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ABSTRACT
A key challenge in information retrieval is that of on-line ranker
evaluation: determining which one of a finite set of rankers per-
forms the best in expectation on the basis of user clicks on pre-
sented document lists. When the presented lists are constructed
using interleaved comparison methods, which interleave lists pro-
posed by two different candidate rankers, then the problem of min-
imizing the total regret accumulated while evaluating the rankers
can be formalized as a K-armed dueling bandit problem. In the set-
ting of web search, the number of rankers under consideration may
be large. Scaling effectively in the presence of so many rankers is
a key challenge not adequately addressed by existing algorithms.

We propose a new method, which we call mergeRUCB, that uses
“localized” comparisons to provide the first provably scalable K-
armed dueling bandit algorithm. Empirical comparisons on several
large learning to rank datasets show that mergeRUCB can substan-
tially outperform the state of the art K-armed dueling bandit al-
gorithms when many rankers must be compared. Moreover, we
provide theoretical guarantees demonstrating the soundness of our
algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

Keywords
Evaluation; implicit feedback; on-line learning

1. INTRODUCTION
An important challenge in information retrieval is that of ranker

evaluation: determining which of a finite set of rankers performs
best in expectation. In off-line ranker evaluation, which goes back
to the early Cranfield experiments [9], rankers are assessed based
on a fixed set of queries and documents manually judged by human
assessors. Unfortunately, obtaining such judgments is expensive
and error prone. Furthermore, because the assessors typically did
not formulate the queries on which they judge documents, their
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assessments may not accurately reflect how well those documents
meet the needs of real users.

These difficulties can be addressed by on-line ranker evaluation,
in which rankers are assessed using click feedback from actual
users. A common approach is to use interleaved comparison meth-
ods [7, 8, 13, 15, 18, 23, 25], in which the document lists proposed
by two candidate rankers for a given query are interleaved and the
resulting list presented to the user, whose clicks are used to infer a
noisy preference for one ranker over the other. Interleaving meth-
ods have been successfully applied in large-scale settings [7, 8].

The use of interleaved comparison methods gives rise to a key
challenge in ranker evaluation: how to efficiently determine the
best ranker from a set using only pairwise comparisons. This chal-
lenge can be formalized as a K-armed dueling bandit problem
[32], wherein the best ranker is defined as the one that in expec-
tation wins an interleaved comparison against every other ranker.
Several algorithms have been proposed for this problem, including
interleaved filter (IF) [32], beat the mean (BTM) [31], sensitivity
analysis of variables for generic exploration (SAVAGE) [28], rela-
tive upper confidence bound (RUCB) [34] and relative confidence
sampling (RCS) [33].

One challenge that such algorithms face is that the number of pa-
rameters that must be learned grows quadratically withK, the num-
ber of rankers. This in turn results in excessive exploration. The
challenge is especially relevant in the case of web search, where a
large number of rankers may be under consideration.1 Some algo-
rithms, such as SAVAGE, RUCB and RCS have difficulty scaling to
large K. Other algorithms such as IF and BTM avoid this problem
by making more restrictive assumptions, such as a total ordering of
the rankers, that make it possible to identify the best ranker with-
out explicitly considering all parameters. However, this approach
is problematic because the required assumptions often do not hold
in web search settings.

In this paper, we remedy these shortcomings by bridging the gap
between these two approaches. Specifically, we propose and eval-
uate a new method for evaluating rankers, called mergeRUCB, that
makes only weak assumptions about the K-armed dueling bandit
problem, but provably requires onlyO(K) comparisons and there-
fore performs well when many rankers must be compared, as is
typically the case in web search. As the name suggests, merge-
RUCB uses a divide and conquer strategy to reduce the number
of exploratory comparisons carried out by the evaluation process.
It proceeds by grouping rankers into small batches so that fewer
comparisons are needed before rankers can be eliminated.

To validate mergeRUCB, we evaluate its performance on large

1Kohavi et al. [21] report that on any given day over 200 concurrent
experiments are being run at Bing, with users ending up in one of
billions of possible variants of the site.



Microsoft, Yandex and Yahoo! learning to rank datasets. Our re-
sults show that mergeRUCB significantly and substantially out-
performs multiple state of the art K-armed dueling bandit algo-
rithms. Moreover, we provide theoretical performance guarantees
that bound how much regret can be accumulated by mergeRUCB.

The main contributions of this paper are thus:

1. Proposing a new K-armed dueling bandit algorithm that scales
well with the number of rankers (cf. §4).

2. Experimentally comparing its performance against existing K-
armed dueling bandit algorithms (cf. §5 and §6).

3. Providing theoretical results guaranteeing the proper function-
ing of the algorithm (cf. §7); moreover, our regret bounds are
the first that are completely linear in K, without imposing im-
practical assumptions.

2. PROBLEM SETTING
One approach to ranker evaluation is to use manual expert anno-

tations in a TREC-like setting [29]. However, collecting the nec-
essary annotations is expensive and, because they are not based
on real users, such annotations may not reflect real users’ actual
information needs. An attractive alternative is thus to evaluate
rankers on-line using feedback from real users. One way to ob-
tain such feedback is to measure the click-through rate [17]. How-
ever, such feedback is often unreliable, since click-through rates
can have substantial variance, particularly across users and topics
[19, 20, 25, 26].

Fortunately, on-line feedback can also be obtained using inter-
leaved comparison methods, which give relative feedback about
how one ranker compares to another and have been shown to be
more reliable [7, 23]. To compare two rankers on a given query,
an interleaved comparison constructs a ranking that is an amalga-
mation of the rankings proposed by the two rankers for that query.
Schemes for constructing the amalgamation include balanced in-
terleave [18], team draft [25], document constraints [13], proba-
bilistic interleave [15], and optimized interleave [24].

