
GCN-based reinforcement learning approach for
scheduling DAG applications

Julius Roeder1[0000−0003−0455−1283], Andy D. Pimentel2[0000−0002−2043−4469],
and Clemens Grelck3,4[0000−0003−3003−1388]

1 University of Amsterdam, Amsterdam, The Netherlands j.roeder@uva.nl
2 University of Amsterdam, Amsterdam, The Netherlands a.d.pimentel@uva.nl

3 University of Amsterdam, Amsterdam, The Netherlands c.grelck@uva.nl
4 Friedrich Schiller University Jena, Jena, Germany clemens.grelck@uni-jena.de

Abstract. Applications in various fields such as embedded systems or
High-Performance-Computing are often represented as Directed Acyclic
Graphs (DAG), also known as taskgraphs. DAGs represent the data flow
between tasks in an application and can be used for scheduling. When
scheduling taskgraphs, a scheduler needs to decide when and on which
core each task is executed, while minimising the runtime of the schedule.
This paper explores offline scheduling of dependent tasks using a Rein-
forcement Learning (RL) approach. We propose two RL schedulers, one
using a Fully Connected Network (FCN) and another one using a Graph
Convolutional Network (GCN). First, we detail the different components
of our two RL schedulers and illustrate how they schedule a task. Then,
we compare our RL schedulers to a Forward List Scheduling (FLS) ap-
proach based on two different datasets. We demonstrate that our GCN-
based scheduler produces schedules that are as good or better than the
schedules produced by the FLS approach in over 85% of the cases for a
dataset with small taskgraphs. The same scheduler performs very simi-
lar to the FLS scheduler (at most 5% degradation) in almost 76% of the
cases for a more challenging dataset.

Keywords: DAGs, static scheduling, reinforcement learning, graph con-
volutional networks

1 Introduction

Directed Acyclic Graphs (DAGs) can be used in various fields (e.g. embedded
systems, High-Performace-Computing) to represent applications. In a DAG, the
nodes represent tasks and the edges between nodes represent the data depen-
dency between tasks. Applications that can be represented as DAGs include,
among others, augmented reality (AR) and AI applications in robotics and au-
tomotive [2], computer vision applications for precision agriculture [17], big data
analytics applications that are implemented with Hive, Spark or Tez.

These applications are executed on multi-core and many-core platforms. In
the area of embedded systems the Nvidia Jetson lineup [1] and the Odroid-XU4

[10] are good examples. To fully utilise the hardware we need to ensure that our
applications can take advantage of the multiple CPU cores, the GPU and other
available accelerators. Targeting the different available Compute Units (CU) (e.g.
CPU, GPU) can be done during the scheduling of an application.

It is advantageous for scheduling to represent applications as DAGs because
the DAG naturally provides options for concurrency and thus simplifies target-
ing multiple CUs. However, this concurrency also provides a challenge, as the
scheduler also has to adhere to the data dependency inferred from the DAG (i.e.
partial ordering). This process of deciding when and where a task of an appli-
cation is executed is called scheduling. Scheduling can be done online (i.e. dy-
namically at runtime) or offline (i.e. statically). In this paper, we focus on static
scheduling as dynamic scheduling can introduce significant overhead which may
be problematic, especially for embedded systems.

Previous research on scheduling DAG applications mainly focused on using
heuristics such as Forward List Scheduling (FLS) or Integer Linear Programming
(ILP) (for surveys see [3, 8, 23, 22]). The later provides an optimal solution (e.g.
minimising makespan, also known as execution time or run-time)), but does not
scale well with increasing state space. The state space of a scheduling problem
can depend on many different criteria such as the number of tasks in an applica-
tion and the number of CUs available. Optimising for energy consumption adds
another dimension to the state space. Heuristics scale better with the problem
size. However, most scheduling heuristics require a total order [19, 18, 24, 13].
Thus, the first step in scheduling heuristics is to rank all tasks in a DAG (while
preserving the partial order) and then scheduling them one-by-one in a greedy
fashion. It has been shown that no ranking strategy always outperforms all other
ranking strategies (see [19, 18]). Finding near-optimal static schedules for larger
DAGs within a reasonable solving time is still an open problem.

