
Jankov’s Theorems for Intermediate Logics in

the Setting of Universal Models

Dick de Jongh and Fan Yang

1 Institute for Logic, Language and Computation, University of Amsterdam, The
Netherlands D.H.J.deJongh@uva.nl

2 Department of Mathematics and Statistics, University of Helsinki, Finland
fan.yang@helsinki.fi

Abstract. In this article we prove two well-known theorems of Jankov in
a uniform frame-theoretic manner. In frame-theoretic terms, the first one
states that for each finite rooted intuitionistic frame there is a formula ψ
with the property that this frame can be found in any counter-model for
ψ in the sense that each descriptive frame that falsifies ψ will have this
frame as the p-morphic image of a generated subframe ([12]). The second
one states that KC, the logic of weak excluded middle, is the strongest
logic extending intuitionistic logic IPC that proves no negation-free for-
mulas beyond IPC ([13]). The proofs use a simple frame-theoretic ex-
position of the fact discussed and proved in [4] that the upper part of
the n-Henkin model H(n) is isomorphic to the n-universal model U(n) of
IPC. Our methods allow us to extend the second theorem to many logics
L for which L and L + KC prove the same negation-free formulas. All
these results except the last one earlier occurred in a somewhat different
form in [16].

1 Introduction

In this article we give a unified purely frame-theoretic treatment of two well-
known theorems of Jankov concerning intuitionistic propositional logic IPC and
its extensions. The first one states in (intuitionistic) frame-theoretic terms the
following.

Theorem 1. ([12]) For each finite rooted frame F there exists a formula ψ such
that, if ψ is falsified on any descriptive frame F′, then F is a p-morphic image
of a generated subframe of F′.

The second one states

Theorem 2. ([13]) If L is an intermediate logic such that L * KC, then L ⊢ θ
and IPC 0 θ for some negation-free formula θ.

This implies that KC is the strongest intermediate logic extending IPC
that proves the same negation-free formulas as IPC. We will prove the following
extension of this theorem.



Theorem 3. If an intermediate logic L is complete with respect to a class of
finite rooted frames which is closed under the operation of adding a top node,
then L + KC proves the same neagtion-free formulas as L, and if L′ is an
intermediate logic such that L′ * L + KC, then L′ ⊢ θ and L 0 θ for some
negation-free formula θ.

This means that for such a logic L, L + KC is the strongest intermediate
logic extending L that proves the same negation-free formulas as L.

We will show that the formula ψ figuring in the first theorem can be found
as a so-called de Jongh-formula ψw for a node w in the n-universal model for
IPC (see Section 2) for some n. The basic line of proof of the first theorem is
the following.

In the n-universal model ψw is falsified exactly in the downward closed set
generated by w, its dual ϕw is verified exactly in the upward closed set generated
by w. The formulas ψ- and ϕ-formulas are defined by a simultaneous induction
on the points of the universal model. The important relationship here is that
ψw = ϕw → ϕw1

∨ · · · ∨ ϕwm
, where w1, . . . , wm are the immediate successors

of w. Now, if ψw is falsified anywhere, there have to be nodes upwards where
ϕw is true and ϕw1

, . . . , ϕwm
false. The generated submodel that figures in the

theorem is the submodel on the points where ϕw is true.
One now calls in the fact that the n-universal model is the upper part of the

n-Henkin model, and in particular that, as we will show here, w is represented
in the n-Henkin model by the set of consequences of ϕw. It is then not difficult
to see that the points in any model where ϕw is true and ϕw1

, . . . , ϕwm
false all

correspond to one point in the n-Henkin model, and therefore to the point w in
the n-universal model, and that this holds in a similar way for all the v accessible
from w. The desired p-morphism now simply comes out as the function that, for
each v, sends all the points with ϕv true and ϕv1 , . . . , ϕvk false to v.

The first theorem is accompanied by an easy corollary (Theorem 27) that
states that any intermediate logic stronger than IPC will have to prove at least
one of the formulas ψw.

It is this accompanying theorem that in a transformed form will deliver the
second Jankov theorem. Any logic stronger than KC will prove a negation-free
formula not provable in IPC. This negation-free formula will be a formula ψ′

w.
This formula comes from a simultaneous definition of ϕ′ and ψ′-formulas very
much parallel to the ϕ,ψ-definition. These formulas are negation-free variations
on the ϕ,ψ-formulas but only for those nodes of the n-universal model that have
a unique top node in which all atoms are true. The formulas use an additional
propositional variable, not represented in the n-universal model, that partway
simulates ⊥. The top node is there because KC-frames require it, and it can
be because for negation-free formulas the addition of a top node with all atoms
true makes no difference. The difficulty in the proof is that the relationships
between the various ϕ′

w, ψ
′
w-formulas which were clear from the correspondence

to the n-Henkin model all have to be proved directly for the ϕ′, ψ′-formulas
because that correspondence is no longer there. However, the required submodel
can be generated by the ϕ′

w and the p-morphism can be defined as the function



that sends all the points where ϕ′
v is true and ϕ′

v1
, . . . , ϕ′

vk
false to v. All this

is expressed in Lemma 35 that thus is the transformed form of the first Jankov
theorem. The transformed form of the corollary remains easy to prove and that
becomes the second Jankov theorem.

The first Jankov theorem will be proved in Section 4, the second one and
our extension of it in Section 5. Section 2 introduces Kripke models for IPC in
general and n-universal models and n-Henkin models in partcular. In Section 3
the relationship between n-universal models and n-Henkin models is developed
sufficiently for the proofs in Sections 4 and 5. In Section 6 we conclude our
very straightforward proof that the upper part of the n-Henkin model H(n) is
isomorphic to the n-universal model U(n) of IPC. This theorem was discussed
extensively and proved in [4] in a more algebraic manner.

The article finds its place in the study of fragments of IPC containing only
certain connectives like, for example, implication and conjunction: [→,∧], or
implication, conjunction and negation: [→,∧,¬]. Fragments without disjunc-
tion are locally finite (i.e. have only finitely equivalence classes of formulas in n
variables). For an overview of results, see [14], and also [9], [11]. The different
finite universal models (called exact models) of [→,∧] and [→,∧,¬] inspired the
present approach to situate the locally infinite fragment [→,∧,∨] in the fragment
[→,∧,∨,¬] (containing all connectives).

2 Preliminaries

In this section we introduce the intuitionistic Kripke frames and models we
will use, and more specifically the canonical or Henkin models arising from the
standard Henkin type completeness proofs. Also the universal models will be
defined in this section.

Definition 4. A Kripke frame is a pair F = 〈W,R〉 consisting of a nonempty
set W and a partial order R on W .

Definition 5. A Kripke model is a triple M = 〈W,R, V 〉 such that 〈W,R〉 is
a Kripke frame, and V is an intuitionistic valuation, which is a partial map
V : Prop → ℘(W ) satisfying the persistence condition: if w ∈ V (p) and wRv,
then v ∈ V (p).

We extend the notation V (p) to formulas: V (ϕ) = {w ∈ W |w |= ϕ}. Our
models will usually be n-models, i.e. models with the valuation V restricted to
the atoms p1, . . . , pn and thereby to n-formulas, formulas formed from p1, . . . , pn.
If X is a set of elements in the frame F we will write FX for the subframe of F
generated by X , shortening this to Fw if X is a single element w; similarly for
models. We call the upward closed subsets of W (with respect to the relation R)
upsets. The set of all upsets of W is denoted by Up(W ).

