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Abstract

We present a new adaptation method MaCP,
Minimal yet Mighty adaptive Cosine Projec-
tion, that achieves exceptional performance
while requiring minimal parameters and mem-
ory for fine-tuning large foundation models.
Its general idea is to exploit the superior en-
ergy compaction and decorrelation properties
of cosine projection to improve both model ef-
ficiency and accuracy. Specifically, it projects
the weight change from the low-rank adaptation
into the discrete cosine space. Then, the weight
change is partitioned over different levels of
the discrete cosine spectrum, and each parti-
tion’s most critical frequency components are
selected. Extensive experiments demonstrate
the effectiveness of MaCP across a wide range
of single-modality tasks, including natural lan-
guage understanding, natural language gener-
ation, text summarization, as well as multi-
modality tasks such as image classification and
video understanding. MaCP consistently de-
livers superior accuracy, significantly reduced
computational complexity, and lower memory
requirements compared to existing alternatives.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance across a wide range of
natural language processing (NLP) tasks, owing to
their strong generalization ability achieved through
training on large-scale corpora (Touvron et al.,
2023; Liu et al., 2023). However, their zero-shot
performance on many downstream tasks often re-
mains suboptimal, failing to meet task-specific re-
quirements. A common approach to address this
limitation is full fine-tuning, where the model is
adapted to a specific downstream task. However,
the immense parameter size of LLMs makes this
process computationally expensive and resource-
intensive. For example, fine-tuning the state-of-
the-art LLaMA 3.1 (Vavekanand and Sam, 2024)
model with 70 billion parameters requires nearly
500GB of GPU memory, making it impractical for
many real-world deployments.

Table 1: Comparison of methods across memory opti-
mization and computation intensity GFLOPs.

Method Memory GFLOPs

Optimizer Gradient Activation

Full FT ✗ ✗ ✗ Highest
LoRA ✓ ✓ ✗ High
AdaLoRA ✓ ✓ ✗ High
DoRA ✓ ✓ ✓ High
VeRA ✓ ✓✓ ✓ Low
AFLoRA ✓ ✓✓ ✓ Medium
LaMDA ✓ ✓✓ ✓✓ Low
FourierFT ✓ ✓✓ ✓✓ Low
MaCP (Ours) ✓✓ ✓✓ ✓✓ Minimal

Parameter-efficient fine-tuning (PEFT) methods
effectively address these challenges. Key PEFT ap-
proaches include low-rank adaptation (LoRA) (Hu
et al., 2022), adapter tuning (He et al., 2021), and
prompt tuning (Lester et al., 2021). LoRA and its
variants (Liu et al., 2024) reduce trainable parame-
ters by decomposing weight updates into two low-
rank matrices, achieving SOTA accuracy. How-
ever, this efficiency in parameter count does not
directly translate to reduced memory or compute
cost. LoRA, for example, expands the effective
embedding dimensionality, increasing FLOPs and
requiring storage of high-dimensional activations
and optimizer states during backpropagation (Azizi
et al., 2024). As summarized in Table 1, existing
PEFT techniques still suffer from partial inefficien-
cies, while methods like VeRA and LaMDA miti-
gate some memory overhead by optimizing specific
components (e.g., gradients or optimizer states),
they continue to incur significant costs in activation
storage, overall memory footprint, and computa-
tional intensity.

Recent research has begun exploring the fre-
quency domain to compress and optimize model
weights while preserving expressive capability. For
instance, Gao et al.(Gao et al., 2024) demonstrated
that applying the Discrete Fourier Transform (DFT)
to large language model (LLM) weight matrices
can significantly reduce trainable parameters by
focusing on the most informative spectral com-
ponents, highlighting the promise of frequency-



domain techniques for efficient fine-tuning. How-
ever, DFT is inherently suited for periodic sig-
nals(Nagai et al., 2020), while the long-range de-
pendencies in language context are often diverse
and non-periodic (Sun et al., 2021; Wen et al.,
2023). Moreover, DFT operates in the complex
domain, introducing computational overhead and
potential numerical instability (Press, 2007), par-
ticularly for large-scale models (Gao et al., 2024).
These numerical inaccuracies can degrade perfor-
mance, making the energy compaction and stable
adaptation of LLMs in the frequency domain less
effective than intended.

In this paper, we propose a novel fine-tuning
approach that leverages the Discrete Cosine Trans-
form (DCT) to address the existing bottlenecks.
DCT is particularly well-suited for non-periodic
signals and exhibits superior energy compaction
and decorrelation properties, enabling a more effi-
cient representation of critical information with
fewer coefficients. To further enhance this effi-
ciency, we partition the frequency domain using the
discrete cosine coefficient matrix to identify and
select the most informative components within the
context. Specifically, MaCP simplifies the computa-
tional process compared to DFT-based approaches
while preserving the expressive capacity of LLMs.

Building on these insights, by systematically
selecting the most informative frequency compo-
nents, compressing the weight updates, and then ap-
plying the inverse DCT (iDCT) to revert to the time
domain, the proposed MaCP not only preserves
model expressiveness but also drastically reduces
memory and compute requirements. As illustrated
in Fig.1, MaCP minimizes the footprint of activa-
tions, gradients, and optimizer states, achieving sig-
nificantly lower GPU memory usage than existing
methods. By eliminating redundancy and reducing
overhead across the training pipeline, MaCP of-
fers a scalable and resource-efficient solution for
fine-tuning large language models.

Our contribution can be summarized as follows.

• We propose a novel Hierarchical Cosine Pro-
jection (MaCP) method for large language
models, enabling minimal resource adaptation
while preserving performance.

• We introduce an innovative frequency parti-
tioning and selection strategy that exploits
the Discrete Cosine Transform’s (DCT) en-
ergy compaction property to enhance compu-
tational efficiency.

• We conduct extensive experiments on diverse
benchmarks, demonstrating that MaCP out-
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Figure 1: GPU memory usage of LLaMA3.1-8B on
different fine-tuning methods

performs existing PEFT methods in both per-
formance and resource efficiency.

2 Related Work

Low-Rank Adaptation (LoRA) (Hu et al., 2022)
reduces trainable parameters by learning low-rank
matrices, bypassing full-weight updates and min-
imizing memory usage for gradients and opti-
mizers. Unlike adapter-based methods (He et al.,
2021; Pfeiffer et al., 2020; Lin et al., 2020; Liao
et al., 2023b,a), LoRA incurs no inference overhead
as low-rank updates merge with frozen weights.
However, scaling LoRA to larger models and
complex tasks remains challenging. Recent meth-
ods, including AdaLoRA (Zhang et al., 2023),
VeRA (Kopiczko et al., 2023), QLoRA (Dettmers
et al., 2024), DoRA (Liu et al., 2024), and
LaMDA (Azizi et al., 2024), improve parameter
allocation and decomposition but still face scalabil-
ity issues on large models.
Frequency-based Spectrum Learning has been
explored to reduce trainable parameters while main-
taining model capacity. Prior works (Xu et al.,
2020; Tang et al., 2022; Yang and Xie, 2016)
demonstrated the effectiveness of compact and
sparse spectral representations. Gao et al. (Gao
et al., 2024) applied the Fourier Transform to fine-
tune a subset of spectral coefficients, showcasing
the potential of sparse spectrum adaptation in large
foundation models. However, DFT adds complex
operations, and the asymmetry between the DFT
and its inverse increases computational overhead.
Discrete Cosine Transform has also been effec-
tively applied in various deep learning contexts,
demonstrating its potential for model compression
and efficiency improvements. For instance, Xu et
al. analyzed the spectral bias from a frequency per-
spective and proposed a learning-based frequency
selection method to identify and remove trivial fre-
quency components without loss of accuracy (Xu



Algorithm 1 MaCP Algorithm
Input: Input tensor x, number of parameters n, scaling factor
α, input dimension d1, output dimension d2, energy ratio δ,
pre-trained layer weights W
Output: Transformed tensor h
1: Initialization:
2: WF = DCT(base_layer.weight) //DCT for weights,