However, since interleaved comparison methods require feed-
back from real users, each comparison has significant real-world
costs, i.e., if either of the compared rankers is poor, the interleaved
ranking may also be poor, leaving the user dissatisfied. An im-
portant question is thus how to find the best ranker in a way that
minimizes these costs.

This problem can be formalized as a K-armed dueling bandit
problem [32], which is itself an extension of the K-armed bandit
problem [3]. In the K-armed bandit problem, there are K rankers,
{ρ1, . . . , ρK}. At each time-step, a ranker ρi can be tried, generat-
ing a reward drawn from an unknown stationary distribution with
expected value µi, which might be a quantity like click-through
rate [6].

The K-armed dueling bandit problem is a variation that mod-
els the relative feedback available in settings like ranker evaluation
with interleaved comparison methods. The problem is defined by
a matrix P = [pij ] of preference probabilities. At each time-step,
two rankers (ρi, ρj) are compared, e.g., using an interleaved com-
parison method, and with probability pij ranker ρi beats ρj . In
this paper, we assume that there exists a Condorcet winner [28]:
a ranker, which without loss of generality we label ρ1, such that
p1i >

1
2

for all i > 1. In other words, when interleaved with any
other ranker, the Condorcet winner is expected to win.

The goal of a K-armed dueling bandit algorithm is to mini-
mize the total regret it accumulates. Regret is a measure of the
lost opportunity incurred by performing interleaved comparisons

between suboptimal rankers. More specifically, the regret result-
ing from a comparison between rankers ρi and ρj is defined to be
p1i+p1j

2
− 0.5, i.e., the average suboptimality of the two rankers

with respect to the Condorcet winner. Furthermore, cumulative re-
gret at time T , RT , is the sum of regret accumulated in the first
T time-steps. In the context of online ranker evaluation for web
search, we are interested in algorithms that minimize cumulative
regret, since that means that fewer poor-quality rankings are shown
to the users, hence lowering the risk of user frustration.

3. RELATED WORK
To our knowledge, the earliest method for the K-armed dueling

bandit problem is interleaved filter (IF) [32], which proceeds as
follows: a ranker ρ̂ is randomly chosen to be compared against all
other rankers; these comparisons are repeated until another ranker
ρ′ either loses to or beats ρ̂ by a wide margin, i.e., the winner scores
so many more wins over the loser that one can conclude with high
confidence that the loser can be eliminated. If ρ̂ is the winner, ρ′

is eliminated from the pool of rankers and not compared against
any other rankers. If ρ̂ is the loser, it is eliminated from the pool of
rankers and ρ′ becomes the new ρ̂. This process continues until all
but one of the rankers is eliminated.

More recently, the beat the mean (BTM) algorithm has been
shown to outperform IF [31]. BTM works by focusing exploration
on the rankers that have been involved in the fewest comparisons.
When it determines that a ranker fares on average too poorly in
comparison to the remaining rankers, it removes it from consid-
eration. More precisely, BTM considers the performance of each
ranker against the mean ranker by averaging the ranker’s scores
against all other rankers and uses these estimates to decide which
ranker should be eliminated. BTM is currently the state of the art
for K-armed dueling bandit problems for the web search setting in
which we are interested, that is, with large numbers of rankers K.
However, so far, the performance of BTM has not been evaluated
on large-scale online evaluation tasks using large learning to rank
datasets. In this paper, we demonstrate that our proposed algorithm
outperforms BTM on such datasets.

IF and BTM require the comparison probabilities pij to satisfy
conditions that are difficult to verify without specific knowledge
about the dueling bandit problem at hand. Specifically, IF and BTM
require a total ordering {ρ1, . . . , ρK} of the rankers to exist such
that pij > 1

2
for all i < j. In [33, 34], the authors show that, in

the case of the LETOR and MSLR datasets, the probability of a to-
tal ordering existing decreases quickly as the number of rankers in-
creases, due to the presence of cyclical relationships among rankers
other than the Condorcet winner.

Sensitivity analysis of variables for generic exploration (SAV-
AGE) [28] is a more recent algorithm that outperforms both IF and
BTM by a wide margin when the number of rankers is small. How-
ever, in cases with large numbers of rankers, SAVAGE was sig-
nificantly outperformed by BTM. One version of SAVAGE, which
we call Condorcet SAVAGE, assumes only the existence of a Con-
dorcet winner and performed the best experimentally [28]. Con-
dorcet SAVAGE compares pairs of rankers uniformly randomly un-
til there exists a pair for which one of the rankers beats the other by
a wide margin, in which case the loser is removed from the pool of
rankers under consideration.

Relative upper confidence bound (RUCB) [34] and relative con-
fidence sampling (RCS) [33] are two related algorithms that select
rankers to compare by first choosing a ranker that is believed to be
a good candidate for the Condorcet winner, and then choosing a
second ranker that has the best chance of disproving the hypothesis



that the first ranker is indeed the Condorcet winner. RUCB uses
confidence intervals to carry this out, while RCS uses sampling.