Definition 6. A general frame is a triple F = 〈W,R,P〉, where 〈W,R〉 is a
Kripke frame and P is a family of upsets containing ∅ and closed under ∩, ∪



and the following operation ⊃: for every X,Y ⊆W ,

X ⊃ Y = {x ∈W : ∀y ∈ W (xRy ∧ y ∈ X → y ∈ Y )}

Elements of the set P are called admissible sets.

Definition 7. A general frame F = 〈W,R,P〉 is called refined if for any x, y ∈
W ,

∀X ∈ P(x ∈ X → y ∈ X) ⇒ xRy.

F is called compact, if for any families X ⊆ P and Y ⊆ {W \X : X ∈ P}
for which X ∪ Y has the finite intersection property,

⋂

(X ∪ Y) 6= ∅.

Definition 8. A general frame F is called a descriptive frame iff it is refined
and compact.

The next lemma states a basic fact of descriptive frames, for a proof, see e.g.
Lemma 2.6.13 in [16].

Lemma 9. A subframe of a descriptive frame F generated by an admissible
subset of F is a descriptive frame.

Definition 10. 1. Let F = 〈W,R〉 and G = 〈V, S〉 be two Kripke frames. A
map f from W to V is called a (Kripke frame) p-morphism of F to G if it
satisfies the following conditions:

– For any w, u ∈W , wRu implies f(w)Sf(u);

– f(w)Sv′ implies ∃v ∈W (wRv ∧ f(v) = v′).

2. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be two descriptive frames. We call
a Kripke frame p-morphism f of 〈W,R〉 to 〈V, S〉 a (descriptive frame) p-
morphism of F onto G, if it also satisfies the following condition:

– ∀X ∈ Q, f−1(X) ∈ P.

3. A Kripke frame p-morphism f of F to G is called a p-morphism of a model
M = 〈F, V 〉 to a model N = 〈G, V ′〉 if

– w ∈ V (p) ⇐⇒ f(w) ∈ V ′(p) for every p ∈ Prop.

Definition 11.

1. An n-theory is a set of n-formulas closed under deduction in IPC.

2. A set of formulas Γ has the disjunction property if, for all n-formulas ϕ, ψ,
ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ or ψ ∈ Γ .

3. The n-canonical model or n-Henkin model Mn is the Kripke model with

– The set Wn of all consistent n-theories with the disjunction property as
its set of worlds.

– The relation ⊆ as its accessibility relation.

– V (p) = {Γ ∈ Wn | p ∈ Γ}.



The point of the completeness proof lies in showing that, for each n-formula
ϕ and each Γ ∈ Wn, Γ � ϕ iff ϕ ∈ Γ , or in a different notation, Γ � ϕ iff
Γ ∈ V (ϕ).

Next, we recall the definition of an n-universal model. From now on, we will
talk about the valuation of point w in a n-model M by using the term color.
In general, an n-color (or color if the n is clear in a context) is a 0-1-sequence
c1 · · · cn of length n. The set of all n-colors is denoted by Cn.

We define an ordering on the colors as follows:

c1 · · · cn ≤ c′1 · · · c
′
n iff ci ≤ c′i for each 1 ≤ i ≤ n.

We write c1 · · · cn < c′1 · · · c
′
n if c1 · · · cn ≤ c′1 · · · c

′
n but c1 · · · cn 6= c′1 · · · c

′
n.

A coloring on a nonempty set W is a function col : W → Cn. Colorings
on intuitionistic frames 〈W,R〉 will have to satisfy the persistence condition
uRv ⇒ col(u) ≤ col(v). Under that condition colorings and valuations on frames
are in one-one correspondence. Given a model M = 〈W,R, V 〉, we can describe
the valuation of a point by the coloring colV : W → Cn, defined by colV (w) =
c1 · · · cn, where for each 1 ≤ i ≤ n,

ci =

{

1, w ∈ V (pi);
0, w 6∈ V (pi).

We call colV (w) the color of w under V .
In any frame F = 〈W,R〉, we say that a subset X ⊆W totally covers a point

w ∈ W , denoted by w ≺ X , if X is the set of all immediate successors of w.
We will just write w ≺ v in the case that w ≺ {v}. A subset X ⊆ W is called
an anti-chain if |X | > 1 and for every w, v ∈ X , w 6= v implies that ¬wRv and
¬vRw. If uRv we also say that u is under v.

We can now inductively define the n-universal model U(n) by its cumulative
layers U(n)k for k ∈ ω.

Definition 12.

– The first layer U(n)1 consists of 2n nodes with the 2n different n-colors under
the discrete ordering.

– Under each element w in U(n)k − U(n)k−1, for each color s < col(w), we
put a new node v in U(n)k+1 such that v ≺ w with col(v) = s, and we take
the reflexive transitive closure of the ordering.

– Under any finite anti-chain X with at least one element in U(n)k −U(n)k−1

and any color s with s ≤ col(w) for all w ∈ X, we put a new element v in
U(n)k+1 such that col(v) = s and v ≺ X and we take the reflexive transitive
closure of the ordering.

The whole model U(n) is the union of its layers. It is easy to see from the con-
struction that every U(n)k is finite. As a consequence, the generated submodel
U(n)w is finite for any node w in U(n).

The 1-universal model is also called Rieger-Nishimura ladder , which is de-
picted in Figure 1.
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Fig. 1. Rieger-Nishimura ladder

3 n-universal models and n-Henkin models of IPC

Let Upper(M) denote the submodel M{w∈W |d(w)<ω} generated by all the points
with finite depth, where depth is defined as usual. It is well-known by now that
the n-universal model is isomorphic to this upper part of the n-Henkin model
Upper(H(n)). N. Bezhanishvili gave in [4] an algebraic proof of this fact. In the
final section, we prove it directly on the basis of two important lemmas that we
already need in the next section on the first Jankov theorem. These two lemmas
respectively state that every finite model can be mapped p-morphically onto a
generated submodel of U(n) (Lemma 13), and that U(n)w is isomorphic to the
submodel of H(n) generated by the theory axiomatized by the de Jongh formula
of w (Lemma 20, see Definition 15). We restrict the information on n-universal
models to what we need. For more information, see [4].

Lemma 13. For any finite rooted Kripke n-model M, there exists a unique w ∈
U(n) and a p-morphism of M onto U(n)w.

For a proof of Lemma 13, see e.g. [16]. It follows as stated in the following
theorem that U(n) is a counter-model to every n-formula that is a non-theorem
of IPC. This shows that U(n) deserves being called a “universal model”.

Theorem 14. 1. For any n-formula ϕ, U(n) |= ϕ iff ⊢IPC ϕ.
2. For any n-formulas ϕ, ψ, for all w ∈ U(n)(w |= ϕ⇒ w |= ψ) iff ϕ ⊢IPC ψ.

Proof. (1) ⇐: trivial. ⇒: Suppose 0IPC ϕ. Then there exists a finite n-model
M and a point w ∈ M such that M, w 6|= ϕ. By Lemma 13, there exists a
p-morphism f of M to U(n). Hence, U(n), f(w) 6|= ϕ.



(2) Follows easily from (1).
⊓⊔

For any node w in an n-model M, if w ≺ {w1, ..., wm}, then we let

prop(w) := {pi |w |= pi, 1 ≤ i ≤ n},
notprop(w) := {qi, |w 6|= qi, 1 ≤ i ≤ n},
newprop(w) := {rj , |w 6|= rj and wi |= rj for each 1 ≤ i ≤ m, for 1 ≤ j ≤

n}3.