Artificial intelligence (AI) may provide a feasible solution. However, super-
vised learning is not a suitable approach because it requires (large) datasets of
examples with solutions (labels). This is especially problematic for large state-
spaces, as for example in [18] where finding an optimal solution for DAGs con-
taining more than 15 tasks takes more than 24 hours. Extrapolating the execu-
tion times from [18] shows that finding an optimal solution for a DAGs of 100
tasks would take approximately 35 years. Thus, we could never make a large
enough dataset for more complex problems. Additionally, the authors [18] show
that, other AI approaches, such as evolutionary algorithms, are also not well
suited for the task at hand. Reinforcement Learning (RL), however, may still
provide a promising approach. Recent advances in Reinforcement Learning have
enabled computers to find good solutions for a variety of challenges, e.g., RL
methods can build near-optimal solutions (up to 100 nodes) for combinatorial
problems such as the Travelling Salesmen Problem [15]. RL approaches com-
bined with supervised learning can schedule DAG task graphs and outperform
heuristics such as Heterogeneous Earliest Finish Time (HEFT), Critical-Path-
on-a-Processor (CPOP) and Graphene [26, 13]. The combination of RL and su-
pervised methods was required to stabilise the training. However, by pre-training

neural networks in a supervised manner, they learn to imitate heuristics, whereas
it has been shown that learning from scratch can outperform both heuristics and
humans [21].

We propose a Deep Q-learning (DQN) approach that learns to build offline
schedules from scratch (i.e., not relying on supervised learning to learn to imitate
a heuristic). We propose two different RL-agents: one with a Fully Connected
Neural Network (FCNN) backbone, and one with a Graph Convolutional Neural
Network (GCN) backbone that can leverage graph information. To train and
evaluate the models, we build two large datasets of 11,000 DAG taskgraphs each:
one with small and simple graphs, and one with larger and complex graphs.
Our experiments show that a Q-learning approach quickly learns static DAG
scheduling without pre-training. Our experiments further show a comparison
between a Forward List Scheduling (FLS) algorithm and the schedules generated
by the two RL schedulers. Lastly, we show that incorporating graph information
via GCN layers significantly improves the scheduling of DAG applications. Both
the code5 and the two datasets6 are open source.

The remainder of this paper is structured as follows. In Section 2, we give a
high level explanation of our RL-based scheduling approach, explain our DAG
task model, layout the target architecture and discuss the most important com-
ponents of our novel RL-scheduler. In Section 3, we discuss our experimental
setup, followed by the results in Section 4. Section 5 discusses the related work.
Lastly, Section 6 presents our conclusions and future work.

2 RL Scheduling

Let us start with a high-level overview of our RL scheduling approach. Figure 1
shows the interactions between the RL agent and the scheduling environment.

Agent Environment

Task 4

Task 5 S
ch

ed
ul

e

Time(s)

Task 1 Task 2

Task 3

Reward

State

Task/Action

Fig. 1: Reinforcement Learning Framework

The environment updates the ready-queue at the beginning of each schedul-
ing step, i.e., it collects all tasks that can be scheduled. Only tasks whose prede-
5 https://bitbucket.org/jroeder/simple_rl_scheduling
6 https://bitbucket.org/jroeder/gnn_tgff_data

cessors have already been scheduled can be scheduled. Hence, at any given point
in time, we might have multiple tasks that can be scheduled.

Then the features of all tasks (states) in the ready-queue are collected and
passed to the agent. The agent evaluates all eligible tasks and selects the task/action
pair with the highest expected reward.

The task/action pair is returned to the environment, and the environment
adds the task to the schedule in a as-soon-as-possible fashion, respecting both
predecessor run-times and preventing tasks from being scheduled to execute at
the same time on the same CU. The environment then returns the reward for
the task/action pair and the states for the next tasks in the ready-queue. This
is repeated until all tasks in all applications have been added to the schedule.

2.1 System Model

Task Model. We consider applications represented as Directed Acyclic Graphs
(DAG). In a graph, G = (τ, E) the set of nodes/vertices τ represents the tasks,
and the set of edges E represents data dependencies between tasks, i.e., a source
task needs to be completed before the corresponding sink task may start exe-
cuting. Our task model supports multiple sources and sinks. Additionally, we
support a multi-graph setup (i.e., multiple applications).

