case of OI with synthetic
rankings and up to three verticals (nonrelevant, fixed; see Table VII). We also see that
the number of detected significant differences does not increase with the number of
impressions, which confirms that all interleaving methods are indeed unbiased and
can be relied on.

In this section, we verified that none of the interleaving methods exhibit a bias un-
der the random click model. We performed an analysis with different datasets and
confirmed that there is no bias under an assumption of randomly clicking user. There
could be other types of biases that we do not analyze in the current work.

17One may also test unbiasedness under other user models that are blind to results, such as the pure
position-based model.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:33

Table VII. Percentage of Significant Differences between Rankers Detected
under the Random Click Model for Synthetic Rankings

Up to 1 Vertical
Nonrelevant Relevant

Fixed Nonfixed Fixed Nonfixed
OI TDI VA-OI VA-TDI OI TDI VA-OI VA-TDI OI TDI VA-OI VA-TDI OI TDI VA-OI VA-TDI

100 5.2% 4.0% 4.6% 4.6% 4.8% 6.2% 4.4% 5.0% 5.8% 5.4% 4.6% 5.8% 5.2% 6.0% 4.6% 4.0%
200 6.6% 5.6% 3.6% 6.0% 4.2% 5.4% 4.6% 6.6% 4.6% 3.0% 3.6% 2.6% 5.0% 4.6% 5.8% 6.2%
300 5.8% 5.8% 4.6% 4.4% 4.8% 5.2% 4.4% 4.4% 5.0% 5.0% 3.6% 4.0% 3.8% 5.4% 4.2% 5.6%
400 6.6% 5.6% 3.6% 3.6% 5.2% 5.0% 3.8% 5.4% 3.6% 3.4% 3.8% 5.0% 4.8% 5.2% 4.6% 7.4%
500 5.6% 5.2% 4.6% 4.4% 4.6% 5.2% 4.0% 5.0% 4.6% 5.0% 4.2% 5.0% 5.4% 4.4% 4.8% 5.6%

Up to 3 Verticals
Nonrelevant Relevant

Fixed Nonfixed Fixed Nonfixed
OI TDI VA-OI VA-TDI OI TDI VA-OI VA-TDI OI TDI VA-OI VA-TDI OI TDI VA-OI VA-TDI

100 5.2% 5.0% 4.6% 4.8% 3.4% 5.4% 5.0% 6.2% 4.6% 5.6% 5.8% 5.4% 5.6% 5.6% 3.6% 5.6%
200 4.6% 4.2% 4.2% 5.6% 3.6% 4.8% 5.0% 4.4% 4.2% 5.4% 7.0% 5.4% 6.2% 3.8% 4.6% 5.8%
300 6.4% 4.0% 4.4% 4.6% 4.2% 5.0% 5.2% 4.8% 4.4% 4.0% 5.0% 5.4% 6.2% 4.6% 5.2% 5.6%
400 6.2% 4.2% 5.6% 4.8% 4.4% 5.6% 5.0% 6.0% 4.8% 4.4% 5.0% 4.2% 5.0% 5.0% 5.4% 4.8%
500 7.4%∗ 4.4% 6.8% 5.4% 4.0% 4.2% 4.8% 4.6% 5.4% 4.4% 3.8% 3.6% 6.2% 4.0% 5.4% 4.6%

Note: p < 0.05 on 500 ranker pairs after 100 to 500 user impressions (left-most column) under all combina-
tions of conditions for block size 2. With p < 0.05, an interleaving method is expected to detect around 5%
significant differences. An asterisk (∗) marks outcomes that are statistically significantly higher than 5%
using a one-tailed binomial confidence test (with significance level set to 0.05).

Table VIII. Percentage of Significant Differences between
Rankers Detected under the Random Click

Model for Model Rankings

OI TDI VA-OI VA-TDI
100 4.4% 6.2% 6.2% 5.8%
200 3.8% 6.4% 6.4% 5.2%
300 6.0% 6.2% 5.2% 5.4%
400 4.8% 4.6% 4.8% 6.6%
500 4.4% 5.2% 4.8% 4.4%
Note: p < 0.05 on 500 ranker pairs after 100 to 500 user
impressions (left-most column). With p < 0.05, an inter-
leaving method is expected to detect around 5% significant
differences. None of the outcomes are statistically signif-
icantly higher than 5% using a one-tailed binomial confi-
dence test (with significance level set to 0.05).