Here newprop(w) denotes the set of atoms which are about to be true in w, i.e.
they are true in all of w’s proper successors. Next, we define the formulas ϕw

and ψw, which were first introduced in [7], and which were extensively discussed
and named de Jongh formulas in [4].

Definition 15. Let w be a point in U(n). We inductively define its de Jongh
formulas ϕw and ψw.

If d(w) = 1, then let

ϕw :=
∧

prop(w) ∧
∧

{¬pk | pk ∈ notprop(w), 1 ≤ k ≤ n},

ψw := ¬ϕw .

If d(w) > 1, and {w1, ..., wm} is the set of all immediate successors of w, then
define

ϕw :=
∧

prop(w) ∧ (
∨

newprop(w) ∨
m
∨

i=1

ψwi
→

m
∨

i=1

ϕwi
),

ψw := ϕw →
m
∨

i=1

ϕwi
.

The most important properties of the de Jongh formulas are revealed in the
next theorem. It was first proved in [7].

Theorem 16. For every w ∈ U(n) = 〈U(n), R, V 〉, we have that

– V (ϕw) = R(w),
where R(w) = {u ∈ U(n) |wRu};

– V (ψw) = U(n) \R−1(w),
where R−1(w) = {u ∈ U(n) |uRw}.

An easy lemma that is needed in the proof of Jankov’s theorem in the next
section is the following.

Lemma 17. If u, v ∈ U(n) and vRu, then ⊢IPC ϕu → ϕv and 6⊢IPC ϕv → ϕu.

Proof. Immediate from Theorem 16 and Theorem 14. ⊓⊔

Definition 18.

3 Note that if w is an endpoint, newprop(w) = notprop(w).



– We write Cnn(ϕ) = {n-formula ψ | ⊢IPC ϕ → ψ}, but we may leave the n
out if it is clear from the context.

– We write Thn(M, w) = {n-formula ϕ |w |= ϕ}, but we may leave out the M

and n if they are clear from the context.

Corollary 19. For any point w in U(n), Thn(w) = Cnn(ϕw).

Proof. By Theorem 16, Thn(w) ⊇ Cnn(ϕw). For the other direction, let ψ be an
n-formula such that U(n), w |= ψ. By Theorem 16 again, we have that U(n) |=
ϕw → ψ, thus by Theorem 14, ⊢IPC ϕw → ψ, i.e. ψ ∈ Cnn(ϕw). ⊓⊔

The next lemma expresses the essence of the fact that the upper part of the
n-Henkin model is isomorphic to the n-universal model. We will pursue this in
the last section. For the time being the lemma will come in very useful in the
proof of the first Jankov Theorem, the main theorem of the next section.

Lemma 20. For any w ∈ U(n), let ϕw be a de Jongh formula. Then we have
that H(n)Cn(ϕw)

∼= U(n)w.

Proof. Let U(n) = 〈U(n), R, V 〉 and H(n) = 〈H(n), R′, V ′〉. Define a map f :
U(n)w → H(n)Cn(ϕw) by taking

f(v) = Cn(ϕv).

We show that f is an isomorphism.
First for any v ∈ U(n), by Corollary 19, we have that v ∈ V (p) iff Cn(ϕv) ∈

V ′(p) and that

uRv ⇐⇒ U(n), v |= ϕu (by Theorem 16)

⇐⇒ ϕu ∈ Cn(ϕv) (by Corollary 19)

⇐⇒ Cn(ϕu) ⊆ Cn(ϕv)

⇐⇒ f(u)R′f(v).

This makes f into a homomorphism.
Now, suppose u 6= v; w.l.o.g. we may assume that ¬uRv, which by Theorem

16 means that U(n), u 6|= ϕv. Thus, ϕv 6∈ Cn(ϕu) by Corollary 19, and so
f(u) = Cn(ϕu) 6= Cn(ϕv) = f(v). Hence, f is injective.

It remains to show that f is surjective. That is, to show that for any Γ ∈
H(n)Cn(ϕu) (i.e. any n-theory Γ ⊇ Cnn(ϕu) with the disjunction property) there
exists v with uRv such that Γ = Cn(ϕv). We prove this by induction on the
depth of u.

d(u) = 1. It suffices to show that if Cn(ϕu) ⊆ Γ , then Γ = Cn(ϕu). This
is clear from the fact that θ ∈ Cn(ϕu) iff ⊢IPC ϕu → θ iff (by Corollary 19),
because this shows that Cn(ϕu) is maximal consistent.

d(u) = k + 1. Let {u1, ..., um} be the set of all immediate successors of u.
Suppose Cn(ϕu) ⊆ Γ . If Cn(ϕui

) ⊆ Γ for some 1 ≤ i ≤ m, then by induction
hypothesis, Γ = Cn(ϕv) for some v ∈ R(ui), i.e. v ∈ R(u). So, we can assume



Cn(ϕui
) * Γ for all 1 ≤ i ≤ m. Thus Γ 0 ϕui

for each 1 ≤ i ≤ m. Take any
θ ∈ Γ . We then have also θ ∧ ϕu ∈ Γ . So,

θ ∧ ϕu 0 ϕu1
∨ · · · ∨ ϕum

.

Since U(n) is universal, there exists a u′ ∈ U(n) such that

U(n), u′ |= θ ∧ ϕu and U(n), u′ 6|= ϕu1
∨ · · · ∨ ϕum

.

By Theorem 16, u′ = u, which implies that U(n), u |= θ. By Corollary 19,
θ ∈ Cn(ϕu). Therefore Γ = Cn(ϕu). ⊓⊔

We end this section by a corollary which follows from the correspondence
between H(n) and U(n), and which plays a crucial role in our proof of Jankov’s
theorem.

Corollary 21. Let M be any model and w be a point in U(n) = 〈W,R, V 〉. For
any point x in M, if M, x |= ϕw, then there exists a unique point v satisfying

M, x |= ϕv, M, x 6|= ϕv1 , · · · ,M, x 6|= ϕvm ,

where v ≺ {v1, · · · , vm}, and wRv.

Proof. Note that Thn(M, x) is a node in H(n) = 〈W ′, R′, V ′〉. M, x |= ϕw

implies that Thn(M, x) ⊢IPC ϕw and Cnn(ϕw)R
′Thn(M, x). Thus, by Lemma

20, Thn(M, x) = Cnn(ϕv) for a unique point v ∈ W . Moreover we have wRv.
So M, x |= ϕv.

By Lemma 16, we have that 0IPC ϕv → ϕvi for each 1 ≤ i ≤ m, so ϕvi 6∈
Cnn(ϕv) = Thn(M, x), i.e. M, x 6|= ϕvi . ⊓⊔

4 Jankov’s Theorem for extensions of IPC

In [12], Jankov proved

Theorem 22. For each finite subdirectly irreducible Heyting-algebra H there ex-
ists a formula ψ such that, if ψ is falsified on any Heyting-algebra H′, then H is
a subalgebra of a homomorphic image of H′.

The formula ψ used in the proof of the theorem contained a direct description
of H. De Jongh proved in [7] the same theorem with regard to the de Jongh
formulas defined above. Here we transform the latter proof, which made an
algebraic detour, into a purely frame-theoretic one in the following form.