A task is a sub-part of an application that needs a certain input, then executes
without additional input until it finalises and passes its output to the following
tasks in the application. Each task has a runtime, also called worst-case execution
time (WCET). Our model does not limit the number of incoming or outgoing
edges of a task. We assume that multiple tasks cannot run concurrently on one
processing unit.

Architecture Model Our approach is fully platform-independent and can
be applied to a wide range of homogeneous system architectures. The number
of Compute Units (CU) can be altered via a parameter (the number of actions
the agent can make). In this paper, we only focus on homogeneous quad-core
systems to determine the feasibility of RL based schedulers. However, the model
could easily be extended to heterogeneous systems by increasing the number of
CU and including additional features.

2.2 RL Scheduler Components

Next, we give a short introduction to the various components of our reinforce-
ment learning scheduler. One main part of the scheduler is the neural network
agent that makes all the decisions. We investigate two different agents: one based
on a Fully Connected Neural Network (FCNN), and an extention of the first one
by incorporating Graph Convolutional (GCN) layers to leverage additional in-
formation inherent to the graph structure of the DAG.

Environment. The environment contains the task graph, the schedule and
a representation of the target architecture. It can evaluate the impact of different
scheduling decisions and update its internal states.

Fully Connected Agent. The main backbone of our agent consists of a
fully connected neural network (FCNN). The network consists of 4 layers hav-
ing 2048, 2048, 4096, 4096 neurons, respectively. We use ELU activation func-
tions after each layer [5]. This network architecture performed the best across a
range of different configurations while searching the hyperparameter space. The
hyperparameter space search was performed using the Bayesian sweep function
provided by Weights and Biases[4].

The input to a neural network depends on the type of neural network used.
For our FCNN based approach, the state is a list of features for a task (i.e. node-
specific and global features that are common to all tasks). The node-specific
features are: (1) runtime of a task, (2) best start time at which a task can start
(i.e. the end time across all predecessors), (3) actual start time of a task if it
has been scheduled, and (4) target core if a task has been scheduled. The global
features are: (1) normalised values of the min, max and mean of all tasks in the
ready queue, (2) normalised values of the min, max and mean runtime of all
tasks in the done queue, (3) number of tasks in the DAG, (4) number of tasks
available for scheduling, and (5) number of tasks that still need to be scheduled.
All normalised features are normalised with the maximum runtime of any task
in the graph. This results in a total of 13 features for each task.

Graph Convolutional Network Agent. As our problem is in the form of
a graph it was natural to turn to GCNs [14] in order to attempt to leverage the
additional information inherent to the graph structure. The input to our GCNs
consist of the same node features as for the FCNN, plus the edge information
(i.e. which nodes are connected). We propose 3 different types of edge informa-
tion: a node’s predecessors, all previously scheduled nodes (i.e. they may hold
information about gaps in the schedule) or all successors of a node. We create
three different GCNs, that each take as input the node features and one of the
three edge information. Each GCN consists of 4 SAGEConv [9] layers with 8,
16, 32, 64 neurons per layer respectively. Each layer is followed by an ELU ac-
tivation function. The input to each GCN are the node information (runtime,
best start time, actual start time and target core). However, the edge informa-
tion for each GCN differ slightly depending on whether it is supposed to learn
about predecessors, previously scheduled nodes or successor nodes. The output
of the three GCNs is then concatenated to the original node information and to
the same global features as for the FCNN agent. All this information is fed into
the same FCNN agent as above (4 layers with 2048, 2048, 4096, 4096 neurons,
respectively) and ELU activation functions to return what is the most valuable
action.

Actions. The action is the CU on which a given task is scheduled. For
example, in the case of a quad-core system, the action space is between 0 and 3.
The number of possible actions depends on the target system.

Rewards. The reward function (Equation (1)) returns the value of a given
state st. In our case, the reward is the negative release time (−rt0) of the action
(i.e. start time of a task) plus the expected reward of future actions, where γ
is the discount rate ([0, 1)) of future actions. We used a γ of 0.65. There are

no positive rewards; the best possible reward is 0. If a task (t0) starts at the
5 second mark, the reward is −5 minus the expected reward of future actions.
That means if we expect the next task (t1) to start at the 8 second mark, then
the reward for t0 is −13.