Eq(1)
3: // Partition frequencies into low, mid, and high compo-

nents.
4: Mlow,Mmid,Mhigh ← DistancePartition(WF ) Eq(5,6,7)

5: // Select top-(nM × δ ) frequencies by energy
6: nM × δ← RankTopEnergyFreq(M)
7: // Randomly select the rest of frequencies
8: nM × (1− δ)← RandomSelectFreq(M)
9: // Stratified sampling fromMlow,Mmid,Mhigh, Eq(8)

10: n← nMlow + nMmid + nMhigh

11: // Initialize spectral coefficients
12: ∆WF ← KaimingInitial()
13: Forward Pass:
14: // Set n selected freq. trainable and froze (d1 × d2 − n)

freq.
15: Set n frequencies← requireGrad(True)
16: // Compute ∆WT using inverse DCT based on Eq(9,10)
17: ∆WT ← iDCT(∆WF )× α
18: // Merge ∆W with base layer output
19: h←W +∆WT

20: return h

et al., 2020). Ehrlich and Davis (2019). leveraged
DCT within the context of JPEG-compressed im-
ages, redefining convolution and batch normaliza-
tion with a tunable approximation for ReLU opera-
tions (Ehrlich and Davis, 2019). Furthermore, Zhu
demonstrated that DCT could effectively recover
data with very few parameters, highlighting its po-
tential for model compression and efficiency (Zhu
et al., 2024; Cheng et al., 2024).

3 Methodology

Fig. 2 gives an overview of the proposed Selec-
tive Discrete Cosine Transform fine-tuning (MaCP)
method. Different from the vanilla LoRA (low-rank
adaptation) paradigm, MaCP operates in the fre-
quency domain by learning a set of spectral coeffi-
cients on the cosine basis instead of directly mod-
ifying the spatial weights. The proposed MaCP
identifies and retains the most critical frequency
components by applying the DCT to the pre-trained
weights. Then, it selects some spectral coefficients
to learn trainable parameters, which form the spec-
tral matrix. Finally, the iDCT is applied to the mod-
ified spectral matrix to transform it back to the
spatial domain so as to update the weight changes,
as detailed in Algorithm1.

3.1 Cosine Projection Using DCT

The first step is to transform the weight matrices
of the LLM into the frequency domain using the
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Figure 2: (a) LoRA (Hu et al., 2022) reduces trainable pa-
rameters by decomposing weight updates into low-rank matri-
ces. (b) LaMDA (Azizi et al., 2024) further reduces trainable
parameters through low-dimensional adaptation (LDA). (c)
MaCP (ours) applies the Discrete Cosine Transform (DCT) to
pre-trained weights, partitioning the frequency domain into
low, middle, and high frequencies. A hierarchical sampling
strategy then selects the most critical spectral coefficients
for fine-tuning, reducing trainable parameters to n per layer,
which is significantly smaller compared to LoRA and LaMDA.

Discrete Cosine Transform (DCT). DCT is partic-
ularly advantageous due to its strong energy com-
paction properties, where the majority of the sig-
nal’s energy is concentrated in a small number of
low-frequency components. Specifically, given a
weight matrix W [i, j] of size M ×N , the 2D DCT
is mathematically defined as:

WF [u, v] = α(u)α(v)

M−1∑
i=0

N−1∑
j=0

W [i, j]

× cos

[
π

M

(
i+

1

2

)
u

]
cos

[
π

N

(
j +

1

2

)
v

]
,

(1)

where u = 0, 1, . . . ,M − 1 and v =
0, 1, . . . , N − 1 represent the frequency indices.
The scaling factors α(u) and α(v) are defined as:

α(x) =


√

1
M
, if x = 0√

2
M
, if x = 1, 2, . . . ,M − 1

(2)

This transformation converts the spatial (or time-
domain) information of the weight matrix into a
frequency-domain representation, where each ele-
ment WF [u, v] corresponds to a specific frequency



component of the original matrix. Low-frequency
components (where u and v are small) typically
contain the most significant information, making
them prime candidates for focused fine-tuning and
significantly reducing the number of parameters
that need to be fine-tuned.

3.2 Hierarchical Cosine Spectrum

The second step systematically partitions the fre-
quency spectrum into three groups of distinct re-
gions, namely, low, mid, and high frequencies.
Each of these regions captures different aspects
of the model’s behavior, with low frequencies gen-
erally representing more global structures and high
frequencies capturing finer.

Distance-Based Frequency Partitioning. We
define the frequency domain as a 2D grid where
each point (u, v) corresponds to a specific fre-
quency component in the Discrete Cosine Trans-
form (DCT) of the weight matrix. The distance of
each point from the origin (which represents the
lowest frequency) is given by:

d(u, v) =
√

u2 + v2 (3)

where u and v are the frequency indices corre-
sponding to the horizontal and vertical directions
in the DCT matrix, respectively. The maximum
distance from the origin is:

dmax =

√(
M

2

)2

+

(
N

2

)2

(4)

where M and N are the dimensions of the DCT
matrix. The frequency domain is partitioned into
three distinct regions: low, medium, and high fre-
quencies. These regions are defined based on their
distance from the origin:

Low-Frequency Components (Mlow): Low fre-
quencies are located close to the origin and are
defined as:

Mlow = {(u, v) : d(u, v) ≤ dmax

3
} (5)

These components capture broad, global patterns
and contain the majority of the energy due to the
DCT’s energy compaction property.

Medium-Frequency Components (Mmid):
Medium frequencies lie at an intermediate distance
from the origin and are defined as:

Mmid = {(u, v) : dmax

3
< d(u, v) ≤ 2 · dmax

3
} (6)

These components capture finer details and are
essential for representing medium-scale structures.

High-Frequency Components (Mhigh): High
frequencies are located farthest from the origin and
are defined as:

Mhigh = {(u, v) : d(u, v) > 2 · dmax

3
} (7)

These components capture detailed features, which
may include noise, but they are important for tasks
requiring fine resolution.

Within each partition ( Mlow, Mmid, Mhigh),
we apply a hybrid selection strategy that combines
energy-based selection with a diversity-enhancing
mechanism, where the top nMk

×δ coefficients are
first selected based on energy (with δ defaulting to
0.7 unless otherwise stated), followed by random
selection for additional coefficients and stratified
sampling to balance high-energy components and
diverse frequencies across all partitions, in Algo-
rithm 1 in Appendix. For more details on δ, see
the ablation study in section 4. The set of selected
frequencies across all partitions is given by:

n =

p⋃
k=1

nMk , (8)

where nMk
is the set of selected frequencies

from partition Mk and nMk
= nenergy,Mk

+
nrandom,Mk

.

3.3 Cosine Spectrum Learning via iDCT

Once the most informative frequency components
have been selected, the final step is to update the
weights in the frequency domain and then trans-
form them back to the space domain using the
inverse Discrete Cosine Transform (iDCT). The
updated weight matrix ∆W is obtained via:

∆WT = iDCT(∆WF ), (9)

where ∆WF represents the modified frequency-
domain weights, and iDCT is mathematically de-
fined as:

W [i, j] =

M−1∑
u=0

N−1∑
v=0

α(u)α(v)WF [u, v]

× cos

[
π

M

(
i+

1

2

)
u

]
cos

[
π

N

(
j +

1

2

)
v

]
.

(10)

Note that only the selected frequency compo-
nents in ∆WF are updated. The transformation
back to the spatial domain integrates this fine-tuned
information, preparing the model for inference or
further training.



3.4 Memory Efficiency Analysis
The activation memory footprint of MaCP is sig-
nificantly reduced because only a small subset of
spectral coefficients n is updated while keeping
the remaining parameters frozen. The activation
memory for MaCP consists of two components: (1)
memory for the forward pass, requiring B · S ·H
to store activations for all input-output pairs, where
S is the sequence length, H is the embedding di-
mension, and B is the batch size; and (2)memory
for backpropagation, limited to the selected spec-
tral coefficients, B · n. Thus, the total activation
memory footprint for MaCP is:

MMaCP
act = B · S ·H +B · n, (11)

compared to LoRA, which requires:

MLoRA
act = B · S ·H +B · S ·H, (12)

where n < S · H , ensuring MaCP consumes
less memory. For example, in a layer with S =
2048, H = 4096, B = 1, n = 1000, and
r = 32 in LLaMA3.1-8B, reduces the activation
memory footprint by 50.01% compared to LoRA,
which underscore MaCP’s efficiency, particularly
in memory-constrained environments.

