Intuitionistic Logic Spring 2012

Homework 7

(due Monday, 7 May)

For the following exercises you can use, if $\alpha(x)$ expresses a primitive recursive predicate, then $\vdash_{\text{HA}} \forall x(\alpha(x) \lor \neg \alpha(x))$. You can use the fact that for each n, $\vdash_{\text{HA}} \alpha(\bar{n})$ or $\vdash_{\text{HA}} \neg \alpha(\bar{n})$ holds. You can also assume that **HA** proves only true formulas, and you can use that it is not decidable whether a primitive recursive predicate is empty or not.

- 1. Show that, if $\alpha(x)$ expresses a primitive recursive predicate and $\vdash_{\text{HA}} \neg \neg \exists x \alpha(x)$, then $\vdash_{\text{HA}} \exists x \alpha(x)$. Hint: This is easy. You are allowed to reason very nonconstructively metamathematically. [2 pts]
- 2. Consider the sentence $\beta = \exists x((x = 0 \land \gamma) \lor ((x = 1 \land \neg \gamma))$ where γ is a gödelsentence of **HA**. Show that $\nvdash_{\text{HA}} \beta$ but $\vdash_{\text{HA}} \neg \neg \beta$. [2 pts]
- 3. Show that, if $\alpha(x)$ expresses a primitive recursive predicate, then $\vdash_{\text{HA}} \neg \neg \forall x \alpha(x) \rightarrow \forall x \alpha(x)$. [2 pts]
- 4. Let $\operatorname{Prf}(x, y)$ be the primitive recursive proof predicate of **HA**, γ the gödelsentence of **HA** and $\lceil \gamma \rceil$ the numeral corresponding to the gödelnumber of γ . Show that $\vdash_{\operatorname{HA}} \forall x (\neg \operatorname{Prf}(\lceil \gamma \rceil, x) \lor \exists y \operatorname{Prf}(\lceil \gamma \rceil, y))$ but $\not \vdash_{\operatorname{HA}} \forall x \neg \operatorname{Prf}(\lceil \gamma \rceil, x) \lor \exists y \operatorname{Prf}(\lceil \gamma \rceil, y)$. [2 pts]
- 5. Use an exercise in the previous homework to prove that not for all $\alpha(x)$ that express primitive recursive formulas, $\vdash_{\mathbf{HA}} \neg \neg \exists x \alpha(x) \rightarrow \exists x \alpha(x)$ (Markov's principle). [3 pts]