V (s0) = −rt0 + E∞
t=1

[
γt × (−rtt)

]
(1)

RL approach description. We use a double DQN approach [11] with fixed
Q-targets, where two networks (NN1 and NN2) are initialised with the same
weights. NN1 and NN2 are used to update each other. A simplified represen-
tation of a single training step is shown in Figure 2. During training, the envi-
ronment passes a state (St) to NN1, which predicts the expected reward of all
actions at step t. The action with the highest expected reward is selected and
passed to the environment, which evaluates it and computes a reward. At the
same time, the environment passes the updated state St+1 to NN2, which pre-
dicts the expected reward for the new state. The reward at t is combined with
the expected reward at t+1 to form the actual reward at t. The actual reward is
then used to update the weights of NN1. The weights of NN2 are updated every
τ steps with the weights of NN1. NN2 is the network used for inference.

Environment NN1 Environment NN1

NN2
NN2

State for t Action for t

State at t+ 1 Reward for t

Exp. reward for t+ 1 Update

Update

Fig. 2: RL agent training pipeline.

Furthermore, our approach uses prioritised experience replay [20], where
training samples of higher impact are more likely to be in the training batch. The
impact of a sample is the absolute percentage difference between the predicted
and the actual reward.

3 Experiments

Data. We use Task Graphs For Free (TGFF) [7] to generate random DAG task
graphs. TGFF generates 10,000 tasks, where each task has a different runtime.
Using a random selection of the tasks, different DAGs are generated. We generate
two datasets to run our experiments. One dataset with smaller, less diverse and
simple graphs, and a second dataset with large, diverse and complex graphs.

The main difference between the two datasets is the number of tasks per
graph. The small DAGs (Dataset 1) are set to 10 tasks with a multiplier of 1.
This does not mean that all graphs have 10 tasks, as the number of tasks also

depends on other characteristics. The larger taskgrahs (Dataset 2) are set to an
average of 20 tasks with a multiplier of 5. This means that the larger DAGs are
more challenging as they, for example, contain more potential parallelism, which
is especially important as the target system only has 4 cores. All datasets are
roughly uniformly distributed with respect to the number of tasks in a DAG.

Both datasets consist of a training dataset with 10,000 task graphs and a test
dataset containing 1,000 task graphs. The graphs in the test and training datasets
were generated separately with different seeds. Table 1 contains a summary of
the graph statistics for the small and large DAG datasets. The training and test
dataset do not differ much with respect to the number of tasks in the DAGs.

Table 1: The table shows the statistics with respect to the number of tasks in
the train and test sets that contain the small and large DAGs.

Mean Min. Max. Std.
Small Train 12.7 6 24 6.3
Small Test 13.0 6 24 6.4
Large Train 25.5 9 55 13.1
Large Test 25.5 9 54 13.4

The difference between the type of graphs generated for the two datasets can
be well seen when comparing Figure 3a and Figure 3b.

t42_0

t42_1

t42_2

t42_6

t42_3

t42_4

t42_5

t42_9

t42_10

t42_11

t42_13

t42_7

t42_8

t42_16

t42_20

t42_12

t42_14

t42_15

t42_17

t42_18

t42_19

(a) Example DAG from the small
DAG test dataset.

t42_0

t42_1

t42_2

t42_3

t42_10

t42_8

t42_4

t42_5

t42_6

t42_7

t42_9

t42_26

t42_27

t42_11

t42_12

t42_13

t42_31

t42_20

t42_21

t42_17

t42_18

t42_19

t42_14

t42_15

t42_16

t42_32

t42_33

t42_22

t42_23

t42_24

t42_25

t42_28

t42_29

t42_30

t42_34

t42_35

t42_36

t42_37

(b) Example DAG from the large
DAG test dataset.

Fig. 3: Comparing example DAGs from the two generated datasets.

