Intuitionisitic Logic Spring 2012

Homework 2

(due Monday, 27th February)

- 1. Show that **KC** (= **IPC** + $\neg \varphi \lor \neg \neg \varphi$) can be axiomatized by its axioms for atomic formulas only (i.e., we get the same logic if we only add the sentences $\neg p \lor \neg \neg p$ for all propositional letters p). [5 pts]
- 2. (a) Prove the extended version of Glivenko's theorem directly from the basic Glivenko's theorem (if $\vdash_{\mathbf{CPC}} \varphi$ then $\vdash_{\mathbf{IPC}} \neg \neg \varphi$)

If $\psi_1, \ldots, \psi_k \vdash_{\mathbf{CPC}} \varphi$ then $\neg \neg \psi_1, \ldots, \neg \neg \psi_k \vdash_{\mathbf{IPC}} \neg \neg \varphi$. [2 pts]

(b) Prove the extended version of Glivenko's theorem directly, semantically without using the basic Glivenko theorem [3 pts]

$3.^*$ Define,

- φ is **negative** iff there is some ψ such that $\vdash_{\mathbf{IPC}} \varphi \leftrightarrow \neg \psi$
- φ has the **down property** iff for each w which is not an end-point, if for all x with wRx and $w \neq x$ we have $x \models \varphi$, then $w \models \varphi$.

Show that φ is negative iff it has the down property . [4pts]

- 4. (a) Show that, if Γ is a maximal propositional theory that does not prove φ (i.e. $\Gamma \not\vdash \varphi$ and, if $\Gamma \subset \Delta$, then $\Delta \vdash \varphi$), then Γ has the *DP* (disjunction property). [2 pts]
 - (b) Show that, if L is an intermediate logic then the canonical model \mathfrak{M}_L (as defined in the notes on completenes proofs) is a generated submodel of the canonical model \mathfrak{M}_{IPC} [2 pts].