RUCB has strong theoretical guarantees, while RCS currently
has none. However, RCS was shown to outperform RUCB on
small-scale ranker evaluation problems. So far, neither algorithm
has been tested on large-scale evaluation problems. Our extensive
experimentation shows that, when there are few rankers, RCS tends
to perform better than RUCB but, for the case with many rankers,
RUCB performs better. However, for the case with many rankers,
our proposed algorithm mergeRUCB outperforms both of them.
Moreover, the regret bounds proven for RUCB take the form

O(K2) +O(K log T ),

while our bound is linear in K, taking the form O(K log T ).
However, these bounds are not directly comparable because RUCB

does not require δ, the probability of failure, to be passed to the al-
gorithm explicitly. Instead, we let the user of the algorithm specify
how risk averse they want the algorithm to be, which is not an op-
tion with RUCB or RCS.

4. METHOD
In this paper, we propose mergeRUCB, shown in Algorithm 1, to

deal with online ranker evaluation problems involving many rankers.
As with sorting algorithms, most naive approaches to the K-armed
dueling bandit problem suffer from quadratic dependence on K
because they require every ranker to be compared against every
other ranker. However, this quadratic dependence can be avoided
by a mergesort-style algorithm that carries out comparisons only
“locally,” i.e., items are placed in small batches that are processed
separately and then merged together.

The same principle underlies mergeRUCB. The crucial differ-
ence is that, unlike in sorting, one comparison is not sufficient to
determine which of a pair of rankers is better, since feedback is
stochastic. Furthermore, the number of times two rankers must be
compared is larger if the rankers are more similar. In the worst
case, we have pij = 0.5 and the two rankers cannot be distin-
guished. This case is problematic because ρi and ρj might be weak
rankers overall (i.e., lose badly to other rankers), in which case
comparing them to each other many times will incur large regret.
MergeRUCB deals with this difficulty by using the best ranker in
the batch to eliminate the rest. If a batch contains only similar
rankers and is thus too slow in eliminating rankers, it is combined
with other batches that have more variety.

In the following, we explain the components of mergeRUCB,
which proceeds in stages (Line 4). Before the first stage, the algo-
rithm groups rankers into small batches Bi (Line 2). Then, within
each stage, mergeRUCB carries out interleaved comparisons among
rankers that reside in the same batch. At any given time, the choice
of rankers to compare against each other inside a given batch is
guided by a matrix U of upper confidence bounds (Line 7), which
is obtained by optimistically estimating the preference probabili-
ties pij : the optimism is included to ensure sufficient exploration
among the rankers. The matrix U is used both to eliminate rankers
if they lose to other rankers by a wide margin (Line 8) and to choose
the ranker ρd (Line 10) that is selected so as to hasten the elimina-
tion of ρc, which is chosen randomly. The algorithm proceeds in
this fashion until the number of remaining rankers becomes small
(Line 12), at which point the stage is concluded by merging pairs
of batches together to form bigger batches (Line 13). This initiates
the next stage, and the process repeats until a single ranker remains.
Our theoretical results state that the probability that this remaining
ranker is the Condorcet winner is greater than 1− δ.

Algorithm 1 mergeRUCB(δ)

Input: A set of rankers ρ1, . . . , ρK ;
an oracle that can take a pair of rankers and return one as the
winner (e.g., an interleaved comparison method);
the size of each partition, p ≥ 4;
the maximum probability of failure, δ;
α > 1

2
.

1: W← 0K×K // 2D array of wins: Wij is the number of times
ρi has beaten ρj

2: B1 =
{
{ρ1, . . . , ρp}︸ ︷︷ ︸

B1

, . . . , {ρ(b1−1)p+1, . . . , ρK}︸ ︷︷ ︸
Bb1

}
, a set of

disjoint batches of rankers, with b1 = bK
p
c

3: C(δ) =

⌈(
(4α−1)K2

(2α−1)δ

) 1
2α−1

⌉
4: S = 1 // The stage that the algorithm is in.
5: for t = 1, 2, . . . do
6: i = t mod bS

7: U = W
W+WT +

√
α ln(t+C(δ))

W+WT , where all operations are
element-wise.

8: For any ρk ∈ Bi if Ukl <
1
2

for any ρl ∈ Bi, remove ρk
from Bi.

9: Select ρc ∈ Bi randomly.
10: Set d := arg max

{l|ρl∈Bi\{ρc}}
Ulc.

11: Compare ρc against ρd and increment Wcd if c won and
Wdc otherwise.

12: if
∑
i |Bi| ≤

K
2I

then
13: Combine pairs of batches of rankers so that each new

batch has between p/2 and 3p/2 rankers in it, pairing the
smallest batches with the largest ones, making sure that
each batch contains at least two rankers. Update the sets
Bi, putting them all in the set BS , and define bS := |BS |.

14: S = S + 1
15: end if
16: end for

5. EXPERIMENTAL SETUP
Our experiments address the following research questions:

RQ1 Does mergeRUCB outperform BTM, the state of the art on-
line ranker evaluation algorithm for large-scale evaluation prob-
lems?

RQ2 How does mergeRUCB scale as the number of rankers in-
creases in comparison to existing algorithms?

RQ3 How does the click model affect the scalability of the various
algorithms?

RQ4 How does the performance of mergeRUCB depend on the pa-
rameters α and p? In particular, how do our default parameters
perform?

We conduct experiments on four large-scale learning to rank datasets,
namely the Microsoft Learning to Rank dataset (MSLR), the Yan-
dex Internet Mathematics 2009 dataset and the Yahoo! Learning to
Rank (YLR) Challenge datasets 1 and 2. Basic information about
these datasets is included in Table 1.

Using these datasets, we create a finite set of rankers, each of
which corresponds to a ranking feature provided in the dataset, e.g.
PageRank or BM25. From this set of rankers, we choose subsets
on which we test our algorithms. Therefore, in the experiments
carried out here, the ranker evaluation task corresponds to deter-
mining which single feature constitutes the best ranker. From one
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Figure 1: Average cumulative regret plots for four large-scale evaluation problems.
Table 1: The specifics of the datasets used.