Table IX. Percentage of Significant Differences
between Rankers Detected under the

Random Click Model for Real Rankings

OI TDI VA-OI VA-TDI
100 4.4% 4.0% 5.2% 6.0%
200 5.6% 7.8% 5.8% 4.2%
300 5.6% 5.8% 7.2% 5.4%
400 5.8% 6.2% 5.6% 5.4%
500 5.0% 5.0% 5.8% 5.0%
Note: p < 0.05 on 500 ranker pairs after 100 to
500 user impressions (left column). With p < 0.05,
an interleaving method is expected to detect around
5% significant differences. None of the outcomes are
statistically significantly higher than 5% using a
one-tailed binomial confidence test (with significance
level set to 0.05).

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:34 A. Chuklin et al.

9. CONCLUSION

To assess different interleaving methods under a wide range of conditions, we have
addressed three main research questions about the influence of interleaving methods
on the user experience, about the correctness and sensitivity of interleaving methods,
and about their unbiasedness, all with a special focus on vertical-aware interleaving.
We have done so using both simulations and real clicks. With simulated rankings, we
have tested several vertical block sizes, several block placements, and different levels
of relevance within the block.18

To summarize, we have shown the following:

—Vertical-aware interleaving methods do not degrade the user experience, as they do
not break vertical blocks (Section 6.1) and do not degrade the quality of the result
page (Sections 6.2 and 6.3).

—Vertical-aware interleaving methods can find differences between rankings as fast
and as accurate as their conventional counterparts, with the OI family being sub-
stantially more sensitive (Sections 7.1, 7.2, and 7.3). We also demonstrated that in
a 10-day experiment, the VA-TDI is able to reach a conclusion, whereas A/B-testing
metrics often contradict each other (Section 7.4).

—Both vertical-aware and conventional interleaving methods are unbiased under ran-
dom clicks (Section 8.1).

We have shown that vertical-aware interleaving methods can accurately compare result
lists while preserving vertical blocks and quality level. Accuracy is as high as for
conventional interleaving methods, with only small losses in efficiency for small sample
sizes. We also confirmed that methods based on optimized interleaving (OI, VA-OI)
usually outperform methods based on team draft (TDI, VA-TDI). Based on an extensive
analysis, we conclude that vertical-aware interleaving methods (VA-TDI, VA-OI) should
be used for comparing two ranking systems in situations where vertical documents are
present.

One big limitation of our work is that not all of the experiments were validated in
a real search setting. We should note, however, that in cases when we did perform
experiments with real click log data, we found them to be in line with the findings
reported using synthetic or model data. Another limitation is that for unbiasedness
(RQ3), we only considered the case where the user clicks randomly but did not analyze
the case where the ranking systems are indistinguishable. The problem with this is
that it is hard to define what indistinguishable systems are. One may even claim that
real-world systems are always different; we just do not always have enough data or the
right instruments to observe this.

As future work, it would be interesting to apply our analysis of the influence on
the user experience as presented in Section 6 (RQ1) to the online learning to rank
problem of balancing exploration and exploitation (e.g., see Hofmann et al. [2012]).
Currently, in formulations of the dueling bandits problem for online learning to rank
[Yue and Joachims 2009], the regret function (how much the users lose by using a
suboptimal system) of an interleaving method is set to an average of the relative
quality degradation by A and B. As we saw in Section 6, the quality of an interleaved
list can be far from that average; moreover, it depends on the interleaving method used
and the ranking systems being interleaved.

Another direction of future work concerns an analysis of A/B-testing methods for
aggregated search and their comparison to the interleaving methods presented here.
In our work, we considered only one very simple online A/B-testing metric (VertClick),

18The code of our simulation experiments, including a reference implementation of the vertical-aware inter-
leaving methods, is publicly available at https://bitbucket.org/ilps/lerot [Schuth et al. 2013].

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

https://bitbucket.org/ilps/lerot

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:35

but one can go further and adapt conventional online metrics to aggregated search
settings or present new click metrics or A/B-testing procedures.

A. SYNTHETIC RANKING PAIR SIMULATION PROCEDURE

First we describe how we simulate ranking pairs for organic Web documents with
vertical documents inserted afterward (condition fixed).