4 Experiments

4.1 Baselines
The proposed MaCP is compared with the fol-
lowing baselines: Full Fine-Tuning (FF) up-
dates all parameters of the model. Adapter Tun-
ing (Houlsby et al., 2019; Lin et al., 2020; Rücklé
et al., 2020; Pfeiffer et al., 2020) introduces adapter
layers between the self-attention and MLP modules.
LoRA (Hu et al., 2022) approximates weight up-
dates using low-rank matrices to minimize trainable
parameters, while AdaLoRA (Zhang et al., 2023)
dynamically allocates the parameter budget based
on importance scores. DoRA (Liu et al., 2024) de-
composes pre-trained weights into magnitude and
direction, applying LoRA for directional updates.
VeRA (Kopiczko et al., 2023) uses a single pair
of low-rank matrices across all layers with small
scaling vectors to reduce parameters while main-
taining performance. FourierFT (Gao et al., 2024)
fine-tunes a subset of spectral coefficients in the
Fourier domain, and LaMDA (Azizi et al., 2024)
employs low-dimensional adaptation to further re-
duce trainable parameters.

4.2 Natural Language Understanding
Models, Datasets, and Implementation. We eval-
uate MaCP on the GLUE benchmark (Wang et al.,

2019) using RoBERTa (Liu et al., 2019) in both
Base and Large configurations, covering diverse
NLU tasks for comprehensive assessment. Imple-
mentation Details. MaCP uses 700 out of 7682

spectral coefficients for RoBERTa Base and 10242

for RoBERTa Large, selecting the most critical
components uniformly across all layers. To ensure
fair comparison, we adopt the same experimental
settings as LoRA, with hyperparameters provided
in the appendix.

Results and Analysis The results are presented
in Tab. 2, where we report the median performance
across 5 random seed runs, with the best epoch
selected for each run. The proposed MaCP con-
sistently delivers superior or comparable perfor-
mance to baseline methods while significantly re-
ducing the number of trainable parameters. For in-
stance, MaCP achieved an 80.7% accuracy on RTE
and a 92.0 Pearson correlation on STS-B, outper-
forming methods like LoRA and FourierFT with
significantly fewer parameters. On SST-2, MaCP
maintained a high accuracy of 96.2%, matching or
slightly outperforming other approaches. Addition-
ally, it recorded a 94.5% accuracy on QNLI, fur-
ther highlighting its effectiveness. Across all tasks,
MaCP shows robust generalization while requiring
minimal training parameters.

4.3 Natural Language Generation

Models and Datasets. We evaluate MaCP on
the E2E natural language generation (NLG)
task (Novikova et al., 2017) by fine-tuning GPT-2
(Medium and Large) (Radford et al., 2019) models,
which are decoder-only architectures with 24 and
36 transformer blocks.
Implementation Details. We fine-tune LoRA,
DoRA, FourierFT, VeRA, and the proposed MaCP
method on the GPT-2 Medium and Large models
using a linear learning rate scheduler over 5 epochs.
Results are averaged over 3 runs, and detailed hy-
perparameters are in the Appendix.
Results and Analysis. Tab. 3 shows that MaCP
consistently outperforms other methods across
most metrics while requiring significantly fewer
trainable parameters. Specifically, MaCP reduces
trainable parameters by 9.59% and 6.6% compared
to LoRA for GPT-2 Medium and Large models, re-
spectively, and achieves a 30% parameter reduction
compared to FourierFT.

4.4 Text Summarization

Models and Datasets. We assess MaCP’s effective-
ness on text summarization using the BART-Large
model (Lewis et al., 2019), evaluated on two stan-



Model # Trainable MaCP’s Para. SST-2↑ MRPC↑ CoLA↑ QNLI↑ RTE↑ STS-B↑ Avg.& Method Parameters Savings (Acc.) (Acc.) (MCC) (Acc.) (Acc.) (PCC)

BA
SE

FF 125M 99.99% 94.8 90.2 63.6 92.8 78.7 91.2 85.22
BitFit 0.1M 83.00% 93.7 92.7 62.0 91.8 81.5 90.8 85.42
AdptD 0.9M 98.11% 94.7±0.3 88.4±0.1 62.6±0.9 93.0±0.2 75.9±2.2 90.3±0.1 84.15
LoRA 0.3M 94.33% 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 78.4±0.8 91.5±0.2 85.23
AdaLoRA 0.3M 94.33% 94.5±0.2 88.7±0.5 62.0±0.6 93.1±0.2 81.0±0.6 90.5±0.2 84.97
DoRA 0.3M 94.33% 94.9±0.5 89.9±0.5 63.7±1.1 93.3±0.2 78.9±0.6 91.5±0.2 85.37
VeRA 0.043M 60.47% 94.6±0.1 89.5±0.5 65.6±0.9 91.8±0.3 78.7±0.7 90.7±0.2 85.15
LaMDA 0.089M 80.90% 94.5±0.2 89.3±0.3 65.6±0.5 91.2±0.6 78.9±0.3 90.5±0.3 85.01
FourierFT 0.024M 29.17% 94.2±0.3 90.0±0.8 63.8±1.6 92.2±0.1 79.1±0.5 90.8±0.2 85.02
MaCP 0.017M - 94.2±0.2 89.7±0.7 64.6±1.4 92.4±0.1 80.7±0.9 90.9±0.3 85.42

L
A

R
G

E

FF 356M 99.99% 96.3 90.9 68.0 94.7 86.6 92.4 88.11
AdptP 3M 98.87% 96.1±0.3 90.2±0.7 68.3±1.0 94.7±0.2 83.8±2.9 92.1±0.7 87.55
AdptP 0.8M 95.75% 96.6±0.2 89.7±1.2 67.8±2.5 94.7±0.3 80.1±2.9 91.9±0.4 86.82
AdptH 6M 99.43% 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.75
AdptH 0.8M 95.75% 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.90
LoRA 0.8M 95.75% 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.82
DoRA 0.9M 96.22% 96.4±0.4 91.0±1.1 67.2±1.6 94.8±0.3 85.4±1.1 92.1±0.3 87.82
VeRA 0.061M 44.26% 96.1±0.1 90.9±0.7 68.0±1.8 94.4±0.2 85.9±0.7 91.7±0.8 87.83
LaMDA 0.12M 71.67% 96.0±0.1 90.9±0.2 67.1±1.2 94.2±0.5 85.3±0.5 91.3±0.4 87.47
FourierFT 0.048M 29.17% 96.0±0.2 90.9±0.3 67.1±1.4 94.4±0.4 87.4±1.6 91.9±0.4 87.95
MaCP 0.034M - 96.2±0.3 90.9±0.3 67.7±1.4 94.5±0.5 87.4±1.1 92.0±0.5 88.12

Table 2: Performance of various fine-tuning methods on 6 GLUE tasks, using base and large models. Metrics include MCC for
CoLA, PCC for STS-B, and accuracy for other tasks. Results are medians of 5 runs with different seeds; the best scores in each
category are bolded.