Comparison with existing method. We compare the RL generated sched-
ules to schedules generated by a Forward List Scheduler (FLS) [6]. FLS first
orders the tasks and then adds them one by one to the schedule without back-
tracking. FLS iteratively computes the impact on the makespan (i.e. run-time)

of scheduling a task on a specific compute unit (CU) (e.g. CPU, GPU) and
greedily selects the best CU with respect to the makespan. The performance
of FLS heavily depends on the initial ranking of the tasks. Thus, it is common
practice to try multiple ranking algorithms as none consistently outperforms the
others [19]. In this case, we use 3 different rankings: BFS, DFS and BFS with
Laxity.

4 Results

In general, the RL scheduler learns to schedule DAGs quickly. Figure 4a shows
the schedule produced by an untrained, randomly initialised RL agent. We can
see that all 27 tasks from the original graph are simply put after each other on
a single core. However, after some training the scheduler improves. Figure 4b
shows a schedule produced for the same graph by the same RL agent after some
training (before convergence). The decisions are not necessarily optimal but we
can clearly observe that the scheduler learns that distributing tasks over different
cores is better (i.e. increases its rewards).

(a) Schedule of a taskgraph with 27 tasks produced by one of our
untrained RL schedulers.

(b) Schedule of a taskgraph with 27 tasks produced by one of our
trained RL schedulers.

Fig. 4: Comparing schedules generated by an untrained and a trained RL-based
scheduler.

In Sections 4.1 to 4.4, we discuss the performance of the two different sched-
ulers (FCNN and GCN) with regard to the two different datasets (Dataset 1 &
Dataset 2). All four combinations were allowed to train for a similar number of
epochs and the best performing neural network was selected.

4.1 Dataset 1 - FCNN Agent

The FCNN agent performs fairly well on the dataset consisting of smaller DAGs.
The degradation distribution between the FCNN agent and the FLS scheduler
can be seen in Figure 5. In 69.6% of the cases the FCNN agent produces schedules
that are the same or better. In 90.0% of the DAGs the FCNN agent results in

schedules that perform similarly (at most 5% degradation) or better. The average
degradation is 1.2% and at best the resulting schedule is 6.9% shorter than the
schedule generated by the FLS approach. At worst, the FCNN scheduler results
in a 19.7% higher makespan. Despite this good performance the FCNN scheduler
had a L1Loss of 35.9 which is higher than the L1Loss of the GCNN scheduler.

5 0 5 10 15 20
Makespan % Change

0

100

200

300

400

500

600

700

of
 O

cc
ur

en
ce

s

Fig. 5: Makespan degradation of the small DAG test dataset between the FCNN
generated schedules and the FLS schedules.

4.2 Dataset 2 - FCNN Agent

The FCNN agent performs significantly worse for the dataset containing larger
DAGs than for the dataset of small DAGs. The degradation spread is shown in
Figure 6. Overall, the FCNN agent only manages to produce schedules that are
the same or better in 18.9% of the DAGs. Additionally, it finds schedules that
perform similarly (at most 5% degradation) or better in only 42.3% of the cases.
Overall, the degradation is 7.1%. And at best, the generated schedule results in
6.5% lower makespan but at worst we see a degradation of 35.3%. The L1Loss
(45.5) is higher than the L1Loss in Section 4.1. Showing that the additional
complexity of the large DAGs and possibly the larger variance of DAGs may
require a more advanced approach.

4.3 Dataset 1 - GCN Based network

On Dataset 1, the GCN agent performs better than the FCNN agent. The degra-
dation is shown in Figure 7. The distribution looks similar to the one shown in
Figure 5. Overall, the GCN approach generates schedules that are the same or
better in 85.2% of the cases. And it finds schedules that perform similarly (at

0 10 20 30
Makespan % Change

0

20

40

60

80

100

120

140

160

of

 O
cc

ur
en

ce
s

Fig. 6: Makespan degradation of the large DAG test dataset between the FCNN
generated schedules and the FLS schedules.

most 5% degradation) or better in 98.1% of the cases. The average degradation
is 0.29%. At best the schedule is 6.9% shorter and at worst the found schedule
has a 20.4% longer makespan. One more difference between the FCNN scheduler
and the GCN scheduler is the much lower L1Loss, which dropped to 5.9. This
clearly shows that the three GCNs provide valuable information, even though,
the information do not appear to add much value in the case of the smaller DAG
dataset.

