Intuitionistic Logic Spring 2012

Homework 4

(due Monday, 19th March)

- 1. (a) Show that **LC** characterizes the upwards linear frames $(\forall x, y, z(xRy \land xRz \rightarrow yRz \lor zRy))$, i.e., show that $\mathfrak{F} \models \mathbf{LC}$ iff R is upwards linear. [2 pts]
 - (b) Prove, using the canonical model method, strong completeness of **LC** with respect to the linear frames. [2 pts]
 - (c) Prove that **LC** has the FMP (finite model property w.r.t. linear frames) by means of filtration [2 pts]
- 2. (a) Let φ contain only \wedge, \vee and \rightarrow but no \neg and no \bot . Let \mathfrak{M} be any Kripke-model (for the language of φ). Extend the model \mathfrak{M} to \mathfrak{M}^+ by adding one more node x at the top above all the nodes of \mathfrak{M} , and making all the propositional variables of φ true in x. Show that, for all the nodes w in \mathfrak{M} we have:

$$\mathfrak{M}, w \models \varphi$$
 iff $\mathfrak{M}^+, w \models \varphi$

(satisfaction in the old and new model is the same for φ). [4 pts]

- (b) Let φ contain only \wedge, \vee and \rightarrow but no \neg and no \bot . Show that $\vdash_{\mathbf{IPC}} \varphi$ iff $\vdash_{\mathbf{KC}} \varphi$. (You may use what is claimed about completeness of **KC** in class.) [2 pts]
- 3. Give an example of a finite rooted frame \mathfrak{F} with a rooted generated subframe \mathfrak{G} that is not a p-morphic image of \mathfrak{F} . Sketch the proof. (Hint: there exists an example with 6 worlds.) [6pts]