Method # Tr. Para. BLEU NIST METE. ROU-L CIDEr

G
PT

-2
M

ed
iu

m

FT1 354.92M 68.2 8.62 46.2 71.0 2.47
AdptL

1
0.37M 66.3 8.41 45.0 69.8 2.40

AdptL
1

11.09M 68.9 8.71 46.1 71.3 2.47
AdptH

1
11.09M 67.3 8.50 46.0 70.7 2.44

LoRA 0.35M 68.9 8.76 46.6 71.5 2.51
DoRA 0.36M 69.2 8.79 46.9 71.7 2.52
VeRA 0.35M 70.1 8.81 46.6 71.5 2.50
FourierFT 0.048M 69.1 8.82 47.0 71.8 2.51
MaCP 0.034M 70.1 8.82 47.2 71.9 2.53

G
PT

-2
L

ar
ge

FT1 774.03M 68.5 8.78 46.0 69.9 2.45
AdptL

1
0.88M 69.1 8.68 46.1 71.0 2.49

AdptL
1

23.00M 68.9 8.70 46.1 71.3 2.45
LoRA 0.77M 69.4 8.81 46.5 71.9 2.50
DoRA 0.79M 69.8 8.83 46.9 71.9 2.50
VeRA 0.17M 70.3 8.85 46.6 71.6 2.54
FourierFT 0.072M 70.2 8.90 47.0 71.8 2.50
MaCP 0.051M 70.3 8.92 47.1 71.9 2.55

Table 3: Performance comparison of different fine-tuning
methods on GPT-2 Medium and GPT-2 Large models, evalu-
ated using BLEU, NIST, METEOR, ROUGE-L, and CIDEr
metrics. 1 denotes results sourced from previous studies. The
best score for each metric is highlighted in bold.

dard benchmarks: XSUM (Narayan et al., 2018)
and CNN/DailyMail (Hermann et al., 2015).
Implementation Details. We compare MaCP with
SOTA baselines under consistent settings. For
LaMDA, we use a rank of r = 32, and for MaCP,
we select n = 5000 cosine spectrum coefficients.
All models are trained with a learning rate of
2 × 10−4; batch sizes are 32 for XSUM and 64
for CNN/DailyMail. Training runs for 25 epochs
on XSUM and 15 on CNN/DailyMail.
Results and Analysis. Table 5 shows that MaCP
achieves the best overall performance on both
XSUM and CNN/DailyMail, despite using dras-
tically fewer trainable parameters. On XSUM,
MaCP outperforms all baselines with ROUGE-

Model Method # Tr. Para. MT-Bench Vicuna

LLaMA2-7B

LoRA 159.9M 5.19 6.85
DoRA 163.7M 5.20 6.86
VeRA 1.6M 5.18 6.82
FourierFT 0.064M 5.09 6.85
MaCP 0.045M 5.22 6.87

LLaMA2-13B

LoRA 250.3M 5.77 7.38
DoRA 264.5M 5.79 7.47
VeRA 2.4M 5.93 7.41
FourierFT 0.08M 5.82 7.49
MaCP 0.056M 5.93 7.55

LLaMA3.1-8B

LoRA 183.3M 5.65 7.11
DoRA 186.9M 5.66 7.19
VeRA 1.9M 5.61 7.13
FourierFT 0.064M 5.67 7.15
MaCP 0.05M 5.69 7.19

Table 4: The average scores on MT-Bench and Vicuna as-
sessed by GPT-4. The higher score is better.

1/2/L scores of 45.21/22.19/37.10, even surpassing
full fine-tuning, which requires over 2400× more
parameters. Similarly, on CNN/DailyMail, MaCP
delivers top results with 45.09/21.97/42.29, out-
performing all other PEFT baselines. These results
demonstrate that MaCP preserves key semantic and
structural information during fine-tuning, while op-
erating under extreme parameter efficiency.

Notably, MaCP’s advantage over FourierFT un-
derscores the benefit of using cosine over Fourier
bases. DCT’s real-valued, non-periodic decom-
position aligns better with the structure of lan-
guage data, enabling more effective compression
and adaptation. Compared to LaMDA and VeRA,
which also aim for compactness, MaCP delivers sig-
nificantly better ROUGE scores while using fewer
parameters.



Method #Param. XSUM CNN/DailyMail

Full fine-tuning 415M 45.14/22.27/37.25 44.16/21.28/40.90
LoRA 8.6M 43.95/20.72/35.68 45.03/21.84/42.15
DoRA 8.8M 44.23/21.17/36.02 44.92/21.89/42.09
VeRA 0.92M 43.72/20.33/35.11 44.87/21.26/40.25
LaMDA 0.85M 43.92/20.68/35.21 44.12/21.16/40.45
Fourier 0.33M 44.39/20.91/36.05 44.42/21.07/40.53
MaCP 0.17M 45.21/22.19/37.10 45.09/21.97/42.29

Table 5: Comparison of fine-tuning methods on XSUM and
CNN/DailyMail benchmarks. Bold highlights the best results.

4.5 Instruction Tuning

Models, Datasets, and Implementation. We fine-
tune LLaMA2-7B, LLaMA2-13B, and LLaMA3.1-
8 using MaCP and baseline methods on the Al-
paca dataset (Taori et al., 2023). For evaluation,
responses are generated for pre-defined questions
from MT-Bench (Zheng et al., 2024) and Vicuna
Eval datasets, and scored by GPT-4 on a 10-point
scale. Following prior work (Dettmers et al., 2024,
2022), LoRA, DoRA, and VeRA are applied to all
linear layers except the top one, while FourierFT
follows the settings in (Gao et al., 2024). For MaCP,
we set n = 700. To train on a single GPU, we adopt
the QLoRA quantization technique (Dettmers et al.,
2024). All methods are trained for one epoch, and
the average scores of all responses are reported. Hy-
perparameter details are provided in the Appendix.
Results and Analysis. Tab. 4 show that the MaCP
consistently outperforms or matches baseline meth-
ods across different LLaMA models. It achieves the
highest scores on both MT-Bench and Vicuna for
LLaMA2-7B and LLaMA2-13B, demonstrating its
effectiveness in generating high-quality responses
with significantly fewer trainable parameters. For
LLaMA2-7B, MaCP requires only 0.045M param-
eters, reducing 99.7% compared to LoRA, yet
it delivers superior performance. Similarly, for
LLaMA2-13B, MaCP matches the top score of
5.93 on MT-Bench and achieves the highest score
of 7.55 on Vicuna, with only 0.056M parameters.
For LLaMA3.1-8B, MaCP shows competitive re-
sults, outperforming other methods with a score of
5.69 on MT-Bench and matching the top score of
7.19 on Vicuna, with minimal trainable parameters.

4.6 Image Classification

Models, Datasets, and Implementation. We
evaluate our method on the Vision Transformer
(ViT) (Dosovitskiy et al., 2020) in Base and Large
variants using CIFAR-100 (Krause et al., 2013),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al.,
2019), and OxfordPets (Parkhi et al., 2012). LoRA,
DoRA, VeRA, and six other baselines are applied
to the query and value layers of ViT, while training

Model Method # Train. Para. CIFAR100 DTD EuroSAT OxfordPets

ViT-B

Head - 84.3 69.8 88.7 90.3
Full 85.8M 92.4 77.7 99.1 93.4
LoRA 581K 92.1 75.2 98.4 93.2
DoRA 594K 92.3 75.3 98.7 93.2
VeRA 57.3K 91.7 74.6 98.5 93.4
FourierFT 72K 91.2 75.1 98.8 93.2
MaCP 50.4K 91.7 75.9 99.1 93.4

ViT-L

Head - 84.7 73.3 92.6 91.1
Full 303.3M 93.6 81.8 99.1 94.4
LoRA 1.57M 94.9 81.8 98.63 94.8
DoRA 1.62M 95.1 81.8 98.8 94.8
VeRA 130.5K 94.2 81.6 98.6 93.7
FourierFT 144K 93.7 81.2 98.7 94.5
MaCP 100.9K 94.5 81.9 99.0 94.8

Table 6: Performance of various fine-tuning methods on ViT-
B and ViT-L models across different datasets. The best results
for each dataset are highlighted in bold.

only the classification head is denoted as "Head."
We set r = 16 for LoRA, n = 3000 for FourierFT,
and n = 2400 for MaCP, with learning rates and
weight decay tuned for all methods. Training is
capped at 10 epochs, with hyperparameter details
provided in the Appendix.
Results and Analysis. Tab. 6 presents the per-
formance on ViT-B and ViT-L across four im-
age classification datasets. For the ViT-B model,
MaCP demonstrates competitive performance with
only 50.4K trainable parameters, while LoRA and
DoRA require over 10 times more parameters.
Specifically, MaCP matches the full fine-tuning
performance on EuroSAT and OxfordPets, achiev-
ing 99.1% and 93.4% accuracy, respectively. For
the ViT-L model, MaCP achieves near-optimal per-
formance with only 100.9K parameters. MaCP
records the best result on DTD at 81.9%, while
matching the top accuracy on OxfordPets at 94.8%.

