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Abstract—The AI revolution, fueled by effective Deep Learning
approaches, has seen a recent shift towards processing the AI
workloads closer to the user, at the Edge. This paper addresses
the instrumental role of system-level design space exploration
(DSE) methods for achieving efficient inference of deep-learning
models on resource-constrained devices at the Edge.

I. INTRODUCTION

Deep Learning methods have become an immensely impor-
tant driver for AI-based applications in a variety of applica-
tion fields like computer vision, natural language processing,
automotive, and many more. For the inference of trained
deep-learning models, we are currently witnessing a shift
from Cloud-based execution of the AI workloads to executing
them closer to the user, at the Edge. Such so-called Edge AI
typically provides lower latencies as well as increased privacy
when performing model inference. However, deploying and
inferring large Deep Neural Networks (DNNs) on edge devices
is challenging because these devices usually have limited
power/compute/memory resources.

System-level design space exploration (DSE) [1], [2] has
traditionally been an important approach for optimizing the
mapping of application workloads onto resource-constrained
embedded computer systems. With such DSE, a large variety
of different design alternatives can be explored, such as
the number and type of processor cores to deploy for the
computations, the spatial and temporal binding of application
tasks to processor cores, and so on.

In this paper, we will addresses the instrumental role of
system-level DSE for achieving efficient inference of DNN
models on resource-constrained (embedded) devices at the
Edge. Although there is a wealth of techniques for ’fitting’
large DNNs to resource-constrained devices, including model
pruning, quantization and distillation [6], we will focus the
discussion on two specific directions in the domain of Edge
AI: hardware-aware Neural Architecture Search (NAS) and
distributed inference of large DNNs on multiple edge devices.

II. DESIGN SPACE EXPLORATION (DSE)

System-level DSE explores different system implemen-
tation solutions while simultaneously considering multiple
optimization objectives, such as performance, power/energy
consumption, and memory footprint. The search for optimal
design solutions typically entails two distinct elements: i)
The evaluation of a single design solution in terms of the
considered optimization objectives. For this, measurements on

real systems or estimates using either analytical or simulation
models are used [1], [2]. ii) The search strategy for covering
and navigating through the vast design space, spanned by
all free variables such as the number and type of processor
cores to deploy, the binding of application tasks to cores, etc.
Here, metaheuristics, such as simulated annealing, ant colony
optimization and genetic algorithms, are popular approaches.
This is because these algorithms search the design space for
optimal solutions using only a finite number of design point
evaluations, and thus being able to handle large design spaces.
However, they cannot guarantee to find the global optimum. In
the scope of system-level DSE, especially genetic algorithms
have proven to be highly effective [3]–[5].

III. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) is an approach with
which a proper architecture of a DNN (i.e., yielding op-
timal accuracy) can be automatically determined by means
of searching the DNN design space [6]. Traditional NAS
strategies are often unaware of the target device the DNN
should be executed on, which may result in multiple, expensive
(re-)design iterations when a DNN solution does not fit on a
resource-constrained device. To address this issue, we have de-
veloped a hardware-aware NAS approach, based on a genetic
algorithm as underlying search algorithm, that considers multi-
objective optimization. This allows our NAS to simultaneously
optimize the DNN for accuracy as well as for objectives that
are specific for the target hardware device such as memory
usage, inference latency, and energy consumption. In contrast
to traditional NAS techniques, wherein the training of a candi-
date DNN to assess its accuracy is considered an isolated task,
our work uses a novel technique called piecemeal-training
[7], [8]. In piecemeal-training, a neural network architecture
and the related weights are jointly and simultaneously learned
by combining concepts of the traditional training process and
evolutionary architecture search in a single algorithm.