ALGORITHM 5: Generate a pair of organic Web rankings.
1: function GENERATERANKINGPAIR(d, NR,max)
2: documentPool ← GENERATEDOCUMENTPOOL(10 + d, NR,max)
3: A ← GENERATERANKING(documentPool, 10)
4: B ← GENERATERANKING(documentPool, 10)
5: return (A, B)

6: function GENERATEDOCUMENTPOOL(N′, NR,max)
7: NR ← RANDOMINTEGER(1, NR,max)
8: return document list of length N′ with NR relevant documents

9: function GENERATERANKING(X, N)
10: initialize sX(d) using (A.1)
11: L ← []
12: while |L| < N do
13: dnext ← SAMPLEWITHOUTREPLACEMENT(sX(d))
14: L ← L + dnext

15: return L

The algorithm for GenerateRankingPair (Algorithm 5) consists of several steps. To
generate two ranked lists of size 10, we first generate a document pool of slightly bigger
size (10+d) and then draw documents from this pool to produce rankings Aand B. The
reason is that rankings A and B can differ not only in the order of the documents but
also one of them can have some additional documents that the other one does not have.
To allow different document orders in A and B, we employ a softmax distribution sX
by Hofmann et al. [2011] in which the probability of selecting the next document is in-
versely proportional to a power of the rank rX(d) of a document d in a document pool X:

PsX(d) =
1

rX(d)τ∑
d′∈X

1
rX(d′)τ

. (A.1)

In this distribution, the document from the bottom of the list, X, has lower probability
of being selected at each step of generating a ranking (line 13, Algorithm 5) than one
of the top documents. It leads to ranking lists A and B being quite similar to each
other (which is usually the case where B is a small experimental ranking change), and
we can control the degree of similarity by varying the τ parameter.

For our experiments, we set NR,max = 3 as in Chuklin et al. [2013a]. We also set d = 2
and τ = 5 to resemble the level of difference between A and B that we have in the real
interleaving experiments.19

1997% of the real ranking pairs (Section 5.1.1) have no more than two distinct document pairs, so we choose
d = 2. The parameter τ is chosen such that the percentage of cases where A and B have 0, 1, or 2 different
document pairs resembles that of the real ranking pairs that we analyze.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:36 A. Chuklin et al.

ALGORITHM 6: Generate a pair of rankings with the fixed vertical blocks vBlocks
(condition fixed).

1: function GENERATERANKINGPAIRWITHVERTICALSFIXED(d, NR,max, vBlocks, vPositions)
2: (A, B) ← GENERATERANKINGPAIR(d, NR,max)
3: insert vBlocks to A at positions vPositions
4: insert vBlocks to B at positions vPositions
5: return (A, B)

ALGORITHM 7: Generate a pair of rankings with vertical documents (condition
nonfixed).

1: function GENERATERANKINGPAIRWITHVERTICALSNONFIXED(d, NR,max, q)
2: documentPool ← GENERATEDOCUMENTPOOLWITHVERTICALS(10 + d, NR,max, q)
3: A ← GENERATERANKINGWITHVERTICALS(documentPool, 10)
4: B ← GENERATERANKINGWITHVERTICALS(documentPool, 10)
5: return (A, B)

6: function GENERATEDOCUMENTPOOLWITHVERTICALS(N′, NR,max, q)
7: NR ← RANDOMINTEGER(1, NR,max)
8: Lpool ← []
9: while |Lpool| < N′ do

10: dnext ← document of type t according tothe distribution q(A.2)–(A.3)
11: Lpool ← Lpool + dnext

12: assign exactly NR documents in Lpool to be relevant
13: return Lpool

14: function GENERATERANKINGWITHVERTICALS(X, N)
15: initialize sX(d) using (A.1)
16: L ← []
17: while |L| < N do
18: dnext ← SAMPLEWITHOUTREPLACEMENT(sX(d))
19: L ← L + dnext

20: for each vertical type t do
21: reorder documents of type t directly belowthe highest document of type t
22: return L

If the vertical blocks are fixed, then synthetic ranker is generated in two steps
(Algorithm 6). First, organic rankings are generated using Algorithm 5; second, vertical
block is inserted at fixed position. Note that if the organic list has 10 documents, then
inserting a vertical block can only increase the total document count, so there will be
more than 10 documents.