Model Method # Train. Para. TVQA How2QA TVC YC2C

VL-BART

Full 228.9M 76.3 73.9 45.7 154
LoRA 11.8M 75.5 72.9 44.6 140.9
DoRA 11.9M 76.3 74.1 45.8 145.4
VeRA 1.3M 75.9 73.8 44.7 142.6
FourierFT 1.5M 76.2 73.1 45.5 147.3
MaCP 1.1M 76.3 74.3 45.9 154

Table 7: Multi-task evaluation results on TVQA, How2QA,
TVC, and YC2C using the VL-BART backbone. MaCP
achieves top or near-top scores across all tasks with signifi-
cantly fewer trainable parameters, demonstrating its efficiency
and effectiveness.

4.7 Video-Text Understanding
Models, Datasets, and Implementation. We com-
pare DoRA, LoRA, and full fine-tuning on VL-
BART, which integrates CLIP-ResNet101 (Rad-
ford et al., 2021) as the vision encoder and BART-
Base (Lewis et al., 2019) as the language model.
The evaluation covers four tasks: TVQA (Lei et al.,
2018) and How2QA (Li et al., 2020) for video
question answering, and TVC (Lei et al., 2020) and
YC2C (Zhou et al., 2018) for video captioning. Fol-
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Figure 3: Left: Dataset distribution for the synthetic classifica-
tion task, where each color represents a different class. Right:
Training accuracy over 2000 epochs for LoRA, FourierFT, and
MaCP. Although all methods use the same number of train-
able parameters, LoRA exhibits significant oscillations and
fails to converge to 100% accuracy, indicating performance
bottlenecks. FourierFT quickly reaches near-perfect accuracy
within 500 epochs with stable performance. Our proposed
MaCP approach outperforms both methods by converging
faster (around 450 epochs) and maintaining higher accuracy
with minimal fluctuations.

lowing (Sung et al., 2022), VL-BART is fine-tuned
in a multi-task setup. We set r = 128 for LoRA,
n = 6000 for FourierFT, and n = 4500 for MaCP,
with tuned learning rates and weight decay, training
for 7 epochs.
Results and Analysis. Table 7 presents the multi-
task evaluation results for video-text tasks using
the VL-BART backbone. MaCP achieves top or
near-top performance across all tasks while using
significantly fewer trainable parameters. For TVQA
and YC2C, MaCP matches the highest scores of
76.3 and 154, respectively, while reducing param-
eters by over 99% compared to full fine-tuning.
On How2QA, MaCP records the highest score of
74.3, outperforming all baselines. For TVC, MaCP
achieves a strong result of 45.9, slightly surpass-
ing DoRA and FourierFT, further demonstrating its
efficiency and effectiveness across video-text tasks.

Model Dataset low only low+high MaCP(ours) 4 partitions

MRPC 90.1 89.4 89.7 88.9
RoBERTa-B CoLA 63.6 64.1 64.6 62.9

QNLI 92.4 92.2 92.4 92.1

CIFAR100 91.6 91.7 91.7 91.1
DTD 74.9 75.9 75.9 75.2

ViT-B EuroSAT 98.9 98.9 99.1 98.7
OxfordPets 93.4 93.3 93.4 93.1

Table 8: Performance comparison across datasets with
different feature combinations.

4.8 Ablation Study
Expressive Capability: A Comparison of MaCP,
FourierFT, and LoRA. To intuitively evaluate the
expressive power of our method, we design a sim-
ple classification task with a synthetic dataset to

simulate a scenario where LoRA encounters perfor-
mance bottlenecks. Specifically, we specify a 2D
center point for each class of data in the 8 classes
and randomly add Gaussian noise based on those
points to obtain the 2D coordinates of the input.
The dataset visualization is shown on the left of Fig-
ure 3. We train a single hidden layer with 64 × 64
units using LoRA (r = 1), FourierFT (n = 128),
and our proposed MaCP (n = 90) to fit the synthe-
sized data. Notably, all methods require the same
number of trainable parameters, making it a fair
comparison.

The experimental results, depicted on the right of
Figure 3, highlight significant performance differ-
ences among these methods. LoRA exhibits a non-
linear increase in accuracy during the initial train-
ing phase but fails to reach 100% accuracy even
after 2000 epochs. Instead, it stabilizes with consid-
erable oscillations around 75% accuracy, suggest-
ing that under certain parameter constraints, LoRA
encounters performance bottlenecks that hinder its
ability to fully capture the underlying data distri-
bution. In contrast, MaCP demonstrates a much
smoother learning curve, reaching nearly 100% ac-
curacy within around 450 epochs and maintaining
this performance with minimal oscillations.
Ablation Study on Hierarchical Partitioning
Schemes. We conducted an ablation study with dif-
ferent partition schemes—“low only,” “low+high,”
and “4 partitions.” Table 8 shows that low frequen-
cies are essential for foundational structure, but
relying solely on them is insufficient, as high fre-
quencies add crucial details, especially in texture-
rich tasks like DTD. While “low+high” performs
close to MaCP, ours achieves higher accuracy in
tasks like EuroSAT and CoLA. The “4 partitions”
scheme performs worst, suggesting that excessive
partitioning dilutes key information.

5 Conclusion

We proposed MaCP, a hierarchical cosine pro-
jection adaptation method for fine-tuning large
language models. By leveraging the energy com-
paction properties of the Discrete Cosine Trans-
form (DCT), MaCP significantly reduces the num-
ber of trainable parameters while maintaining or
even enhancing model performance. Extensive ex-
periments across multiple benchmarks demonstrate
that MaCP not only outperforms existing state-of-
the-art methods in accuracy but also achieves supe-
rior computational efficiency and lower storage re-
quirements. These results underscore the practical
value of MaCP as a scalable and resource-efficient
solution for fine-tuning large-scale models.



6 Limitations

This study has a few limitations. Firstly, the largest
model we tested was LLaMA2-13B. Due to time
constraints associated with the paper’s deadline, we
could not extend our experiments to larger mod-
els, which could provide further insights into the
scalability and effectiveness of MaCP. Secondly,
while our method demonstrates strong performance
across diverse benchmarks, we did not conduct a
detailed analysis of domain-specific tasks, such as
biomedical or legal text, which might require fur-
ther tuning of the frequency partitioning strategy.
Lastly, the computational cost of calculating the
DCT, while modest, could be optimized further for
extremely large-scale models.
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Appendix

In this supplementary material, we first provide
detailed information about the datasets used in our
experiments. Next, we outline the implementation
specifics and hyper-parameter settings. We then
present additional experimental results that further
validate the effectiveness of the proposed MaCP
method. Finally, we include examples of instruction
tuning to highlight the practical application of our
approach MaCP.

7 Details of Datasets

GLUE Benchmark. The General Language Un-
derstanding Evaluation (GLUE) benchmark(Wang
et al., 2019) is a comprehensive platform designed
to evaluate and accelerate progress in natural lan-
guage understanding (NLU). The benchmark com-
prises nine tasks that span a variety of NLU chal-
lenges such as sentiment analysis, paraphrase de-
tection, linguistic acceptability, natural language
inference, and textual similarity. Among these
tasks are the Stanford Sentiment Treebank (SST-2),
which focuses on binary sentiment classification for
movie reviews, and the Microsoft Research Para-
phrase Corpus (MRPC), which involves detecting
whether two sentences are semantically equivalent.
The Corpus of Linguistic Acceptability (CoLA)
evaluates a model’s ability to distinguish gram-
matically correct sentences from incorrect ones,
reflecting linguistic competence in terms of syn-
tactic judgments. The benchmark’s diversity and
inclusion of tasks with limited training data encour-
age the development of models that generalize well
across multiple language tasks and genres.