Datasets Queries URLs Features Reference

MSLR-WEB30K 31,531 3,771,125 136 [22]
Yandex 9,124 97,290 245 [30]
YLR Set 1 19,944 473,134 700 [5]
YLR Set 2 1,266 34,815 700 [5]

point of view, this is a rather artificial setup because when optimiz-
ing a search engine one is rarely (if ever) interested in determining
which single feature performs the best; instead, what is often of
greater interest is comparing different rankers that were produced
as the outcome of different learning to rank algorithms. However,
what determines the difficulty of a dueling bandit problem is not
the quality of the individual rankers but rather the difference in
quality between pairs of rankers. So, for instance, evaluating K
rankers that are very small modifications on the random ranker is
as difficult as, say, evaluating K rankers that are small variations
on LambdaMART [4]. More precisely, given a preference matrix
P, what determines the difficulty it poses for the dueling bandit
algorithm is how close to 0.5 its entries are, and indeed, from our
experience, the preference matrices of the feature rankers of the
datasets listed in Table 1 does contains many entries that are very
close to 0.5.

Given the above observation, we opted to use feature rankers
in our experiments rather than, for instance, rankers produced by
different learning to rank algorithms in order to both facilitate the
reproducibility of our experimental results and to avoid having our
results depend upon arbitrary choices made in the process of train-
ing such rankers. Nonetheless, comparing various dueling bandit

algorithm on better performing rankers is an important research
question that we postpone to future work.

To compare a pair of rankers, we use probabilistic interleave
(PI) [14], though any other interleaved comparison method could
be used instead. To model the user’s click behavior on the result-
ing interleaved lists, we employ a probabilistic user model [10, 14]
that uses as input the manual labels (classifying documents as rele-
vant or not for given queries) provided with both datasets. Queries
are sampled randomly and clicks are generated probabilistically by
conditioning on these assessments using a user model that resem-
bles the behavior of an actual user [12]. This approach follows an
experimental paradigm that has previously been used for assessing
the performance of rankers [13–16]. We used a software package
called Lerot [27] to carry out these comparisons.2

For the large-scale experiments in §6.1, aimed at answering RQ1,
we use all of the feature rankers available in these datasets and
perform the comparisons between rankers by directly using Lerot
to simulate interleaved comparisons. In this case, our assumption
that there exists a Condorcet winner happens to be satisfied in the
case of all four datasets. For all other experiments, for each value
of K tested, we choose 10 subsets of rankers of size K and ap-
ply each algorithm to each subset: this choice is made by sam-
pling subsets of size K at random and keeping the first 10 that
have Condorcet winners. As illustrated in [33], the probability that
a subset has a Condorcet winner depends on K, but is generally
very high. In addition, since the Lerot-based experiments for RQ1
took three months to complete,3 we use a faster proxy setup for

2The interested reader can find the repository at the following URL:
https://bitbucket.org/ilps/lerot
3This was primarily due to shortcomings of the competing algo-
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tion problem arising from the MSLR dataset using Lerot (top)
or the proxy approach (bottom).
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Figure 3: Average cumulative regret after 107 iterations on K-
ranker evaluation problems with K ranging from 10 to 130.

the other experiments: for each pair of feature rankers ρi, ρj in the
MSLR dataset, we estimate the probability pij that ρi beats ρj by

rithms, which need to be run sequentially. By contrast, merge-
RUCB can easily be parallelized across different batches.

simulating 400,000 interleaved comparisons between the two using
Lerot.4 Given these numbers pij , in the remaining experiments, we
perform comparisons between rankers ρi and ρj for each pair (i, j)
by drawing a sample from the Bernoulli distribution with mean pij ,
i.e., by flipping a biased coin. This is a standard approach to eval-
uating dueling bandit algorithms (cf. [31, 32, 34]). We verify the
accuracy of the proxy approach in §6.2.

In principle, the proxy approach could also be used for the Yan-
dex and the Yahoo! datasets. However, given the higher number of
feature rankers in those datasets, obtaining the same level of pre-
cision on the preference probabilities pij would require orders of
magnitude more computational resources. Indeed, it is more effi-
cient to use Lerot directly for those experiments. Given this con-
straint, our experiments using the proxy method cannot go beyond
136 rankers.

In all experiments other than those in §6.5, we use the following
parameter settings: α = 1.01 and p = 4. In fact, the only con-
straint on α is that it should be greater than 0.5 in order for C(δ)
(cf. Line 3 in Algorithm 1) to be well-defined and for our theoreti-
cal results in §7 to hold. However, as α approaches 0.5, the expres-
sion for C(δ) grows super-exponentially as a function of α, and
so the benefits of having more slowly growing confidence intervals
(cf. Line 7 of Algorithm 1) are outweighed by the added explo-
ration caused by starting with larger confidence intervals. Indeed,
as demonstrated in §6.5, there is little or no gain from changing
these parameters from the above values. Moreover, for all of our
experiments, we chose the probability of failure, δ to be 0.01. Fi-
nally, all experiments other than those in §6.4 used the navigational
click model (cf. Table II of [15]) to simulate user click behavior.