Theorem 23. For each finite rooted frame F there exists a formula ψ such that,
if ψ is falsified on any descriptive frame F′, then F is a p-morphic image of a
generated subframe of F′.



By modern insights in the duality between Heyting-algebras and descriptive
frames, it is equivalent to the original theorem.

We have set the stage in the previous section in such a manner that the
analogies between the proof of the Jankov theorem and the proof of our central
Lemma 35 for the Jankov Theorem on KC (Theorem 37) in the next section
will come out as clearly as possible.

One of the things we will need in the proof of Jankov’s theorem is that under
certain conditions a Kripke frame p-morphism from a descriptive frame to a
finite frame is almost automatically also a descriptive frame p-morphism. The
next lemma states the necessary conditions.

Lemma 24. Let F = 〈W,R,P〉 and G = 〈W ′, R′,P ′〉 be two descriptive frames
with W ′ finite. Let f be a (Kripke frame) p-morphism from the Kripke frame
〈W,R〉 to the Kripke frame 〈W ′, R′〉 such that f−1(R(w)) is an admissible set
for any w ∈ W ′. Then f is also a (descriptive frame) p-morphism from the
descriptive frame F to the descriptive frame G.

Proof. It suffices to show that for any X ∈ P ′, f−1(X) ∈ P . Observing that
X =

⋃

w∈X

R(w), we obtain that

f−1(X) = f−1(
⋃

w∈X

R(w)) =
⋃

w∈X

f−1(R(w)),

which implies f−1(X) ∈ P since f−1(X) is a finite union of admissible sets. ⊓⊔

The following useful lemma was introduced (as Theorem 3.2.16) and dis-
cussed in [4]. It says that for any finite rooted frame F an n can be found so that
an isomorphic copy of F occurs in U(n) as the frame of a generated submodel.

Lemma 25. For any finite rooted frame F = 〈W ′, R′〉, there exists a model
M = 〈F, V 〉 on F such that M is isomorphic to a generated submodel U(n)w of
U(n) for some n.

Proof. We introduce a propositional variable pw for every point w in W , and
define a valuation V by letting V (pw) = R(w). Put n = |W |. By Lemma 13, there
exists a p-morphism f from the model M = 〈F, V 〉 onto a generated submodel
U(n)w. By the construction, we know that different points of M have different
colors, thus f is injective, i.e. M is isomorphic to U(n)w . ⊓⊔

Note that the underlying Kripke frame of U(n)w = 〈W,R, V 〉 described in the
previous lemma can be viewed as the general frame U = 〈W,R,Up(W )〉, which
is a descriptive frame since W is finite.

Theorem 26 (Jankov). For every finite rooted frame F, let ψw be the de Jongh
formula of w in the model U(n)w described in Lemma 25. Then for every de-
scriptive frame G,

G 6|= ψw iff F is a p-morphic image of a generated subframe of G.



Proof. The direction from right to left is obvious, since F 6|= ψw follows immedi-
ately from Theorem 16.

For the other direction, suppose G 6|= ψw. Then there exists a model N on G

such that
N 6|= ϕw → ϕw1

∨ · · · ∨ ϕwm
, (1)

where w ≺ {w1, · · · , wm}. Consider the generated submodel N′ = NV ′(ϕw) =
〈W ′, R′,P ′, V ′〉 ofN. Note that since V ′(ϕw) is admissible, by Lemma 9, 〈W ′, R′,P ′〉
is a descriptive frame. Define a map f :W ′ →W by taking f(x) = v iff

N′, x |= ϕv, N
′, x 6|= ϕv1 , · · · ,N

′, x 6|= ϕvk , (2)

where v ≺ {v1, · · · , vk}.
Note that for every x ∈ W ′, N′, x |= ϕw, thus by Corollary 21, there exists a

unique v ∈ R(w) satisfying (2). So f is well-defined.
We show that f is a surjective (descriptive frame) p-morphism of 〈W ′, R′,P ′〉

onto 〈W,R,P〉. Suppose x, y ∈ W ′ with xR′y, f(x) = v and f(y) = u. Since
N′, x |= ϕv, we have that N′, y |= ϕv. By Corollary 21, there exists a unique
point u′ ∈ W such that u′ and y satisfy (2), moreover, vRu′. So, since u and y
also satisfy (2), by the uniqueness, u′ = u and vRu.

Next, suppose x ∈ W ′ and v, u ∈ W such that f(x) = v and vRu. We now
show that there exists y ∈W ′ with xR′y such that

N′, y |= ϕu, N
′, y 6|= ϕu1

, · · · ,N′, y 6|= ϕul
(3)

where u ≺ {u1, · · · , ul}. This will give us the required f(y) = u. We will prove
this directly if u is an immediate successor of v, i.e. one of the vi. For u with
vRu in general there is a chain v = u0Ru1 . . . Ruk = u with ui+1 each time an
immediate successor of ui, so that the result for u follows by induction along
this chain.

Since x and v satisfy (2), and ϕv implies by its definition that

l
∨

i=1

ψvi →
l
∨

i=1

ϕvi , (4)

we must have that
N′, x 6|= ψu, (5)

because u is one of the vi. From (5) the existence of y with xR′y satisfying
(3) immediately follows. Hence, we have shown that f is a (Kripke frame) p-
morphism.

To show that f is surjective it is sufficient to note that, by (1), there exists
x ∈ W ′ such that (2) holds for x and w, i.e. f(x) = w. Then, for every node
v ∈ W , we have that wRv. Since f is a (Kripke frame) p-morphism, there exists
y ∈ R′(x) ⊆W ′ such that f(y) = v.

It remains to show that f is a (descriptive frame) p-morphism between the
two descriptive frames. In view of Lemma 24, it is sufficient to show that for any
v ∈ X , f−1(R(v)) = V ′(ϕv) which is an admissible set.



Indeed, for every x ∈ f−1(R(v)), there exists u ∈ R(v) such that f(x) = u
and so N′, x |= ϕu. Applying Lemma 17 gives N′, x |= ϕv, and so x ∈ V ′(ϕv).
On the other hand, for every x ∈ V ′(ϕv), by Corollary 21, there exists a unique
u ∈ R(v) such that f(x) = u, thus x ∈ f−1(R(v)).

Hence f is a surjective (descriptive frame) p-morphism of 〈W ′, R′,P ′〉 onto
〈W,R,P〉. Then since F ∼= 〈W,R,P〉, F is a p-morphic image of 〈W ′, R′,P ′〉,
which is a generated subframe of G. ⊓⊔

As announced in the introduction we conclude this section with the corollary
of ([7], [8]) that says that any intermediate logic that really extends IPC will
prove at least one of the ψw. This is a very useful theorem for applications, e.g.
to give charcaterizations of IPC (see e.g. [7], [8]). We will not apply it directly
in this paper, but, as said before, we will use an adapted form of it in the next
section.

Theorem 27. If L is an intermediate logic strictly extending IPC, i.e. IPC ⊂
L ⊆ CPC, then there exists n ∈ ω and w in U(n) such that L ⊢ ψw.

Proof. Suppose χ is a formula satisfying

L ⊢ χ and IPC 0 χ.