In addition to single-sentence classification tasks,
GLUE includes several sentence-pair tasks. The
Question Natural Language Inference (QNLI) task
is derived from the Stanford Question Answering
Dataset (SQuAD). It requires models to determine
if a given context sentence contains the answer to a
corresponding question. The Recognizing Textual
Entailment (RTE) task combines several textual en-
tailment datasets from various domains like news
and Wikipedia, testing whether a hypothesis can
be logically inferred from a premise. The Seman-
tic Textual Similarity Benchmark (STS-B) mea-
sures the similarity between sentence pairs using a
regression-based approach, where models predict
similarity scores on a continuous scale.

E2E Benchmark. The E2E dataset (Novikova
et al., 2017) is designed for training and evaluating
end-to-end data-driven natural language generation
(NLG) systems within the restaurant domain. It

consists of over 50,000 instances and is known for
its linguistic complexity, including greater lexical
diversity, syntactic variation, and discourse phe-
nomena compared to previous datasets. The eval-
uation is primarily conducted using five metrics:
BLEU, NIST, METEOR, ROUGE-L, and CIDEr.
BLEU measures the overlap of n-grams between
the generated text and human references, empha-
sizing precision. METEOR considers synonymy
and stemming, providing a more nuanced assess-
ment of text similarity. ROUGE-L focuses on the
longest common subsequence to evaluate fluency
and structure. CIDEr captures consensus by weight-
ing n-grams based on their relevance in human
references, offering a comprehensive measure of
output quality.

Instruction Tuning Related Benchmarks The
Alpaca dataset (Taori et al., 2023) is a collec-
tion of 51K instruction-following examples gen-
erated using OpenAI’s text-davinci-003. It was cre-
ated to fine-tune Meta’s LLaMA 7B model into
a lightweight, instruction-following model named
Alpaca. The dataset covers a wide range of tasks,
including question-answering, summarization, and
classification, enabling the fine-tuned model to ex-
hibit behavior similar to much larger models at a
fraction of the cost. A specific example is as fol-
lows:

{
"instructions": Convert the following

temperature from Celsius to Fahrenheit.
"input": 25 ◦C
"output": 25 ◦C is equal to 77◦F.

}

MT-Bench (Zheng et al., 2024) is a recently
introduced benchmark designed to evaluate the
instruction-following capabilities of language foun-
dation models. It consists of a series of open-ended
questions aimed at assessing model performance
across diverse aspects such as writing, roleplay,
reasoning, mathematics, coding, information ex-
traction, STEM, and the humanities. MT-Bench
effectively distinguishes these abilities through tai-
lored questions, providing a more comprehensive
evaluation. A specific example from the benchmark
is provided below.

{
"Q1": What is the square root of 144?
"Q2(follow-up)": If you multiply the

answer by 2, what is the result?
"Solution": Q1: The square root is 12.

Q2: The result is 24.
}



Dataset #Train #Val #Test #Class Rescaled res.

CIFAR100 45,000 5,000 10,000 100

224 × 224DTD 4,060 452 1,128 47
EuroSAT 16,200 5,400 5,400 10
OxfordPets 3,312 368 3,669 37

Table 9: Details about the vision datasets.

Vicuna Eval (Chiang et al., 2023) is a benchmark
designed to assess the alignment of large language
models (LLMs) with human preferences and serves
as the predecessor to MT-Bench. Vicuna Eval evalu-
ates models across a diverse set of topics, including
coding, writing, mathematics, counterfactual rea-
soning, Fermi estimation, common sense, roleplay,
knowledge, and generic tasks. It provides a com-
prehensive framework for understanding how well
models align with human expectations in varied
scenarios. A specific example from this evaluation
is presented below.

{
"question": Explain the concept of

recursion with a simple example.
"category": programming.

}

Image Classification Datasets Tab. 9 provides
comprehensive details about four widely-used vi-
sion datasets: CIFAR100, DTD, EuroSAT, and Ox-
fordPets. It outlines key information such as the
number of training (#Train), validation (#Val), and
test (#Test) samples, along with the number of
classes (#Class) in each dataset. These datasets
span diverse domains, from object recognition (CI-
FAR100 (Krizhevsky et al., 2009)) to texture clas-
sification (DTD (Cimpoi et al., 2014)), satellite im-
age classification (EuroSAT (Helber et al., 2019)),
and pet identification (OxfordPets (Parkhi et al.,
2012)). The variety in datasets ensures that the
models are evaluated across different visual tasks,
offering a robust assessment of their performance.

For consistency in model evaluation, all datasets
are rescaled to a resolution of 224 × 224. This
standardized input size simplifies comparisons by
ensuring that all models receive uniformly sized
images, crucial for fair benchmarking. The datasets
vary in size and complexity, with CIFAR100 hav-
ing the largest number of samples (60,000) across
100 classes, while OxfordPets focuses on a more
specialized task with 37 classes. The information
in this table highlights the diversity of the datasets,
each contributing unique challenges to model eval-
uation.

8 Hyperparamaters

Hyperparameters on GLUE benchmarks
Tab. 10 describes the key hyperparameters used in
the experiments across different GLUE tasks and
model sizes (Base and Large). The table outlines
the learning rate schedules, optimizer settings,
warmup ratios, and seed values for reproducibility.
For both Base and Large models, the AdamW opti-
mizer is used with a linear learning rate schedule
and a warmup ratio of 0.06. The frequency bias is
set to false, and the frequency coefficient n is fixed
at 700 for MaCP unless specified otherwise. Each
experiment is run with 5 different seeds {0, 11111,
22222, 33333, 44444}.

For the Base models, the number of training
epochs ranges from 30 to 100 depending on the
task, with SST-2 requiring the longest training time.
The FourierFT and MaCP methods use a higher
learning rate for the base models compared to the
learning rate used for fine-tuning the head layers.

In contrast, the Large models typically require
fewer epochs but use slightly lower learning rates.
The batch size remains consistent across both
model sizes, set at 32 for all tasks. Additionally,
max sequence lengths are adapted to fit the needs
of each task, with longer sequences allocated for
more complex tasks like CoLA and QNLI.

Hyperparameter settings on E2E benchmark
Tab. 11 outlines the hyperparameter configurations
used for the medium and large models on the
E2E benchmark. Both models are optimized us-
ing AdamW with a linear learning rate schedule.
The learning rates for MaCP and FourierFT are set
to 2E − 2 for the medium model and 5E − 2 for
the large model, while the head layers have lower
learning rates of 2E − 4 and 1E − 4, respectively.
Both models use a batch size of 128, with weight
decay values of 0.01 and 0.03 for the medium and
large models, respectively. The number of selected
frequencies, n, is set to 700 for MaCP and 1000
for FourierFT, while the scaling value α is fixed at
300 for both models. Additionally, label smooth-
ing is applied with a value of 0.1, and training is
conducted for 5 epochs.

Hyperparameter Setup for Instruction-Tuning
Table 12 summarizes the key hyperparameters
used for fine-tuning the LoRA, FourierFT, and
MaCP models. Across all methods, the optimizer
is AdamW, with a warmup ratio of 0.06, a batch
size of 4, and gradient accumulation steps set to
4, providing stability during training. The default
training duration is 1 epoch, with certain experi-
ments—such as the motivation example in the intro-



Model Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI

Both

Optimizer AdamW
LR Schedule Linear
Warmup Ratio 0.06
Frequency Bias False
nMaCP 700
nFourierFT 1000
Seeds {0, 11111, 22222, 33333, 44444}

Base

Epochs 60 90 30 100 40 40
Learning Rate (MaCP) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (FourierFT) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (VeRA) 9E-2 9E-2 5E-2 1.2E-1 5E-2 1E-2
Learning Rate (Head) 9E-3 1.1E-2 6E-3 8E-3 6E-3 1E-3
Max Seq. Len 512 512 512 512 512 512
Scaling Value 84 110 141 49 140 29
Batch Size 32 32 32 32 32 32

Large

Epochs 30 60 30 80 10 30
Learning Rate (MaCP) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (FourierFT) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (VeRA) 7E-2 8E-2 6E-2 4.3E-2 4.3E-2 6E-2
Learning Rate (Head) 1E-3 5E-3 1E-3 1.1E-2 1E-3 5E-3
Max Seq. Len 512 512 512 256 128 512
Scaling Value 121 90 120 90 69 69
Batch Size 32 32 32 128 32 32

Table 10: Hyperparameters used for MaCP across various GLUE tasks.

