Filtration

Dick de Jongh

March 14, 2012

Let \mathfrak{M} be a model and Σ a (usually finite) set of formulas.

Definition 0.1. 1. $w \iff \Sigma v$ iff, for all $\varphi \in \Sigma (w \models \varphi \Leftrightarrow v \models \varphi)$

- 2. $|w| = \{v \in W \mid v \iff \Sigma w\}$
- 3. $W^f = W_{\Sigma} = \{ |w| \mid w \in W \}$
- 4. $|w| \in V^f(p)$ iff $w \in V(p)$
- 5. $\mathfrak{M}^{\mathfrak{f}} = \langle W^f, R^f, V^f \rangle$ is a *filtration* (of \mathfrak{M} w.r.t. Σ) if
 - (a) If wRv, then $|w|R^f|v|$,
 - (b) If $|w|R^f|v|$ and $w \models \varphi$ (for $\varphi \in \Sigma$), then $v \models \varphi$.

Proposition 0.2. If $\mathfrak{M}^{\mathfrak{f}}$ is a filtration of $\mathfrak{M}^{\mathfrak{f}}$ w.r.t. Σ , then, for each $\varphi \in \Sigma$, $\mathfrak{M}^{\mathfrak{f}}, |w| \models \varphi$ iff $\mathfrak{M}, w \models \varphi$.

Proof. Only the induction step for \rightarrow :

 $w \models \varphi \rightarrow \psi \iff \forall v (w R v \Rightarrow (v \models \varphi \Rightarrow v \models \psi))$

 $w \models \varphi \rightarrow \psi \iff \forall v (w R v \Rightarrow (|v| \models \varphi \Rightarrow |v| \models \psi)) \text{ (by IH)}$

This is implied by $\forall v(|w|R^f|v| \Rightarrow (|v| \models \varphi \Rightarrow |v| \models \psi))$ (i.e. $|w| \models \varphi \rightarrow \psi)$ according to (a). On the other hand, assume, $\forall v(wRv \Rightarrow (|v| \models \varphi \Rightarrow |v| \models \psi))$, and $|w|R^f|v|$ and $|v| \models \varphi$. then, by IH, $v \models \varphi$. Since we have $w \models \varphi \rightarrow \psi$, we have by (b), $v \models \varphi \rightarrow \psi$ and hence $v \models \psi$ and, by IH, $|v| \models \psi$. So, $|w| \models \varphi \rightarrow \psi$.

If \mathfrak{M} is a canonical model, then we can replace |w| (which is $\{\Gamma \mid \Gamma \cap \Sigma = w \cap \Sigma\}$) by $w \cap \Sigma$ (we can do that because they uniquely determine each other), then W_{Σ} becomes $\{w \cap \Sigma \mid w \in W\}$, the set of DP-theories in Σ . That is a good move, because it makes not only $R = \subseteq$ but $R^f = \subseteq$ as well (easy, by (a) and (b) and using $w \models \varphi \Leftrightarrow \varphi \in w$).