Then there exists a finite rooted frame F such that F 6|= χ. By Lemma 25,
there exists a model 〈F, V 〉 on F such that 〈F, V 〉 ∼= U(n)w for some generated
submodel U(n)w of U(n). Consider the de Jongh formula ψw. Suppose L 0 ψw.
Then there exists a descriptive frame G of L such that G 6|= ψw. By Theorem
26, F is a p-morphic image of a generated subframe of G. Thus, F is an L frame.
Since L ⊢ χ, we have that F |= χ, which gives us a contradiction. ⊓⊔

5 Jankov’s Theorem for KC

The logic KC, called the logic of weak excluded middle, and also Jankov’s Logic,
is the intermediate logic axiomatized by ¬ϕ∨¬¬ϕ. KC is complete with respect
to finite rooted frames with unique top points. From that fact it is not difficult
to show that KC proves exactly the same negation-free formulas as IPC.

Theorem 28. For any negation-free formula ϕ, KC ⊢ ϕ iff IPC ⊢ ϕ.

Proof. It suffices to show the direction “⇒”. Suppose IPC 0 ϕ for any negation-
free formula ϕ. Then there exists a finite rooted model M such that M 6|= ϕ.
Now construct a new model M′ by adding a new top node t to M and making
every propositional variable true at t. It is not hard to see that M, w |= ψ iff
M′, w |= ψ for all nodes w in M and all negation-free formulas ψ. Therefore
M′ 6|= ϕ, which by the completeness of KC means that KC 0 ϕ. ⊓⊔

Jankov proved in [13] that KC is the strongest intermediate logic that has this
property. Another proof can be obtained by using canonical formulas (see [6],



[1]). In this section, we give a frame-theoretic alternative proof of Jankov’s The-
orem. The basic idea of the proof comes from adapting the proof of Theorem 26
combined with Theorem 27 to the special case of KC-frames.

We start with defining formulas ϕ′
w and ψ′

w which are negation-free modifi-
cations of the de Jongh formulas. To a certain extent they will play the same
role on the generated submodels of U(n) with a unique top node satisfying all
atoms as the de Jongh formulas play on all rooted generated submodels of U(n).
First, we introduce some terminology.

For any finite set X of formulas with |X | > 1, let

∆X =
∧

{ϕ↔ ψ | ϕ, ψ ∈ X}.

For the case |X | = 1 or |X | = 0, we set ∆X = ⊤.

Let U(n)w0
= 〈W,R, V 〉 be a generated submodel with a largest element t in

U(n) such that

– t |= p1 ∧ · · · ∧ pn;
– col(w) 6= col(v) for all w, v ∈W such that w 6= v.

To make it easy to state the next sequence of lemmas, definitions in a consis-
tent manner we call such a model in the following a top model, and say that w0

generates a top model. Let r be a new propositional variable (to be identified
with pn+1 so that we can talk about p1, . . . , pn, r-models as n+ 1-models).

Definition 29. We inductively define the formulas ϕ′
w and ψ′

w for every w ∈W
in a top model.

If d(w) = 1,

ϕ′
w = p1 ∧ · · · ∧ pn,
ψ′
w = ϕ′

w → r.

If d(w) = 2, let q be an arbitrary propositional letter in notprop(w). Define

ϕ′
w =

∧

prop(w) ∧∆notprop(w) ∧ ((q → r) → q)4,

ψ′
w = ϕ′

w → q.

If d(w) > 2 and w ≺ {w1, · · · , wm}, then let

ϕ′
w :=

∧

prop(w) ∧ (
∨

newprop(w) ∨
m
∨

i=1

ψ′
wi

→
m
∨

i=1

ϕ′
wi
),

ψ′
w := ϕ′

w →
m
∨

i=1

ϕ′
wi
.

4 Note that in the definition, it does not matter which q ∈ notprop(w) is chosen. Note
also that notprop(w) = newprop(w).



We will prove for the ϕ′
w and ψ′

w formulas a lemma (Lemma 35) which is
analogous to Theorem 26 for the ϕw and ψw formulas. It is good to note already
that the ϕ′

w and ψ′
w formulas cannot be evaluated in U(n), since there is one

propositional variable to many in them. Nevertheless, we will be able to follow
the general line of the argument in the previous section.

It is worth remarking that, for d(w) = 2, ψ′
w is a generalized form of Peirce’s

Law (((q → r) → q) → q).

Lemma 30. IPC ⊢ ϕ′
w[r/⊥]5 ↔ ϕw and IPC ⊢ ψ′

w[r/⊥] ↔ ψw.

Proof. We prove this by induction on d(w).
d(w) = 1. Trivial.
d(w) = 2. ϕ′

w[r/⊥] =
∧

prop(w) ∧∆notprop(w) ∧ ((q → ⊥) → q).
First note that (q → ⊥) → q) is equivalent to ¬¬q. On the other hand,

⊢ ϕw ↔
∧

prop(w) ∧ (
∨

notprop(w) ∨ ¬(p1 ∧ · · · ∧ pn) → p1 ∧ · · · ∧ pn)

⊢ ϕw ↔
∧

prop(w) ∧ (
∨

notprop(w) → p1 ∧ · · · ∧ pn) ∧ (¬(p1 ∧ · · · ∧ pn) → p1 ∧ · · · ∧ pn)

Under the assumption
∧

prop(w),
∨

notprop(w) → p1∧· · ·∧pn is equivalent
to ∆notprop(w). Furthermore, ¬(p1 ∧ · · · ∧ pn) → p1 ∧ · · · ∧ pn is equivalent to
¬¬(p1 ∧ · · · ∧ pn) and hence to ¬¬p1 ∧ · · · ∧ ¬¬pn. This, in its turn is under
the assumptions

∧

prop(w) and ∆notprop(w) equivalent to ¬¬q. So, indeed,
⊢ ϕw ↔ ϕ′

w[r/⊥] and

⊢ ψ′
w[r/⊥] ↔ (ϕ′

w [r/⊥] → q)

⊢ ψ′
w[r/⊥] ↔ (ϕ′

w [r/⊥] → p1 ∧ · · · ∧ pn)

⊢ ψ′
w[r/⊥] ↔ (ϕw → p1 ∧ · · · ∧ pn)

⊢ ψ′
w[r/⊥] ↔ (ϕw → ϕt)

⊢ ψ′
w[r/⊥] ↔ ψw.

d(w) > 2. This is proved easily by applying the induction hypothesis to the
successors wi (1 ≤ i ≤ m) of w. ⊓⊔

Obviously, we could have defined ϕ′
w and ψ′

w slightly differently but equiva-
lently in such a manner that this lemma would have been a complete triviality,
but that would have meant a much less intuitive and pleasing definition of the
ϕ′
w and ψ′

w for w of depth 2. One corollary we will use later in the proof of
Theorem 37 is the following.

Corollary 31. Let w0 generate a top model in U(n). Then, for any point w in
U(n)w0

, 6⊢IPC ψ′
w.

Proof. By Theorem 16, U(n)w0
6|= ψw, thus, by the Lemma 30, the underlying

frame of U(n)w0
falsifies ψ′

w. Hence 6⊢IPC ψ′
w. ⊓⊔

5 We write ϕ[p/ψ] for the formula obtained by replacing all occurrences of p in ϕ by
ψ.



The next lemma is an analogue of Lemma 17 that was crucial in our proof
of Jankov’s Theorem. The property that was proved for the ϕw formulas in that
lemma was an easy consequence of Theorem 14. We do not have such a theorem
for the ϕ′

w formulas however. Here we prove the corresponding theorem directly
from the construction of the ϕ′

w and ψ′
w formulas.