Hyperparameter Medium Large

Optimizer AdamW
Learning Rate (MaCP) 2E-2 5E-2
Learning Rate (FourierFT) 2E-2 5E-2
Learning Rate (VeRA) 2E-2 5E-2
Learning Rate (Head) 2E-4 1E-4
Batch Size 128
Weight Decay 0.01 0.03
nMaCP 700
nFourierFT 1000
Scaling value α 300
Epochs 5
Label Smooth 0.1
LR Schedule Linear

Table 11: Hyperparameter settings on E2E benchmark

Hyperparameter LoRA FourierFT MaCP VeRA

Optimizer AdamW
Warmup Ratio 0.06
Batch Size 4
Acc. Steps 4
Epochs 1 or 2
n – 1000 700 –
Scaling Value α 300.0 16.0 16.0 300.0
LR Schedule Linear
Learning Rate 3E-2 3E-3 3E-3 3E-3

Table 12: Hyperparameter settings for instruction-tuning con-
figurations.

Hyperparameter CIFAR100 DTD EuroSAT OxfordPets

Epochs 10
Optimizer AdamW
LR Schedule Linear
nMaCP 2400
nFourierFT 3000
α 300.0
Learning Rate (MaCP) 2E-1 3E-1 2E-1 3E-1
Learning Rate (FourierFT) 2E-1 3E-1 2E-1 3E-1
Learning Rate (VeRA) 2E-1 3E-1 2E-1 3E-1
Learning Rate (Head) 7E-4 1E-3 8E-4 1E-3
Weight Decay 1E-4 7E-5 3E-4 8E-4

Table 13: Hyperparameter setup for image classification.

duction and the ablation study in the supplementary
material—using 2 epochs where indicated.

For MaCP, the parameter n is set to 700. The
scaling value α differs across methods: it is 300.0
for LoRA, 16.0 for FourierFT, and also 16.0 for
MaCP. The learning rate is tuned individually, with
LoRA using 3E-2 and both FourierFT and MaCP
using a lower rate of 3E-3. All methods follow a
linear learning rate schedule.

Hyperparameter setup for image classification
Tab. 13 presents the hyperparameter configurations
used for fine-tuning on the CIFAR100, DTD, Eu-
roSAT, and OxfordPets datasets for image clas-
sification tasks. The table lists the common set-
tings across these datasets, including the use of
the AdamW optimizer, a linear learning rate sched-
ule, and a consistent training setup of 10 epochs.
The number of frequency components (n) is set to
2400 for MaCP and 3000 for FourierFT across all
datasets.



Hyperparameter TVQA How2QA TVC YC2C

Epochs 7
Optimizer AdamW
LR Schedule Q,K
nMaCP 4500
nFourierFT 6000
rLoRA 128
rDoRA 128
α 300.0
Learning Rate (MaCP) 3E-4 3E-4 3E-4 3E-4
Learning Rate (FourierFT) 3E-4 3E-4 3E-4 3E-41
Learning Rate (VeRA) 3E-4 3E-4 3E-4 3E-4
Weight Decay 2E-3 2E-5 2E-3 2E-3

Table 14: Hyperparameter setup for video-text understanding

For MaCP and FourierFT, the learning rate varies
slightly across datasets, ranging from 2E-1 to 3E-1,
while the learning rate for the classification head
ranges between 7E-4 and 1E-3. The weight decay
is tuned for each dataset, with values ranging from
7E-5 to 1E-4 for DTD and CIFAR100, and slightly
higher at 3E-4 and 8E-4 for EuroSAT and Oxford-
Pets, respectively.

Hyperparameter setup for video-text under-
standing Table 14 summarizes the hyperparame-
ter configurations used for fine-tuning the models
across four video-text understanding tasks: TVQA,
How2QA, TVC, and YC2C. The training process
was consistent across all tasks, with each model
trained for 7 epochs using the AdamW optimizer.
A common learning rate schedule (Q,K) was em-
ployed for all models.

For the frequency-based methods, the number of
selected frequency components, n, was set to 4500
for MaCP and 6000 for FourierFT. For the LoRA
and DoRA methods, the rank r was set to 128 for
both. The scaling factor α was fixed at 300.0 across
all methods.

The learning rate for MaCP, FourierFT, and
VeRA was kept at 3E-4 for all tasks, with slight ad-
justments in the weight decay for different datasets:
2E-3 for TVQA, TVC, and YC2C, and 2E-5 for
How2QA.

8.1 Additional Ablation Study
This ablation study further examines the perfor-
mance of MaCP when trained for two epochs, with
results shown in Table 15. Even with extended
training, our method consistently surpasses other
approaches in both efficiency and performance.
For instance, in the LLaMA2-7B model, MaCP
achieves an MT-Bench score of 5.27 and a Vicuna
score of 7.51 using only 0.045M parameters. In
comparison, FourierFT, which uses more parame-
ters (0.064M), falls short in performance. Similarly,
on the LLaMA2-13B model, MaCP outperforms

Model Method # Tr. Para. MT-Bench Vicuna

LLaMA2-7B

LoRA 159.9M 5.24 7.38
DoRA 163.7M 5.25 7.41
VeRA 1.6M 5.23 7.47
FourierFT 0.064M 5.19 7.50
MaCP 0.045M 5.27 7.51

LLaMA2-13B

LoRA 250.3M 5.85 7.89
DoRA 264.5M 5.85 7.91
VeRA 2.4M 5.96 7.86
FourierFT 0.08M 5.89 7.92
MaCP 0.056M 5.97 8.01

LLaMA3.1-8B

LoRA 183.3M 5.69 7.52
DoRA 186.9M 5.72 7.59
VeRA 1.9M 5.67 7.49
FourierFT 0.073M 5.70 7.67
MaCP 0.05M 5.73 7.72

Table 15: Performance comparison of various fine-tuning
methods on LLaMA models (LLaMA2-7B, LLaMA2-13B,
and LLaMA3.1-8B) evaluated using MT-Bench and Vicuna
scores. All models are fine-tuned for 2 epochs and assessed by
GPT-4. The scores represent the average across multiple tri-
als, where higher scores indicate better performance. Notably,
MaCP consistently outperforms other methods with signifi-
cantly fewer trainable parameters.

all other methods, recording the highest scores of
5.97 on MT-Bench and 8.01 on Vicuna with only
0.056M trainable parameters, compared to Fouri-
erFT’s 0.08M. These results, highlighted in Ta-
ble 15, clearly indicate that MaCP remains robust
and effective, solidifying its advantage in limited
computational resources.

9 Examples of Instruction Tuning

This section highlights practical examples gener-
ated by the LLaMA3.1-8B model fine-tuned with
FourierFT and MaCP, illustrating the comparative
effectiveness of each method. FourierFT uses 146K
trainable parameters, while MaCP requires only
100K. Each case includes a prompt, the answers
generated by both models, and a review of the re-
sponses assessed by GPT-4.

This section presents three case studies compar-
ing models fine-tuned with FourierFT and MaCP.
In a restaurant review, MaCP provided more de-
tailed and engaging insights, while FourierFT was
concise but less descriptive (Tab. 16). In coding
instructions for finding common elements in arrays,
both models were correct, but MaCP’s explana-
tion was more comprehensive and user-friendly
(Tab. 17). Lastly, in film analysis, MaCP offered a
deeper, more nuanced critique of plot, character de-
velopment, and directorial choices, outperforming
FourierFT’s straightforward evaluation (Tab. 18).