Now let us describe the procedure of generating pair of rankings that contain vertical
documents (condition nonfixed). We assume that we have a list of vertical types {vt |
t ∈ {1, . . . , T }} and a probability distribution q such that for each document d and each
vertical type t, document d has type vt with probability qt. We also require

∑T
t=1 qt < 1

so that the probability of the fact that d is a Web (nonvertical document) can be set to
(1 − ∑T

t=1 qt):
∀t P(vert(d) = vt) = qt. (A.2)

P(vert(d) = Web) = 1 −
T∑

t=1

qt. (A.3)

The procedure is presented in Algorithm 7.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

A Comparative Analysis of Interleaving Methods for Aggregated Search 5:37

ACKNOWLEDGMENTS

We would like to thank Floor Sietsma for her help on an earlier version of this article and our anonymous
reviewers for their comments and suggestions.

REFERENCES

Jaime Arguello, Fernando Diaz, Jamie Callan, and Jean-François Crespo. 2009. Sources of evidence for
vertical selection. In Proceedings of SIGIR. ACM, New York, NY, 315–322.

Jaime Arguello, Fernando Diaz, and Jamie Callan. 2011a. Learning to aggregate vertical results into Web
search results. In Proceedings of CIKM. ACM, New York, NY, 201–210.

Jaime Arguello, Fernando Diaz, Jamie Callan, and Ben Carterette. 2011b. A methodology for evaluating
aggregated search results. In Proceedings of ECIR. 141–152.

Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. 2012. Large-scale validation and
analysis of interleaved search evaluation. ACM Transactions on Information Systems 30, 1, Article
No. 6.

Danqi Chen, Weizhu Chen, Haixun Wang, Zheng Chen, and Qiang Yang. 2012. Beyond ten blue links:
Enabling user click modeling in federated Web search. In Proceedings of WSDM. ACM, New York, NY,
463–472.

Aleksandr Chuklin, Anne Schuth, Katja Hofmann, Pavel Serdyukov, and Maarten de Rijke. 2013a. Evalu-
ating aggregated search using interleaving. In Proceedings of CIKM. ACM, New York, NY, 669–678.

Aleksandr Chuklin, Pavel Serdyukov, and Maarten de Rijke. 2013b. Click model-based information retrieval
metrics. In Proceedings of SIGIR. ACM, New York, NY, 493–502.

Aleksandr Chuklin, Pavel Serdyukov, and Maarten de Rijke. 2013c. Using intent information to model user
behavior in diversified search. In Advances in Information Retrieval. Lecture Notes in Computer Science,
Vol. 7814. Springer, 1–13.

Aleksandr Chuklin, Ke Zhou, Anne Schuth, Floor Sietsma, and Maarten de Rijke. 2014. Evaluating intu-
itiveness of vertical-aware click models. In Proceedings of SIGIR. ACM, New York, NY, 1075–1078.

Charles L. A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova, Azin Ashkan, Stefan Büttcher,
and Ian MacKinnon. 2008. Novelty and diversity in information retrieval evaluation. In Proceedings of
SIGIR. ACM, New York, NY, 659–666.

Cyril W. Cleverdon, Jack Mills, and Michael Keen. 1996. Factors Determining the Performance of Indexing
Systems. Technical Report. ASLIB Cranfield project.

Thomas Demeester, Dolf Trieschnigg, Dong Nguen, and Djoerd Hiemstra. 2013. Overview of the TREC 2013
Federated Web Search track. In Proceedings of TREC.

Susan Dumais, Edward Cutrell, and Hao Chen. 2001. Optimizing search by showing results in context. In
Proceedings of CHI. ACM, New York, NY, 277–284.

Jing He, Chengxiang Zhai, and Xiaoming Li. 2009. Evaluation of methods for relative comparison of retrieval
systems based on clickthroughs. In Proceedings of CIKM. ACM, New York, NY, 2029–2032.

Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2011. A probabilistic method for inferring prefer-
ences from clicks. In Proceedings of CIKM. ACM, New York, NY, 249–258.

Katja Hofmann, Shimon Whiteson, and Maarten Rijke. 2012. Balancing exploration and exploitation in
listwise and pairwise online learning to rank for information retrieval. Information Retrieval 16, 1,
63–90.