Lemma 32. Let w0 generate a top model in U(n) and let w, v be two nodes in
W with wRv. Then we have that ⊢IPC ϕ′

v → ϕ′
w.

Proof. We prove the lemma by induction on d(v).

If d(v) = 1, then ϕ′
v = p1 ∧ · · · ∧ pn. Since wRv, we have that prop(w) ⊆

{p1, · · · , pn} and

⊢ ϕ′
v →

∧

prop(w). (6)

We show that ⊢ ϕ′
v → ϕ′

w by induction on d(w).
d(w) = d(v) + 1 = 2. Then for any p, q ∈ notprop(w) ⊆ {p1, · · · , pn} we have

that

⊢ p1 ∧ · · · ∧ pn → (p↔ q) and ⊢ p1 ∧ · · · ∧ pn → ((q → r) → q).

It follows that

⊢ ϕ′
v → ∆notprop(w) and ⊢ ϕ′

v → ((q → r) → q).

Together with (6), we obtain

⊢ ϕ′
v →

∧

prop(w) ∧∆notprop(w) ∧ ((q → r) → q)

i.e. ⊢ ϕ′
v → ϕ′

w .
d(w) > 2. Let w ≺ {w1, · · · , wk}. Then for any immediate successor wi of

w, since d(wi) < d(w) by induction hypothesis, we have that ⊢ ϕ′
v → ϕ′

wi
. This

implies that ⊢ ϕ′
v →

k
∨

i=1

ϕ′
wi

and that

⊢ ϕ′
v → (

∨

newprop(w) ∨
k
∨

i=1

ψ′
wi

→
k
∨

i=1

ϕ′
wi
). (7)

Together with (6), we obtain

⊢ ϕ′
v →

∧

prop(w) ∧ (
∨

newprop(w) ∨
k
∨

i=1

ψ′
wi

→
k
∨

i=1

ϕ′
wi
) (8)

i.e. ⊢ ϕ′
v → ϕ′

w .
If d(v) = 2, then since prop(w) ⊆ prop(v), clearly (6) holds. We show ⊢ ϕ′

v →
ϕ′
w by induction on d(w).



d(w) = d(v) + 1. Then v = wi and ϕ
′
v = ϕ′

wi
for some immediate successor

wi of w, hence ⊢ ϕ′
v →

k
∨

i=1

ϕ′
wi

and (7) follows. Together with (6), we obtain (8)

i.e. ⊢ ϕ′
v → ϕ′

w .
d(w) > d(v) + 1. For any immediate successor wi of w, by the induction

hypothesis, we have that ⊢ ϕ′
v →

k
∨

i=1

ϕ′
wi
, which implies (7). Together with (6),

we obtain (8) i.e. ⊢ ϕ′
v → ϕ′

w.
If d(v) > 2, then clearly prop(w) ⊆ prop(v) gives (6). By a similar argument

as above, we can show that (7) holds, thus, (8) i.e. ⊢ ϕ′
v → ϕ′

w holds. ⊓⊔

Next, we want to prove for the ϕ′
w formulas an analogue to Corollary 21. But

we will have to do this in two steps. First, we show that nodes that make ϕ′
w

true have the right color.

Theorem 33. Let M = 〈W ′, R′, V ′〉 be any n+ 1-model and let w0 generate a
top model in U(n). Put Vn = V ′|{p1, . . . , pn}. For any point w in U(n)w0

and
any point x in M, if

M, x |= ϕ′
w, M, x 6|= ϕ′

w1
, · · · ,M, x 6|= ϕ′

wm
, (9)

where w ≺ {w1, · · · , wm}, then colVn
(x) = colV (w).

Proof. We prove the lemma by induction on d(w). In the following discussion
we restrict attention to n-formulas and n-atoms all the time.

d(w) = 1, i.e. w = t. Then (9) means that M, x |= p1 ∧ · · · ∧ pn. Also,
U(n)w0

, t |= p1 ∧ · · · ∧ pn. So colVn
(x) = colV (w).

d(w) = 2. Then (9) implies that

M, x |=
∧

prop(w). (10)

This means that all atoms true in w are true in x. From (9) we also have
that

M, x |= ∆notprop(w). (11)

So, either all atoms false in w are false in x, or all are true in x. But, in this
case, in (9) m = 1 and w1 = t, so

M, x 6|= p1 ∧ · · · ∧ pn. (12)

This implies that all atoms false in w are false in x: colVn
(x) = colV (w).

d(w) > 2. This is the induction step. As in the previous case we have that
all atoms true in w are true in x. Now (9)

M, x 6|= ψ′
wi
, (13)



for all immediate successor wi of w, i.e. for each immediate successor wi of w,
there exists yi ∈ R′(x) such that yi and wi satisfy (9). Since d(wi) < d(w), by
the induction hypothesis, we have that colVn

(yi) = colV (wi). So, all atoms false
in at least one of the wi are false in x. On the other hand, (9) also implies

M, x 6|=
∨

newprop(w), (14)

So, all atoms true in all wi but not in w are also false in x. We have colVn
(x) =

colV (w). ⊓⊔

This is the point where the requirement we made at the beginning of this
section that all the nodes of U(n)w0

have distinct colors plays an essential role.
Without this assumption we were not able to prove the required analogue of
Corollary 21 that now follows.

Lemma 34. Let M = 〈W ′, R′, V ′〉 be any n+1-model and let w0 generate a top
model in U(n). For any node w in U(n)w0

and any node x in M, if M, x |= ϕ′
w,

then there exists a unique point v ∈ U(n)w0
satisfying

M, x |= ϕ′
v, M, x 6|= ϕ′

v1
, · · · ,M, x 6|= ϕ′

vm
, (15)

where v ≺ {v1, · · · , vm}, and wRv.

Proof. Suppose M, x |= ϕ′
w. We show that there exists v ∈ R(w) satisfying (15)

by induction on d(w).
d(w) = 1. Then trivially v = w satisfies (15).
d(w) > 1. If for all immediate successor wi of w, M, x 6|= ϕ′

wi
, then w satisfies

(15). Now suppose that for some immediate successor wi0 of w, M, x |= ϕ′
wi0

.

Since M, x |= ϕ′
wi0

and d(wi0 ) < d(w), by the induction hypothesis, there exists

v ∈ W , such that wi0Rv and v satisfies (15). And clearly, wRv.
Next, suppose v′ ∈ U(n)w0

also satisfies (15). By Theorem 33,

colV (v
′) = colVn

(x) = colV (v),

which by the property of U(n)w0
means that v′ = v. ⊓⊔

Let F be a finite rooted frame with a largest element x0. By Lemma 25,
there exists a model 〈F, V 〉 on F such that 〈F, V 〉 ∼= U(n)w for some generated
submodel U(n)w of U(n). Obviously, U(n)w has a top point t, and, by the proof
of Lemma 25 we can assume that distinct points of U(n)w have distinct colors,
and that t |= p1∧· · ·∧pn: U(n)w is a top model. The next lemma is a modification
of the Jankov-de Jongh Theorem (Theorem 26) proved in the previous section.
Both the statement of the lemma and its proof are generalized from those of
Theorem 26.

Lemma 35. Let F be a finite rooted frame F with a largest element, and let
U(n)w be a top model with F as its frame. Then for every descriptive frame G,

G 6|= ψ′
w iff F is a p-morphic image of a generated subframe of G.