Method FourierFT MaCP

Prompt Write a restaurant review, focusing on the food quality, service, and overall ambiance.

Answer The restaurant offered a delightful dining ex-
perience with an excellent variety of dishes.
The flavors were well-balanced, and the ingre-
dients fresh, though some of the main courses
lacked the expected depth. The service was
prompt, but it felt somewhat impersonal at
times. The ambiance was warm and inviting,
with tasteful decor that complemented the
overall experience. Overall, it was a pleasant
visit with a few areas for improvement.

The restaurant experience was nothing short
of exceptional. From the moment we walked
in, the attentive staff made sure we felt wel-
comed. The food was outstanding, with each
dish crafted with precision and bursting with
flavor. The standout was the chef’s special,
which delivered a perfect combination of taste
and presentation. The ambiance was charming,
offering a cozy yet elegant atmosphere. Every
detail was carefully thought out, making it a
memorable evening overall.

Review Assistant 1 captured the essence of the dining
experience but could have elaborated more on
specific dishes or details about the restaurant’s
atmosphere. The review was concise and clear
but left out some critical aspects that would
make it more informative and engaging.

Assistant 2 provided a thorough review, high-
lighting not just the food quality but also the
service and ambiance. The attention to detail,
such as mentioning the standout dish and how
the atmosphere enhanced the overall experi-
ence, added depth and made the review more
compelling and enjoyable to read.

Score 7.65 7.80

Table 16: Comparison of generated responses from models fine-tuned with FourierFT and MaCP on a restaurant
review prompt.

Method FourierFT MaCP

Prompt Write a Python program to find the common elements in two arrays without using extra data
structures. Provide a step-by-step explanation.

Answer Step-by-Step Explanation: The process starts by
sorting both arrays to simplify the comparison.
Sorting helps identify common elements more ef-
ficiently. Next, two pointers are initialized, one
for each array, starting at the beginning. The algo-
rithm then traverses both arrays in parallel. When
the elements at both pointers are equal, the com-
mon element is added to the result list. If the first
array’s element is smaller, the pointer in that ar-
ray is moved forward. Otherwise, the pointer in
the second array is advanced. This continues un-
til one of the pointers exceeds the array’s length,
at which point all common elements have been
found. Pseudo-code: Sort(arr1), Sort(arr2). Ini-
tialize i, j = 0. While i < len(arr1) and j < len(arr2):
If arr1[i] == arr2[j]: Add to result. Else if arr1[i]
< arr2[j]: i++. Else: j++. Return result.

Step-by-Step Explanation: Begin by sorting
both arrays, allowing for easier comparison dur-
ing traversal. Then, use two pointers to scan both
arrays from the start. As the traversal progresses,
if the current elements match, they are added
to the output list. If the element in the first ar-
ray is smaller, its pointer is moved forward. If
the element in the second array is smaller, its
pointer advances. The algorithm concludes when
either pointer reaches the end, signaling that all
possible common elements have been identified.
Pseudo-code: Sort(arr1), Sort(arr2). Initialize i, j
= 0. Loop until either pointer is out of range: If
arr1[i] == arr2[j]: Add to result. If arr1[i] < arr2[j]:
Move i forward. Else: Move j forward. Output the
result.

Review This explanation is clear and intuitive, making the
approach easy to follow. The importance of sort-
ing and using pointers is well-highlighted. How-
ever, while the explanation is technically sound,
it could benefit from addressing potential edge
cases like handling empty arrays or duplicates.

This explanation is detailed and user-friendly,
with a strong emphasis on clear decision-making
within the algorithm. The pointers are well-
explained, and the pseudo-code is both concise
and logical. The approach effectively handles typ-
ical scenarios, but more depth on edge cases could
further improve it.

Score 7.79 7.97

Table 17: Comparison of generated responses from models fine-tuned with FourierFT and MaCP on a coding
instruction prompt.



Method FourierFT MaCP

Prompt Provide a detailed analysis of the film’s plot structure, character development, directorial choices,
and the role of cinematography in reinforcing the central themes.

Answer The film expertly weaves together a multi-layered
plot that explores themes of redemption, identity,
and the consequences of past actions. The narra-
tive unfolds in a non-linear fashion, employing
flashbacks and parallel timelines that gradually re-
veal the backstory of the characters. This intricate
structure keeps the audience engaged, constantly
piecing together clues while deepening the emo-
tional stakes. The character development is a high-
light, particularly the protagonist, whose transfor-
mation from a morally ambiguous figure to some-
one grappling with guilt and seeking redemption
is portrayed with remarkable depth. The support-
ing characters, though less developed, provide cru-
cial counterpoints that enhance the protagonist’s
journey. The director’s use of long takes and care-
fully framed shots adds a sense of intimacy and
tension, making the audience feel like silent ob-
servers within the story. The cinematography fur-
ther complements this by using stark contrasts be-
tween light and shadow to symbolize the internal
conflicts of the characters. The film’s visual lan-
guage is rich with symbolism, from recurring mo-
tifs like broken mirrors to the deliberate use of
desaturated color palettes during scenes of despair.
However, the third act, while visually stunning,
slightly overextends itself, relying too heavily on
exposition. Despite this, the film’s ability to blend
a complex narrative with powerful imagery makes
it a standout example of modern cinema.

The film’s narrative is a compelling exploration of
complex human emotions, weaving a story that is
both introspective and expansive in scope. The plot
structure is intricately layered, using a blend of real-
time events and flashbacks to gradually reveal the
true motivations behind each character’s actions.
The protagonist’s arc is especially well-crafted,
showing a slow but steady transformation driven
by a combination of external conflicts and internal
struggles. This gradual change is mirrored in the
pacing, which starts off deliberately slow, allowing
the audience to fully grasp the gravity of each deci-
sion made by the characters. The secondary char-
acters, while often playing subtle roles, are given
moments that add depth to the overall narrative.
Directorial choices play a significant role in main-
taining the film’s atmospheric tone. Through the
use of visual storytelling, the director skillfully con-
veys the tension and unresolved emotions between
characters without resorting to overt dialogue. The
cinematography is not just a backdrop but an ac-
tive participant in the storytelling. For example,
the frequent use of close-up shots during moments
of silence emphasizes the unspoken emotions that
linger beneath the surface. The decision to film
key scenes during golden hour creates a visual con-
trast between the warmth of the setting sun and the
cold, stark reality of the characters’ situations. The
careful choreography of camera movements during
action sequences adds a layer of realism that pulls
the audience further into the narrative. While the
film’s conclusion leaves some plot threads unre-
solved, this ambiguity feels intentional, prompting
the viewer to reflect on the underlying themes long
after the credits roll.

Review The analysis provided a thorough overview of the
film’s plot structure and character development.
While it accurately identified key themes and of-
fered insight into directorial choices, it occasion-
ally lacked specific examples that would make the
points more concrete. The discussion on cinematog-
raphy was solid, but a more detailed breakdown of
particular scenes or camera techniques could have
strengthened the overall argument. Overall, this re-
view was clear, relevant, and informative, but some
areas could benefit from more in-depth analysis
and illustrative examples.

This analysis delivered a comprehensive break-
down of the film’s narrative layers, seamlessly in-
tegrating observations on character development,
pacing, and the director’s stylistic choices. The re-
viewer highlighted the interaction between visual
storytelling and thematic content, using specific
examples to support each point. The detailed ex-
ploration of the protagonist’s transformation was
particularly effective, demonstrating a nuanced un-
derstanding of the film’s emotional core. The cine-
matography discussion not only described the tech-
niques used but contextualized their impact within
the broader narrative framework. The thoroughness
and attention to detail in this review made it both
insightful and engaging.

Score 7.91 8.09

Table 18: Comparison of generated responses from models fine-tuned with FourierFT and MaCP on an extended
movie analysis prompt.
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