5 0 5 10 15 20
Makespan % Change

0

100

200

300

400

500

600

700

800

of

 O
cc

ur
en

ce
s

Fig. 7: Makespan degradation of the small DAG test dataset between the GCN
based RL scheduler and the FLS scheduler.

4.4 Dataset 2 - GCN Based network

We can see a clear improvement in the schedules generated by the GCN sched-
uler in comparison to the FCNN scheduler for the dataset of large DAGs. This
improvement can also be seen when comparing the degradation distributions in
Figure 8 (GCN scheduler) and Figure 6 (FCNN scheduler). In total, we find that
the GCN agent generates schedules that are the same or better in 38.7% of the
cases. Furthermore, the GCN scheduler finds schedules that perform similarly (at
most 5% degradation) or better in 75.6% of the cases. The average degradation
drops from 7.1% for the FCNN agent to 2.8% for the GCNN agent. At best we
see schedules that are 11.2% shorter and at worst the schedules are 34.4% longer
than the FLS generated schedules. The final L1Loss is 11.0. In comparison, to
the GCN approach on smaller DAGs this L1Loss is slightly higher. However,
the L1Loss is also significantly lower than the L1Loss of the FCNN agent. This
clearly shows that the additional information provided by the GCN layers is
valuable.

10 0 10 20 30
Makespan % Change

0

50

100

150

200

250

300

of

 O
cc

ur
en

ce
s

Fig. 8: Makespan degradation of the large DAG test dataset between the GCN
based RL scheduler and the FLS scheduler.

Across all four experiments, we cannot draw conclusions on whether the
number of tasks in a taskgraph impacts the performance of a RL-scheduler,
i.e., a larger taskgraph does not necessarily lead to a higher degradation.

5 Comparative analysis with existing algorithms

Wu et al. [26] use the REINFORCE agent [25] from 1992 to schedule DAG
taskgraphs. The paper shows that this approach outperforms Heterogeneous

Earliest Finish Time (HEFT) and Critical-Path-on-a-Processor (CPOP) by up
to 25%. However, REINFORCE agents tend to be unstable in the training pro-
cess. More modern approaches like our approach address this stability issue.
Furthermore, the approach by Wu et al. depends on the original ranking of the
tasks in the task graph.

Hu, Tu and Li [13] have proposed a new approach (called Spear) that uses
Monte Carlo Tree Search (MCTS) combined with RL. Spear outperforms the
Graphene heuristic by 20%. Spear determines the ranking of the tasks, i.e., it
determines in what order the tasks are scheduled, whereas we use RL to schedule
the task end-to-end. Additionally, spear initialises the network with supervised
learning, i.e., it learns to imitate the behaviour of a heuristic. This means that
the agent might learn undesirable behaviour from the heuristic. And is exactly
the opposite of what we want, as it has been shown that RL agents are capable of
learning strategies on their own and, in some cases outperforming both humans
and heuristics [21].

Mao et al. [16] use Reinforcement Learning to schedule independent tasks,
whereas we focus on dependent tasks. Hu et al. [12] introduce an RL agent for
online scheduling of dependent tasks. Our approach focuses on offline scheduling
as online scheduling can incur a high overhead on high-performance embedded
systems.

6 Conclusion

Finding near-optimal static schedules for large DAGs in a reasonable solving
time is still an open problem. To the best of our knowledge, we are the first
to use DQN Reinforcement Learning to tackle this problem in an end-to-end
fashion.

We show that RL-based schedulers can outperform FLS-based schedulers.
The resulting schedules are up to 11.2% shorter than the corresponding FLS
generated schedules. For the small DAG dataset (Dataset 1) our GCN approach
generates schedules that are at most 5% worse in 98.1% of the cases. For the
large DAG dataset (Dataset 2) our GCN approach generates schedules that are
at most 5% worse in 75.6% of the cases. Furthermore, our experiments show
that the additional information obtained by the GCN layers add value to our
RL-based scheduler. However, this additional information only seems to result
in significantly better schedules (on average) if the target dataset is more diverse
or contains larger taskgraphs. Furthermore, we show that the selected reward
function works (i.e. lower loss = better performance).