Proof. ⇐: Let U(n)w = 〈W,R,P , V 〉. Suppose F is a p-morphic image of a
generated subframe ofG. By Theorem 16, U(n)w 6|= ψw, thus F 6|= ψw. By Lemma
30, we know in that case that F 6|= ψ′

w. Then G 6|= ψ′
w follows immediately.

⇒: Suppose G 6|= ψ′
w. Then there exists a model N on G such that N 6|= ψ′

w.
Consider the generated submodel N′ = NV ′(ϕ′

w
) = 〈W ′, R′,P ′, V ′〉 of N. Since

V ′(ϕ′
w) is admissible, by Lemma 9, N′ is descriptive. Define a map f : W ′ →W

by taking f(x) = v iff

N′, x |= ϕ′
v, N

′, x 6|= ϕ′
v1
, · · · ,N′, x 6|= ϕ′

vk
, (16)

where v ≺ {v1, · · · , vk}.
Note that for every x ∈ N′, N′, x |= ϕ′

w, thus by Lemma 34, there exists a
unique v ∈ R(w) satisfying (16). So f is well-defined.

We show that f is a surjective (descriptive frame) p-morphism of 〈W ′, R′,P ′〉
onto 〈W,R,P〉. Suppose x, y ∈ N′ with xR′y, f(x) = v and f(y) = u. Since
N′, x |= ϕ′

v, we have that N′, y |= ϕ′
v. By Lemma 34, there exists a unique point

u′ ∈ W such that u′ and y satisfy (16), moreover vRu′. So, since u and y also
satisfy (16), by the uniqueness, u′ = u and vRu.

Next, suppose x ∈ N′ and v, u ∈ W such that f(x) = v and vRu. We show
that there exists y ∈ N′ such that f(y) = u and xR′y.

The only interesting case to consider is d(v) = 2 and u 6= v. In this case
u = t. Since f(x) = v, v and x satisfy (16), so

N′, x |=
∧

prop(v) ∧∆notprop(v) ∧ ((q → r) → q). (17)

Note that
⊢IPC ((q → r) → q) → ¬¬q.

Thus, N′, x |= ¬¬q, which means there exists y ∈ W ′ such that xR′y and
N′, y |= q. Since

N′, y |=
∧

prop(v) ∧∆notprop(v),

we have that N′, y |= p1 ∧ · · · pn, i.e. f(y) = u.
The surjectivity of f follows in the same way as in the proof of theorem 26.
By applying Lemma 32, Lemma 34 and using the same argument as that in

the proof of Theorem 26, we can show that for every v ∈ X , f−1(R(v)) = V ′(ϕ′
v),

which is an admissible set. Therefore by Lemma 24, we obtain f−1(X) ∈ P ′.
Hence, f is a surjective (descriptive frame) p-morphism of 〈W ′, R′,P ′〉 onto

〈W,R,P〉. Then since F ∼= 〈W,R,P〉, F is a p-morphic image of 〈W ′, R′,P ′〉,
which is a generated subframe of G. ⊓⊔

One may wonder how the formulas ϕ′
w, ψ

′
w behave in the n+1-Henkin model.

Let us make a remark about this without proof.

Remark 36. For any w in U(n) that generates a top model there exists a unique
w′ in U(n + 1) with ϕ′

w true in w′, ψ′
w false in w′. R(w′) consists of a copy

of R(w) with r false throughout with its top replaced by the Rieger-Nishimura



ladder for r with p1, . . . , pn true everywhere. The p-morphism mapping R(w′)
onto R(w) is an isomorphism on the copy of R(w) and maps the ladder onto the
single top.

We are now ready to prove Jankov’s theorem on KC, which shows that KC
is the strongest extension of IPC that proves the same negation-free formulas
as IPC.

Theorem 37 (Jankov). If L is an intermediate logic such that L * KC, then
L ⊢ θ and IPC 0 θ for some negation-free formula θ.

Proof. We follow the idea of the proof of Theorem 27. Suppose χ is a formula
satisfying

L ⊢ χ and KC 0 χ.

Then there exists a finite rooted KC-frame F with a largest element such that
F 6|= χ. Using Lemma 25 as before we can stipulate a model 〈F, V 〉 on F such
that 〈F, V 〉 ∼= U(n)w for some top model U(n)w in U(n).

Consider the formula ψ′
w. Suppose L 0 ψ′

w. Then there exists a descriptive
frame G of L such that G 6|= ψ′

w. By Lemma 35, F is a p-morphic image of a
generated subframe of G. Thus, F is an L-frame. Since L ⊢ χ, we have that
F |= χ, which leads to a contradiction.

Hence, L ⊢ ψ′
w. We have that IPC 0 ψ′

w by Corollary 31, and ψ′
w is negation-

free, thus θ = ψ′
w is a formula as required. ⊓⊔

The above proof of this theorem can straightforwardly be generalized to prove
a similar theorem for many intermediate logics L for which L and L + KC prove
the same negation-free formulas.

Theorem 38. If an intermediate logic L is complete with respect to a class of
finite rooted frames which is closed under the operation of adding a top node, then
L + KC is the strongest logic extending L that proves the same negation-free
formulas as L.

Proof. We first show that L+KC proves the same negation-free formulas as L,
that is, we show that for any negation-free formula ϕ,

L ⊢ ϕ⇐⇒ L+KC ⊢ ϕ.

It suffices to show the direction ⇐=. Suppose L 0 ϕ, i.e. there exists a finite
rooted model M on a finite L-frame F such that M 6|= ϕ. Now, construct a new
model M′ by adding a new top node t to M and making every propositional
variable true at t. By the same argument as that in the proof of Theorem 28, it
can be shown that M′ 6|= ϕ. By the assumption on L and the completeness of
KC, the underlying frame of M′ is an L+KC-frame. thus we have shown that
L+KC 0 ϕ.

Next, suppose L′ is an intermediate logic such that L′ 6⊆ L + KC. We will
show that L′ ⊢ θ and L +KC 0 θ for some negation-free formula θ. Let χ be a
formula satisfying

L′ ⊢ χ and L+KC 0 χ.



Observe that
L 0

∧

p∈Prop(χ)

(¬p ∨ ¬¬p) → χ,

where Prop(χ) is the set of all propositional variables occurring in χ. Then
there exists a finite rooted n-model M on an L-frame F with root r such that
n = |Prop(χ)|,

M, r |=
∧

p∈Prop(χ)

(¬p ∨ ¬¬p) and M, r 6|= χ.

Let E be the set of all endpoints of M. It is not hard to see that the former of
the above implies that the n-colors of points in E are all the same. Therefore,
the model M′ obtained from M by identifying all the points in E is a p-morphic
image of M. Clearly, the underlying frame F′ of M′ is an L + KC-frame and
F′ 6|= χ.

Using Lemma 25 we can stipulate a model 〈F′, V 〉 on F′ such that 〈F′, V 〉 ∼=
U(n)w for some top model U(n)w in U(n). Consider the formula ψw. We know
that U(n)w 6|= ψw, thus the L+KC-frame F′ 6|= ψw, which means that L+KC 0
ψw. It then follows from Lemma 30 that L+KC 0 ψ′

w.
On the other hand, by an argument similar to that in the proof of Theorem

37, we can show that L′ ⊢ ψ′
w. Thus, ψ

′
w is the required negation-free formula.