Katja Hofmann, Anne Schuth, Shimon Whiteson, and Maarten de Rijke. 2013a. Reusing historical inter-
action data for faster online learning to rank for IR. In Proceedings of WSDM. ACM, New York, NY,
183–192.

Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013b. Fidelity, soundness, and efficiency of
interleaved comparison methods. ACM Transactions on Information Systems 31, 3, Article No. 18.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems 20, 4, 422–446.

Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In Proceedings of KDD. ACM,
New York, NY, 133–142.

Thorsten Joachims. 2003. Evaluating retrieval performance using clickthrough data. In Text Mining,
J. Franke, G. Nakhaeizadeh, and I. Renz (Eds.). Physica/Springer-Verlag, 79–96.

Dong Nguyen, Thomas Demeester, Dolf Trieschnigg, and Djoerd Hiemstra. 2012. Federated search in the
wild: The combined power of over a hundred search engines. In Proceedings of CIKM. ACM, New York,
NY, 1874–1878.

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

5:38 A. Chuklin et al.

Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Qiang Wu, Ran Gilad-Bachrach, and Tapas Kanungo.
2011. On composition of a federated Web search result page: Using online users to provide pairwise
preference for heterogeneous verticals. In Proceedings of WSDM. ACM, New York, NY, 715–724.

Filip Radlinski and Nick Craswell. 2010. Comparing the sensitivity of information retrieval metrics. In
Proceedings of SIGIR. ACM, New York, NY, 667–674.

Filip Radlinski and Nick Craswell. 2013. Optimized interleaving for online retrieval evaluation. In Proceed-
ings of WSDM. ACM, New York, NY, 245–254.

Filip Radlinski, Madhu Kurup, and Thorsten Joachims. 2008. How does clickthrough data reflect retrieval
quality? In Proceedings of CIKM. ACM, New York, NY, 43–52.

Anne Schuth, Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Lerot: An online learning to
rank framework. In Proceedings of LivingLab. ACM, New York, NY, 23–26.

Anne Schuth, Floor Sietsma, Shimon Whiteson, Damien Lefortier, and Maarten de Rijke. 2014. Multileaved
comparisons for fast online evaluation. In Proceedings of CIKM. ACM, New York, NY, 71–80.

Jangwon Seo, W. Bruce Croft, Kwang Hyun Kim, and Joon Ho Lee. 2011. Smoothing click counts for ag-
gregated vertical search. In Advances in Information Retrieval. Lecture Notes in Computer Science,
Vol. 6611. Springer, 387–398.

Andrey Styskin. 2013. Aggregate and conquer: Finding the way in the diverse world of user intents. In
Proceedings of ECIR.

Shanu Sushmita, Hideo Joho, Mounia Lalmas, and Robert Villa. 2010. Factors affecting click-through be-
havior in aggregated search interfaces. In Proceedings of CIKM. ACM, New York, NY, 519–528.

Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information retrieval systems as a dueling
bandits problem. In Proceedings of ICML. ACM, New York, NY, 1201–1208.

Ke Zhou, Ronan Cummins, Mounia Lalmas, and Joemon M. Jose. 2012a. Evaluating aggregated search
pages. In Proceedings of SIGIR. ACM, New York, NY,115–124.

Ke Zhou, Ronan Cummins, Mounia Lalmas, and Joemon M. Jose. 2012b. Evaluating reward and risk for
vertical selection. In Proceedings of CIKM. ACM, New York, NY, 2631–2634.

Ke Zhou, Ronan Cummins, Mounia Lalmas, and Joemon M. Jose. 2013a. Which vertical search engines are
relevant? In WWW, 1557–1568, ACM.

Ke Zhou, Mounia Lalmas, Tetsuya Sakai, Ronan Cummins, and Joemon M. Jose. 2013b. On the reliability
and intuitiveness of aggregated search metrics. In CIKM, 689–698, ACM.

Ke Zhou, Thomas Demeester, Dong Nguyen, Djoerd Hiemstra, and Dolf Trieschnigg. 2014. Aligning vertical
collection relevance with user intent. In CIKM, ACM.

Received June 2014; accepted September 2014

ACM Transactions on Information Systems, Vol. 33, No. 2, Article 5, Publication date: February 2015.