6. RESULTS AND DISCUSSION
In this section, we present our experimental results.

6.1 Large scale experiments
We first address our main research question, RQ1. We tested

mergeRUCB on the full set of feature vectors of the four large
learning to rank datasets described in Table 1, directly using Lerot
instead of the proxy approach. The MSLR results, shown in Fig. 1
(top-left), were carried out for 10 million time-steps, since two of
the three algorithms converge to the Condorcet winner within that
time frame. For the remaining datasets, we extended the horizon
to 25 million time-steps, again to make sure two of the three algo-
rithms converge. These results are shown in the remaining plots in
Fig. 1. Note that, in these plots and those that follow, the time axis
uses a log scale, while the vertical axis uses a linear scale.

For these experiments, we tested three algorithms: mergeRUCB
and RUCB, which had the best performance in the scalability ex-
periments in §6.3, together with BTM, which is the state of the
art K-armed dueling bandit algorithm for large K, according to
[28, 31]. These plots show that, as the number of rankers increases
(going from 136 to 245 to 700), so does the difference between the
performance of mergeRUCB and the remaining algorithms.

6.2 Lerot simulation vs Bernoulli samples
The remaining results presented in this work use the proxy ap-

proach described in §5. So, before proceeding further, we validate
the proxy approach by showing that it provides qualitatively sim-
ilar results to those generated with Lerot. To do so, we compare
the performances of five K-armed dueling bandit algorithms on
4The resulting matrices can be found here (as Numpy ma-
trices): http://ilps.science.uva.nl/sites/ilps.
science.uva.nl/files/PrefMats.zip
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Figure 5: Average cumulative regret after 107 iterations on K-ranker evaluation problems with K ranging from 10 to 130 for the
perfect (left), navigational (middle), and informational (right) click models.

the MSLR dataset using both approaches. The results for Lerot are
shown in Fig. 2 (top), while those of the proxy approach are shown
in Fig. 2 (bottom). Comparing the two plots shows that there is
no qualitative difference in the relative performance of the various
dueling bandit algorithms under consideration here. Consequently,
we use the proxy method to conduct the experiments described in
the rest of this section.

6.3 Dependence on K

To address RQ2, we compare 5 dueling-bandit algorithms on
K-ranker evaluation experiments with K ranging from 10 to 130
in increments of 10 with the K rankers chosen randomly from the
136 feature rankers in the MSLR dataset.

Fig. 3 shows the results: the horizontal axis measures K, the
number of rankers, while the vertical axis shows the regret accumu-
lated after 107 iterations. As this plot demonstrates, for K ≥ 70,
mergeRUCB outperforms all other dueling bandit algorithms.

Of course, while Fig. 3 shows performance across different val-
ues of K, it does so for only one moment in time: after 107 it-
erations. However, comparing Fig. 3 to Fig. 2 confirms that, for
K = 136, the regret accumulated by the algorithm after 107 time-
steps is a good indication of the overall performance of the algo-
rithm over time. Fig. 4 confirms that the same is true whenK = 70.

6.4 Effect of click models
To address RQ3, we conducted the same scalability test as in

§6.3, using three different click models proposed in [15], namely
the perfect, navigational and informational click models. The per-
fect click model represents the behavior of a persistent user, who
inspects every single document in the retrieved list and clicks on
each document with a probability proportional to the document’s
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Figure 4: Average cumulative regret on the 70-ranker evalua-
tion problem arising from MSLR.

relevance to the given query. The navigational click model simu-
lates the behavior of a user who is trying to satisfy a specific in-
formation need and is likely to stop inspecting the items in the list
upon viewing a relevant document. Finally, the informational click
model mimics the behavior of a user whose information need is not
satisfied by a single document and is trying to gather information
about a general topic. Accordingly, the informational click model is
more likely to continue inspecting the items retrieved by the ranker
even after encountering a relevant document.

The results, shown in Fig. 5, demonstrate that RCS is affected
more severely by the click model than either mergeRUCB or RUCB.
This is because, in our experience, RCS tends to be sensitive to
the margins by which the Condorcet winner beats the remaining
rankers: as these gaps shrink, the performance of RCS degrades
dramatically. This is precisely what takes place when one replaces
the perfect click model with the navigational one and the latter with
the informational click model, since doing so increases the number
of clicks in interleaved comparisons, making them noisier.

6.5 Parameter dependence
To address RQ4, we repeated the experiments in §6.3, using the

following grid of parameters:

(p, α) ∈ {4, 6, 8, 10} × {0.71, 0.81, 0.91, 1.01, 1.11, 1.21}.

Fig. 6 shows, for each number of rankers, the minimum and max-
imum cumulative regrets accumulated by mergeRUCB across the
above set of parameters, as well as the regret for the default param-
eters used in the other experiments. Note that the vertical axis uses
a log scale, which is chosen to facilitate comparing the three curves
for small values ofK, since in a linear plot they would be too close
to distinguish from each other. As can be seen from the plots, the
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regret accumulated by mergeRUCB, using the default parameters
(p, α) = (4, 1.01), is consistently close, if not equal, to the regret
accumulated by the best choice of parameters, which validates our
intuition that the default parameters are sensible.

7. PERFORMANCE GUARANTEES
In this section, we provide theoretical guarantees for the proper

functioning and scalability of mergeRUCB. We begin by listing a
number of reasonable assumptions that we impose upon the prob-
lem in order to guarantee the proper functioning of the algorithm:

A1. We assume that there is no repetition of rankers, i.e., any pair
of rankers ρi and ρj are different and thus pij 6= 0.5, unless
both rankers are uninformative: they provide no useful infor-
mation and so lose to all other rankers, i.e., pki ≥ 0.5 and
pkj ≥ 0.5 for all k.

A2. We assume that at most a third of the rankers are uninforma-
tive.