In the future, we plan to investigate deeper networks, the performance of the
RL scheduler for heterogeneous systems and the use of sparse rewards. Addition-
ally, we plan to investigate which one of the three GCNs adds most value. Lastly,
we plan to experiment with policy learning instead of action-value learning.

Acknowledgement

We would like to thank the reviewers for their time and feedback.
This work has received funding from the European Union’s Horizon 2020 re-

search and innovation program under grant agreement No. 871259 (ADMORPH
project).

This article is based upon work from COST Action CERCIRAS, supported
by COST (European Cooperation in Science and Technology)

References

1. Nvidia Jetson. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/, accessed: 2023-01-21

2. Andreozzi, M., Gabrielli, G., Venu, B., Travaglini, G.: Industrial challenge 2022: A
high-performance real-time case study on arm. In: ECRTS 2022. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2022)

3. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energy-Aware Scheduling
for Real-Time Systems. TECS 15(1) (2016)

4. Biewald, L.: Experiment tracking with weights and biases (2020), https://www.
wandb.com/, software available from wandb.com

5. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

6. Cooper, K.D., Schielke, P.J., Subramanian, D.: An Experimental Evaluation of
List Scheduling. TR98 326 (1998)

7. Dick, R., Rhodes, D., Wolf, W.: Tgff: task graphs for free. In: 6th CODES/CASHE.
IEEE (1998)

8. Gerards, M., Hurink, J., Hölzenspies, P.: A survey of offline algorithms for energy
minimization under deadline constraints. J. of Scheduling 19(1) (2016)

9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017)

10. Hardkernel Co., Ltd.: Odroid-XU4. https://wiki.odroid.com/odroid-xu4/
odroid-xu4, accessed: 2019-09-06

11. Hasselt, H.: Double Q-learning. 24th NIPS 23, 2613–2621 (2010)
12. Hu, Y., de Laat, C., Zhao, Z.: Learning workflow scheduling on multi-resource

clusters. In: 2019 NAS. pp. 1–8. IEEE (2019)
13. Hu, Z., Tu, J., Li, B.: Spear: Optimized Dependency-Aware Task Scheduling with

Deep Reinforcement Learning. In: 39th ICDCS. pp. 2037–2046. IEEE (2019)
14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907 (2016)
15. Kool, W., van Hoof, H., Welling, M.: Attention, Learn to Solve Routing Problems!

In: 7th ICLR (2019)
16. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep

reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics
in networks. pp. 50–56 (2016)

17. Patrício, D.I., Rieder, R.: Computer vision and artificial intelligence in precision
agriculture for grain crops: A systematic review. Computers and electronics in
agriculture 153, 69–81 (2018)

18. Roeder, J., Rouxel, B., Altmeyer, S., Grelck, C.: Energy-aware scheduling of multi-
version tasks on heterogeneous real-time systems. In: 2021 36th SAC. pp. 501–510
(2021)

19. Rouxel, B., Skalistis, S., Derrien, S., Puaut, I.: Hiding communication delays
in contention-free execution for spm-based multi-core architectures. In: 31st
ECRTS19 (2019)

20. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized Experience Replay.
arXiv:1511.05952 (2015)

21. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of Go without
human knowledge. Nature 550 (2017)

22. Singh, A.K., Dziurzanski, P., Mendis, H.R., Indrusiak, L.S.: A survey and compar-
ative study of hard and soft real-time dynamic resource allocation strategies for
multi-/many-core systems. ACM Computing Surveys (CSUR) 50(2), 1–40 (2017)

23. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: Survey of current and emerging trends. In: 2013 50th DAC. pp. 1–10.
IEEE (2013)

24. Ullah Tariq, U., Ali, H., Liu, L., Panneerselvam, J., Zhai, X.: Energy-efficient
Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices
in Cyber-Physical Systems. TIST 1(1) (2019)

25. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8(3-4), 229–256 (1992)

26. Wu, Q., Wu, Z., Zhuang, Y., Cheng, Y.: Adaptive DAG Tasks Scheduling with
Deep Reinforcement Learning. In: 19th ICA3PP. Springer (2018)