⊓⊔

The above theorem applies to a number of well-known logics. In the first
place, the logics complete w.r.t. finite frames with splittings less than n + 1
(introduced in [10] and called Tn in [6]) for n > 1. Further, to the logics that
just restrict the width of frames (called BWn in [6]). And also to the Kuznetsov-
Gerciu logic KG and extensions of this logic with the right properties like the
Rieger-Nishimura logic RN (see [2]). All these logics of course prove negation-
free formulas that are not provable in IPC, in fact most of them are axiomatized
by such formulas.

It is further to be noted that in the above proof it is shown that, if L is a
complete logic, then L + KC is complete as well. The restriction to finite frames
is not essential. As far as we know this result is new.

6 Some properties of U(n) and H(n)

In this section we conclude in Theorem 39 the almost finished proof of section 2
that U(n) is isomorphic to the upper part of H(n). After that, we sharpen this
result by giving a quick proof that these two models are even more “connected”:
every infinite upset of H(n) has an infinite intersection in U(n), or in other
words, if an upset X generated by a point in the n-Henkin model has a finite
intersection with its upper part, the n-universal model, then X lies completely
in U(n). Both results were proved before in [4].

Theorem 39. Upper(H(n)) is isomorphic to U(n).



Proof. Let U(n) = 〈U(n), R, V 〉. Define a function f : U(n) → Upper(H(n)) by
taking

f(w) = Cn(ϕw).

We show that f is an isomorphism. From the proof of Lemma 20 we know that

U(n)w ∼= Upper(H(n))f(w).

It then suffices to show that f is a bijection.
Let w, v be two distinct points of U(n). W.l.o.g. we may assume that ¬wRv,

thus by Theorem 16, U(n), w |= ϕw but U(n), v 6|= ϕw. We know from the proof
of Lemma 20 that

U(n)w ∼= Upper(H(n))f(w) and U(n)v ∼= Upper(H(n))f(v),

thus Upper(H(n))f(w) ≇ Upper(H(n))f(v), so f(w) 6= f(v).
For any point x in Upper(H(n)), by Lemma 13, there exists a unique wx

such that U(n)wx
is a p-morphic image of Upper(H(n))x, which by Corollary 19

implies that
Th(x) = Th(wx) = Cn(ϕwx

),

therefore f(wx) = x. ⊓⊔

We call w ∈ X a border point of an upset X of U(n), if w 6∈ X and all
successors v of w with v 6= w are in X . Denote the set of all border points of X
by B(X). An upset X is uniquely characterized by its set of border points. Note
that all endpoints U(n) which are not in X are in B(X). The concept of border
point was developed and studied in [5].

Fact 40 If X is finite, then B(X) is also finite.

Proof. Since X is finite, there exists k ∈ ω such that X ⊆ U(n)k. Observe that
B(X) ⊆ U(n)k+1, which means that B(X) is finite, since U(n)k+1 is finite. ⊓⊔

The next lemma shows the syntactic side of the connection of upsets and
their border points.

Lemma 41. If X = {v1, · · · , vk} is a finite anti-chain in U(n) and B(U(n)X) =
{w1, · · · , wm}, then ⊢IPC (ϕv1 ∨ · · · ∨ ϕvk) ↔ (ψw1

∧ · · · ∧ ψwm
).

Proof. In view of Theorem 14, it is sufficient to show that U(n) |= (ϕv1 ∨ · · · ∨
ϕvk) ↔ (ψw1

∧ · · · ∧ ψwm
). By Theorem 16, it is then sufficient to show that

x ∈ R(v1) ∪ · · · ∪R(vk) iff x 6∈ R−1(w1) ∪ · · · ∪R−1(wm).

For ⇒: Suppose x ∈ R(v1) ∪ · · · ∪ R(vk) = U(n)X . If x ∈ R−1(wi) for some
1 ≤ i ≤ m, then since U(n)X is upward closed, we have that wi ∈ U(n)X , which
contradicts the definition of B(U(n)X).

For ⇐: Suppose x 6∈ R(v1)∪ · · · ∪R(vk) = U(n)X . We show by induction on
d(x) that x ∈ R−1(wi) for some 1 ≤ i ≤ m.



d(x) = 1. Then x is an endpoint which is a border point. Thus, x = wi for
some 1 ≤ i ≤ m and so x ∈ R−1(wi).

d(x) > 1. The result holds trivially if x is a border point. Now suppose there
exists y ∈ R(x) such that y 6∈ U(n)X . Since d(y) < d(x), by the induction
hypothesis, there exists 1 ≤ i ≤ m such that y ∈ R−1(wi). Thus, x ∈ R−1(wi).

⊓⊔

Theorem 42. Let Γ be a point in H(n), i.e. Γ is an n-theory with the disjunc-
tion property. If R(Γ ) ∩ U(n) is finite, then R(Γ ) = R(Γ ) ∩ U(n).

Proof. Suppose X = R(Γ ) ∩ U(n) is finite. Then the set B(X) of border points
of X is finite. Let B(X) = {w1, · · · , wm}. Suppose Γ 0 ψwi

for some 1 ≤ i ≤ m.
Then there exists a descriptive frame G such that G |= Γ and G 6|= ψwi

. Since
the underlying frame F of U(n)wi

is finite rooted, by Theorem 26, the latter
implies that F is a p-morphic image of a generated submodel of G. Thus, F |= Γ
and so U(n)wi

|= Γ , which is impossible since wi ∈ B(X) and wi 6∈ R(Γ )∩U(n).
Hence, we conclude that Γ ⊢ ψwi

for all 1 ≤ i ≤ m. Let Y be the anti-
chain consisting of all least points of X . Then by Lemma 41, Γ ⊢ ϕw for some
w ∈ Y , which by Theorem 16 means that Γ ∈ R(w), so Γ ∈ U(n), therefore
R(Γ ) = R(Γ ) ∩ U(n). ⊓⊔

Corollary 43. Every infinite upset of H(n) has an infinite intersection with
U(n).

Proof. Let X be an infinite upset of H(n). Note that

X =
⋃

i∈I

R(Γi)

for some set {Γi}i∈I . There are two cases.
Case 1: for all i ∈ I, R(Γi) is finite, i.e. d(Γi) < ω. Thus, each R(Γi) lies in

Upper(H(n)) = U(n) by Theorem 39, therefore X ∩ U(n) = X is infinite.
Case 2: there exists i0 ∈ I such that R(Γi0) is infinite. Then R(Γi0)∩U(n) is

infinite, since otherwise by Theorem 42 we would have that R(Γi0 ) = R(Γi0) ∩
U(n), which would make R(Γi0) finite. Hence, we have that X∩U(n) ⊃ R(Γi0)∩
U(n) is infinite. ⊓⊔

7 Concluding remarks

Study of the n-universal model turned out to shed new light on the negationless
fragment of IPC and enabled us to give a new proof of Jankov’s theorem on the
relationship of this fragment with the logic KC and to generalize this theorem to
a large class of extensions of IPC. We expect further results stemming from the
study of n-universal models. In the first place we intend to study such models for
NNIL-formulas, formulas with no nesting of implications on the left (see [15] for
details on NNIL-formulas). This study was already initiated in [16] in connection



with results of [4] that show that these formulas are an alternative to [∧,→]-
formulas for axiomatizing subframe logics. The newest results on subframe logics
as axiomatized by [∧,→]-formulas can be found in [3]. Another promising area
is the study of Zakharyaschev’s canonical formulas in the context of n-universal
models. A recent algebraic approach can be found in [1] which also stresses
fragments of IPC.
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