In online ranker evaluation in web search settings, assumption A1 is
reasonable because the rankers ρi under evaluation are typically the
result of substantial deliberation and research and so the chances of
the same informative ranker appearing twice are slim. The sec-
ond assumption is motivated by the Yahoo! Learning to Rank chal-
lenge dataset, in which either 104 or 181 (depending on the dataset)
out of 700 feature rankers always return zero. More generally, it
is plausible that some uninformative rankers are inadvertently in-
cluded in the evaluation process. However, if there are too many of
them, the evaluation task will be lengthened.

Here, we provide a high probability bound on the regret accumu-
lated by mergeRUCB; Table 2 lists our notation.

THEOREM 1. Given a K-armed dueling bandit problem with
rankers ρ1, . . . , ρK with ρ1 the Condorcet winner, then if we apply
mergeRUCB(δ), with probability 1−δ we have the following bound
on cumulative regret at time T :

RT ≤
16αpK ln(T + C(δ)) max

j
∆1j

min
S=1,...,dlog2Ke

∆̂2
S

≤ 8αpK ln(T + C(δ))

min
{(i,j) | pij 6=0.5}

∆2
ij

.

This theorem says that if mergeRUCB is run for T time-steps with
probability of failure set to δ, then with probability 1− δ, the total
regret accumulated by the algorithm is bounded by an expression
that is logarithmic in T and linear inK. This in turn tells us that the
number of suboptimal interleaved comparisons grows linearly in
K, since accumulating non-zero regret corresponds to suboptimal
comparisons. Unlike existing results in the literature, the strongest
of which take the form O(K2) + O(K log T ), Theorem 1 is the
first regret bound that is completely linear in K.

Furthermore, even though as stated the above theorem is a high
probability bound, by setting δ = 1/T , we obtain a bound on the
expected regret of mergeRUCB at time T as follows: since the
maximum amount of regret that the algorithm can accumulate in
the first T time-steps is bounded by T , we have

ERT ≤ δT + (1− δ)8αpK ln(T + C(δ))

∆2
min

≤ 1 +
8αpK lnT

∆2
min

+
8αpKC(1/T )

T∆2
min

,

≤ 1 +
8αpK lnT

∆2
min

+
8αpK

(
T (4α−1)K2

(2α−1)

) 1
2α−1

T∆2
min

,

Table 2: List of notation used in Section 7.
Symbol Definition

K Number of rankers
α Exploration parameter in Algorithm 1
δ Probability of failure
p Initial size of the batches
S Stage of the algorithm
BS Set of batches in stage S
bS Number of batches in stage S
RT Cumulative regret at time T
wij(t) Number of times ρi beat ρj in the first t time-steps
Nij(t) wij(t) + wji(t)

uij(t) Uij :=
wij(t)

Nij(t)
+

√
α ln t

Nij(t)

lij(t) 1− uji(t)

C(δ)


(

(4α− 1)K2

(2α− 1)δ

) 1
2α−1


∆ij pij − 0.5
∆B,min mini,j∈B ∆ij

TB
4α
(q−1

2

)
log(T + C(δ))

∆2
B,min

Ti TBi

∆̂S

(
2bS
3

+ 1
)th

largest element of {∆B,min|B ∈ BS}

T̂S
8αpK ln(T + C(δ))

∆̂2
S

ln t Natural logarithm of t

where ∆min = min{(i,j) | pij 6=0.5}∆2
ij and the second inequality is

obtained by using a Taylor expansion of ln t at t = T . Now, if α ≥
1, the last summand in the right-hand side of the above inequality
is in O(1), and so we have a finite-horizon expected regret bound
of the form O(K lnT ). Moreover, this finite horizon bound can
be turned into an infinite horizon one (up to ln lnT factors) using
the ‘squaring trick’ [2]. We would like to emphasize that these
results hold under very general assumptions that do not preclude
the existence of cyclical relationships among the rankers.

The proof of Theorem 1 relies on the following lemma.

LEMMA 2. In mergeRUCB(δ), consider a batch B of size q, at
least one of whose rankers is informative. Let ∆B,min denote the
smallest nonzero gap ∆kl := |pkl − 1

2
| 6= 0, with ρk, ρl ∈ B.

Then, the number of comparisons NB that could have happened
between pairs of rankers in B before it is merged with another
batch is bounded with probability 1− δ as follows:

NB < TB :=
4α
(
q−1

2

)
ln(T + C(δ))

∆2
B,min

.

The proof of this lemma follows directly from the fact that the num-
ber of comparisons between any pair of rankers in the batch is at
most 4α ln(T+C(δ))

∆2
B,min

, as proven in Lemma 3 below, since there are(
q−1

2

)
distinct pairs of rankers in B.

LEMMA 3. Given any pair of distinct rankers ρi, ρj ∈ B, the
maximum number of comparisons that could have been carried out
between these two rankers in the first T time-steps of Algorithm 1
before a merger between B and another batch occurs, is bounded
by 4α ln(T+C(δ))

∆2
B,min

.

The proof of Lemma 3 considers the two possible cases: either
at least one of the rankers under consideration is informative or
both are uninformative. In the first case, if the two rankers have



been compared more times than the above number, we show that
one of the two must have eliminated the other, while in the second
case, if the two rankers have been compared too many times, then
a third, informative ranker (whose existence is guaranteed by the
assumption of the lemma) must have eliminated one of them.

The proof of the above lemma relies on the following result,
which we repeat here for the reader’s convenience:

LEMMA 4 (LEMMA 1 IN [34]). Let P := [pij ] be the pref-
erence matrix of a K-armed dueling bandit problem with arms
{a1, . . . , aK}. Then, for any dueling bandit algorithm and any
α > 1

2
and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ.

