Intuitionistic Logic Spring 2012

Homework 5

(due Monday, 2nd April)

- 1. (a) Show that the following is valid: If $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to (\chi \lor \theta)$, then $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \chi$ or $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \theta$ or $\vdash_{\mathbf{IPC}} (\varphi \to \psi) \to \varphi$. [3 pts]
 - (b)* Give an example such that the first two alternatives of (a) do not apply, but the last one does. [2 pts]
 - (c) Show, using the above, that, if $\vdash (\neg p \rightarrow q \lor r) \rightarrow \varphi \lor \psi$, then $\vdash (\neg p \rightarrow q \lor r) \rightarrow \varphi$ or $\vdash (\neg p \rightarrow q \lor r) \rightarrow \psi$. [2 pts]
- 2. (a) Let φ be a propositional formula containing only \wedge, \rightarrow and \perp . Let \mathfrak{M} be a model and w a node in \mathfrak{M} such that w has proper successors (i.e., there is at least one v in \mathfrak{M} with wRv and $w \neq v$). Suppose
 - φ holds in all proper successors of w (i.e., for all v with $wRv, w \neq v$, we have $\mathfrak{M}, v \models \varphi$), and
 - for all propositional variables p, we have that p is true in w iff p is true in all proper successors of w (i.e., $w \in V(p)$ iff $\forall v (wRv, w \neq v \Rightarrow v \in V(p))$.

(In other words, the valuation in w is maximal for propositional variables considering persistency).

Show that φ is true in w. [4 pts]

- (b) Show on the basis of the above that, if φ is a propositional formula not containing \vee and $\vdash_{\mathbf{IPC}} \varphi \to \psi \lor \chi$, then $\vdash_{\mathbf{IPC}} \varphi \to \psi$ or $\vdash_{\mathbf{IPC}} \varphi \to \chi$. [2 pts]
- 3. (a) Show that, if $\Gamma \mid \varphi$, then $\Gamma \vdash \varphi^{-1}$. [1 pt]
 - (b) Show that, if $\Gamma \vdash \delta$ for each $\delta \in \Delta$, and $\Delta \vdash \gamma$ for each $\gamma \in \Gamma$ (Γ and Δ are equivalent), then $\Gamma \mid \varphi$ iff $\Delta \mid \varphi$. [1 pt]
 - (c) Show that, if $\vdash \chi \to \varphi \lor \psi$ implies $\vdash \chi \to \varphi$ or $\vdash \chi \to \psi$, for all subformulas $\varphi \lor \psi$ of χ , then $\chi \mid \chi$. (Hint: Show first that, under this condition, $\chi \mid \theta$ iff $\chi \vdash \theta$, for all subformulas θ of χ). [3 pts]

¹erratum: Add to the definition 21 of | (p. 25) the clause, $\Gamma \mid \perp$ iff $\Gamma \vdash \perp$.