Our NAS results in multiple Pareto-optimal DNN solutions
that provide different trade-offs regarding objectives such as
accuracy, memory usage, and energy consumption. As the
application needs for systems at the Edge can be significantly
affected by changes in the application environment, like a
change of the battery level in the edge device, these different
Pareto-optimal DNNs can also be exploited at run time. In
that case, the system can dynamically switch between different



DNN implementations based on the needs and changes of the
application environment [9].

IV. DISTRIBUTED INFERENCE OF DNNS

Another approach for inferring large DNNs at the Edge is to
leverage all available resources across multiple edge devices to
execute the DNNs by properly partitioning them and running
each DNN partition on a separate edge device. As described
below, system-level DSE plays an important role here as well.

A. AutoDiCE

The AutoDiCE tool provides a design and programming
framework that takes a trained DNN model as input and
subsequently allows for efficiently exploring and automatically
implementing a range of different DNN partitions on multiple
edge devices to facilitate distributed DNN inference [10].
AutoDiCE automates the splitting of a DNN model into a set
of sub-models as well as the code generation needed for the
distributed and collaborative execution of these sub-models on
multiple, possibly heterogeneous, edge devices, while support-
ing the exploitation of parallelism among and within the edge
devices. Regarding the latter, different processing cores in an
edge device (like CPU cores, GPU and NPU) can be utilized
to execute DNN layers in parallel in a pipelined fashion, or
in a layer-switched manner [12], [13] to exploit the affinity of
specific DNN layers to certain processing core types.

Since the number of different DNN mapping possibilities
on multiple edge devices is vast, the AutoDiCE framework
features a DSE methodology to automatically search for
proper distributed CNN inference implementations [11]. The
DSE utilizes a genetic algorithm with a so-called Split-Point
Encoding approach that is tailored to efficiently searching
for good DNN partitionings and mappings. Moreover, we
accelerate the searching process by using a multi-stage hi-
erarchical DSE approach. At every stage, we perform DSE
at two hierarchical levels. In the first level, we use analytical
models to approximate the throughput, memory and energy
consumption of DNN partitionings/mappings. The solutions
found in the first level together with Pareto-optimal solutions
from a previous DSE stage are utilized as the parents for
the second level DSE. In this second level, we evaluate each
design point using real measurements taken from AutoDiCE-
generated DNN inference implementations to determine the
Pareto solutions for a next DSE stage. The output of the last
DSE stage provides the final Pareto-optimal solutions.

B. Robust Partitioning of DNNs

Efforts to distribute the DNN computations and coefficients
over multiple edge devices collaboratively, such as discussed
above, generally assume that all participating devices are
always available and thus do not consider the presence of
device failures. However, failures due to, e.g., connectivity
issues or depleted batteries of edge devices can seriously
inhibit the proper execution of distributed DNN inference,
leading to a significant accuracy drop of the DNN model or
even a complete system failure. We have therefore introduced

a novel partitioning method, called RobustDiCE, for robust
distribution and inference of DNN models over multiple
edge devices [14]. This method can tolerate intermittent and
permanent device failures in a distributed system at the Edge.
To this end, it features both system robustness, i.e., DNN
inference can continue execution even if one or more edge
devices fail to function properly, and model robustness, i.e.
preserving the inference accuracy of the DNN model as much
as possible when some of the intermediate DNN inference
results are lost due to failed devices. Model robustness is
achieved by evaluating the relative importance of each neuron
in the DNN model and then partitioning these different neu-
rons of each DNN layer into different groups (to be mapped
to the various edge devices) as ’evenly’ as possible. This
method combines partial neuron replication and importance-
aware neuron clustering and, as such, provides a tunable trade-
off between robustness (i.e., retaining model accuracy after
failures) and resource utilization. For a user-provided level of
robustness, RobustDiCE deploys DSE to find implementations
that optimize for DNN inference accuracy, per-device energy
and memory consumption, and overall system throughput.

The recently introduced EASTER methodology extends
RobustDiCE to learn robust distribution strategies for Trans-
former models against device failures [15], also considering
the trade-off between robustness and resource utilization.
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