PROOF OF LEMMA 3. Let us begin by assuming that the num-
ber of comparisons between ρi and ρj is greater than 4α ln(T+C(δ))

∆2
B,min

,

and let us distinguish between two cases:

1. At least one of ρi and ρj is informative: in this case, by assump-
tion A1, we know that pij 6= 0.5, and moreover by Lemma 4,
we know that with probability 1−δ we have pij ∈ [lij(t), uij(t)],
with t being the last time that ρi was compared against ρj and
lij := 1−uji. However, this tells us that one of the two rankers
should have been eliminated already, since we have

uij(t)− lij(t) = 2

√
α ln(t+ C(δ))

Nij(t)
≤ 2

√
α ln(T + C(δ))

Nij(t)

< 2

√√√√√ α ln(t+ C(δ))

4α ln(T + C(δ))

∆2
B,min

= ∆B,min ≤ ∆ij , (1)

where the last inequality is due to our assumption thatNij(t) >
4α ln(T+C(δ))

∆2
B,min

. Therefore, the confidence interval [lij(t), uij(t)]

does not contain 0.5, which is the criterion used by Algorithm
1 to eliminate rankers.

2. Rankers ρi and ρj are both uninformative: by assumption A1
and Lemma 4, uninformative rankers cannot eliminate informa-
tive rankers, so no matter how many rankers have been elim-
inated from B, there must be an uneliminated third ranker ρk
that is informative in the batch together with ρi and ρj , and by
assumption A1, we have pki > 0.5 and pkj > 0.5. Again,
applying Lemma 4 as in the previous case, we know that with
probability 1 − δ we have 0.5 = pij ∈ [lij(t), uij(t)]; on the
other hand, using the same chain of inequalities as in (1), we
can deduce that

uij(t)− lij(t) < ∆B,min ≤ min{∆ki,∆kj}. (2)

Now, in order for ρi to have been compared to ρj at time t, we
must have had one of the following two scenarios:

(a) mergeRUCB chose c = i and d = j at time t: this requires
the satisfaction of the following two conditions:

• uij(t) ≥ 0.5, by Line 8 of Algorithm 1.
• lij(t) ≤ pik: this is because in order to have d = j,

we must have uji(t) ≥ uki(t) and by Lemma 4, we
have uki(t) ≥ pki, and so lij(t) := 1 − uji(t) ≤
1− pki = pik.

This means that we have uij(t)− lij(t) ≥ ∆ki. However,
this contradicts inequality (2), so we could not have had
(c, d) = (i, j).

(b) mergeRUCB chose c = j and d = i at time t: repeating
the same argument as in the previous case with i and j
swapped, we get uji(t) − lji(t) ≥ ∆kj , which also con-
tradicts inequality (2).

Therefore, our assumption that the number of comparisons between
ρi and ρj is greater than 4α ln(T+C(δ))

∆2
B,min

cannot hold in either sce-

nario.

Next, we prove Theorem 1, the main idea of which is as follows.
The central difficulty in the proof is that there may exist batches
that consist entirely of uninformative rankers. This is problematic
because in these batches no rankers are eliminated, since for each
pair of rankers ρi, ρj in such a batch, we have pij = 0.5 and so
with high probability we have neither uij < 0.5 nor uji < 0.5.
The proof overcomes this difficulty by showing that such fully un-
informative batches all disappear at the end of the first stage of
the algorithm. This occurs because of how the batches are merged
at the end of each stage (cf. Line 13 of Algorithm 1): the largest
batches are combined with the smallest ones. Since uninforma-
tive batches inevitably fail to eliminate any rankers, they have the
largest number of rankers, while the smallest batches are guaran-
teed to contain informative rankers. Therefore, from the second
stage onwards, mergeRUCB is guaranteed not to compare rankers
in a batch, none of whose elements will be eliminated.

PROOF OF THEOREM 1. We begin by considering the first stage
of the algorithm:

S = 1 During the first stage, we have two types of batches: those
that consist solely of uninformative rankers and those that con-
tain at least one informative ranker. Assumption A2 implies that
at least two thirds of the batches have at least one informative
ranker, so we can apply Lemma 2 to them.

To estimate number of time-steps mergeRUCB spends in its first
stage, we introduce the following notation: recall from Algo-
rithm 1 that b1 is the number of partitions in the first stage of the
algorithm and let ∆̂1 denote the

(
2b1
3

+ 1
)th

largest number in
the set {∆B,min|B ∈ B1}. Now, once all but one of the rankers
in every batch B with ∆B,min ≥ ∆̂1 have been eliminated, the
algorithm moves to the next stage. This occurs because at least
half of the rankers have been eliminated, since there are 2b1

3
+1

batches, inside which p − 1 rankers are eliminated, and so the
total number of eliminated rankers is at least(

2b1
3

+ 1

)
(p− 1) ≥ 2(b1 + 1)

3
(p− 1) ≥ 2K

3p
(p− 1)

≥ 2K

3

3

4
≥ K

2
. (since p ≥ 4)

Therefore, Line 12 of Algorithm 1 forces the next stage to be-
gin. Now, applying Lemma 2 to the 2b1

3
batchesB with ∆B,min ≥

∆̂1, and using the fact that the size of the batches is at most 2p
(cf. Line 2 of Algorithm 1), we can conclude that with proba-
bility 1− δ the number of time-steps in the first stage of merge-
RUCB could not have been more than

K

p
×

4α
(

2p
2

)
ln(T + C(δ))

∆̂2
1

≤ 8αpK ln(T + C(δ))

∆̂2
1

=: T̂1.

S ≥ 2 At the end of the first stage of the algorithm, we combine
the largest remaining batches with the smallest ones. The fact
that exactly half of the rankers were eliminated in the first stage
implies that this policy for combining batches forces every fully
uninformative batch to acquire an informative ranker, since by



Assumption A1 and Lemma 4, the probability of an uninfor-
mative ranker eliminating an informative ranker is less than δ.
Hence, from this point on, we can apply Lemma 2 to every
batch.

We can use a similar argument as with the first stage of the al-
gorithm to bound the number of time-steps that mergeRUCB
would spend in the Sth stage. To that end, let ∆̂S denote the(

2bS
3

+ 1
)th

largest number in the set {∆B,min|B ∈ BS}.
Now, applying the same argument as above and using the fact
that in stage S we have K/2S−1 rankers, we get that the num-
ber of comparisons in stage S of mergeRUCB is bounded by
8αpK ln(T+C(δ))

2S−1∆̂2
S

=: T̂S .

After dlog2 Ke stages, only a single ranker remains, beyond
which point mergeRUCB goes on interleaving that ranker with
itself. This ranker is the Condorcet winner with probability 1−δ
because the probability of the Condorcet winner being elimi-
nated by another ranker is at most δ. Therefore, in order to
estimate the total regret accumulated by mergeRUCB we can
sum the T̂S for S = 1, . . . , dlog2 Ke and multiply the result
by the maximum regret any comparison can result in, which is
maxj ∆1j . This gives the bound in the statement of Theorem 1
once we notice that

dlog2Ke∑
S=1

1

2S−1∆̂S

≤ 2

min
S=1,...,dlog2Ke

∆̂2
S

This concludes the proof of Theorem 1.
A tighter result could be obtained by bounding the regret for com-
parisons inside batch B during the Sth stage of mergeRUCB with
maxi,j∈B ∆ij rather than maxj ∆1j . This would make the state-
ment of the theorem more difficult to understand and the proof
longer, so we opted for this simpler, slightly weaker bound for the
sake of readability and brevity.

8. RECENT DEVELOPMENTS
Recently, three new dueling bandit algorithms were proposed:

Doubler, MultiSBM and Sparring [1]. While Doubler and Mul-
tiSBM have performance guarantees, these hold only under the
stringent assumption that each ranker has an underlying absolute
utility, from which the preference matrix P is generated. This pre-
cludes the presence of cyclical preference relationships among the
rankers and, as demonstrated in [33, 34], such a total ordering as-
sumption is often violated in practice. Sparring has no performance
guarantees but outperforms Doubler and MultiSBM in the experi-
ments presented in [1].

Because of the recency of their publication, a comprehensive ex-
perimental comparison involving these new methods was not feasi-
ble, since large-scale experiments with Lerot would require months
to complete and the proxy method cannot go beyond 136 rankers,
as discussed in §5. However, we do offer some preliminary small-
scale results here. We excluded Doubler from these results since in
the experiments performed in [1], it was outperformed by all other
algorithms in every single experiment. Our results, shown in Fig. 7,
suggest that MultiSBM is consistently outperformed by most exist-
ing state-of-the-art algorithms, while the situation is more compli-
cated for Sparring.

Sparring performs well in some cases, as shown in Fig. 7 (top).
The fact that Sparring outperforms mergeRUCB in this setting with
few rankers is not surprising, since mergeRUCB is designed to ex-
cel given many rankers and is already outperformed by both RUCB

and RCS when there are only few rankers. However, even given
only few rankers, there are settings in which Sparring does poorly,
as shown in Fig. 7 (bottom). In our preliminary experiments, Spar-
ring’s performance degrades dramatically as the top Borda scores
become closer to each other, where the Borda score for ranker ρi
is defined to be

∑
j pij [28]. This phenomenon occurs because

Sparring chooses rankers to interleave based on its estimate of their
Borda scores. Given the potential of Sparring to fail in this way, its
practical utility in online ranker evaluation may be limited. More
extensive empirical comparisons, especially in settings with many
rankers, as well as a theoretical analysis of Sparring, are needed.
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Figure 7: Comparisons against Sparring.

9. CONCLUSION
In this paper, we proposed a new algorithm, called mergeRUCB,

for the online ranker evaluation problem in situations that are of
particular interest for web search, i.e., with large numbers of rankers.
We conducted extensive experimentation to understand the behav-
ior of this algorithm in comparison to other online evaluations algo-
rithms. The results of these experiments demonstrate that merge-
RUCB can significantly outperform existing state of the art algo-
rithms on large-scale evaluation problems. Moreover, we provided
theoretical guarantees proving the proper functioning of merge-
RUCB.

The algorithm presented in this paper makes it feasible for search
engines to perform large-scale online ranker evaluation experiments
that might be too costly if otherK-armed dueling bandit algorithms
were used. Furthermore, our theoretical results provide the neces-
sary assurance for undertaking such large-scale evaluation tasks.



Since we care more about the worst-case performance of ranker
evaluation algorithms than their average performance, our regret
bounds are high probability rather than in expectation, unlike pre-
vious work such as [32, 34].

In future work, we intend to conduct more thorough comparisons
with the recently proposed Sparring algorithm, whose behavior is
not as well understood and whose performance can vary substan-
tially, as we have briefly seen, depending on the online ranker eval-
uation at hand. Another possible direction for future research is
to use the “locality” ideas in this paper together with continuous
armed bandit algorithms like Branch and Bound [11] to extend on-
line ranker evaluation to an infinite number of rankers, for instance
if the rankers are defined in terms of continuous parameters.
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