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Thermal Management for 3D-Stacked Systems via Unified
Core-Memory Power Regulation
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3D-stacked processor-memory systems stack memory (DRAM banks) directly on top of logic (CPU cores)
using chiplet-on-chiplet packaging technology to provide the next-level computing performance in embed-
ded platforms. Stacking, however, severely increases the system’s power density without any accompanying
increase in the heat dissipation capacity. Consequently, 3D-stacked processor-memory systems suffer more
severe thermal issues than their non-stacked counterparts. Nevertheless, 3D-stacked processor-memory sys-
tems do inherit power (thermal) management knobs from their non-stacked predecessors - namely Dynamic
Voltage and Frequency Scaling (DVFS) for cores and Low Power Mode (LPM) for memory banks. In the
context of 3D-stacked processor-memory systems, DVFES and LPM are performance- and power-wise deeply
intertwined. Their non-unified independent use on 3D-stacked processor-memory systems results in sub-
optimal thermal management. The unified use of DVFS and LPM for thermal management for 3D-stacked
processor-memory systems remains unexplored. The lack of implementation of LPM in thermal simulators for
3D-stacked processor-memory systems hinders real-world representative evaluation for a unified approach.

We extend the state-of-the-art interval thermal simulator for 3D-stacked processor-memory systems
CoMeT with an LPM power management knob for memory banks. We also propose a learning-based thermal
management technique for 3D-stacked processor-memory systems that employ DVFS and LPM in a unified
manner. Detailed interval thermal simulations with the extended CoMeT framework show a 10.15% aver-
age response time improvement with the PARSEC and SPLASH-2 benchmark suites, along with widely-used
Deep Neural Network (DNN) workloads against a state-of-the-art thermal management technique for 2.5D
processor-memory systems (ported directly to 3D-stacked processor-memory systems) that also proposes
unified use of DVFS and LPM.
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1 INTRODUCTION

Lack of memory bandwidth continues to stifle the performance of high-end embedded applica-
tions. 3D-stacked processor-memory systems [22, 28] resolve the memory bandwidth bottleneck
by stacking main memory DRAM banks on the processing cores using chiplet-on-chiplet packag-
ing technology. The technology allows for numerous shorter vertical interconnects between the
memory and logic layers. Therefore, the system’s transistor density can increase without technol-
ogy scaling.

However, stacking several silicon layers on top of each other increases the volume of the 3D-
stacked processor-memory systems while only minimally increasing its surface area over non-
stacked processor-memory systems [46]. Therefore, the power density of 3D-stacked processor-
memory systems is significantly higher than their non-stacked counterparts, while their heat dis-
sipation capabilities remain comparable [16, 33]. Furthermore, higher bandwidth allows cores and
memory to operate more actively in 3D-stacked processor-memory systems resulting in signif-
icantly more heat than in non-stacked systems [27]. Consequently, the 3D-stacked processor-
memory systems suffer from more severe thermal issues that force them to operate at much
lower frequencies than non-stacked systems. This thermally sustainable execution in 3D-stacked
processor-memory systems eradicates most performance gains over non-stacked systems.

Figure 1 shows abstract three-dimensional heat conduction in 3D-stacked processor-memory
systems. 3D-stacked processor-memory systems stack multiple memory layers over a core
layer [28]. Most 3D-stacked processor-memory system designs [22] place the heat sink with the
core layer because the logic is responsible for most of the heat in the system. Another heat sink
on the other side is infeasible as the chip must embed with the motherboard (PCB) on one side.
The capacity of the PCB as a secondary heat sink is limited. The memory layers absorb heat from
the core layer while producing heat. Therefore, while the thermal hotspots occur in the cores in
non-stacked processor-memory systems, the hotspots in 3D-stacked processor-memory systems
are in the memory layers. Consequently, thermal management of 3D-stacked processor-memory
systems is quintessential to their thermally-safe operation.

3D-stacked processor-memory systems inherit thermal management knobs for core and mem-
ory layers. 3D-stacked processor-memory systems can use Dynamic Voltage Frequency Scaling
(DVES) to scale the frequency of their processing cores in the core layer. DVFS allows the cores
to reduce their heat generation at the cost of their peak performance and vice versa [8-10, 14, 18,
20, 23, 26, 37, 39, 40, 50]. 3D-stacked processor-memory systems can also toggle their memory
banks between Low Power Mode (LPM) and Normal Power Mode (NPM) to trade off their power
consumption with performance [30, 45, 47]. Enabling LPM mode for memory banks significantly
reduces their heat generation, but this reduction comes at the cost of an increase in memory access
latency. Though DVFS and LPM target different parts of 3D-stacked processor-memory systems for
power (thermal) management, they are performance- and power-wise intertwined [45]. The effect
on the performance of DVFS and LPM for an application is subject to the application’s memory and
compute intensity. The performance of a memory-intensive application is more sensitive to LPM,
while the performance of a compute-intensive application is more sensitive to DVFS. However, the
thermals of an application on 3D-stacked processor-memory systems are inherently subject to the
combined power consumption of both cores and memory. Therefore, a smart application-aware
thermal manager can save power using non-sensitive knobs such as DVFES for memory-intensive
applications and LPM for compute-intensive applications without significantly deteriorating appli-
cations’ performance. The manager can then use the saved power to boost performance using the
sensitive knob within a given thermal envelope. This observation makes a case for a unified DVFS
and LPM thermal management strategy for 3D-stacked processor-memory systems. We further
strengthen the case for such a strategy with a motivational example.
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Fig. 2. An abstraction of a 3D-stacked processor-memory system with DVFS and LPM.

Motivational Example: Figure 2 illustrates a 3D-stacked processor-memory system consist-
ing of one quad-core processor layer and eight memory layers. Each memory layer contains 16
memory banks. We select the streamcluster benchmark (from the PARSEC [2] benchmark suite)
executing in a four-threaded configuration to evaluate the performance implications of synergis-
tically employing LPM and DVFS under a thermal threshold of 78 °C. We present two scenarios.

In the first scenario, we ran the streamcluster benchmark at a constant core(s) frequency of
2.7GHz and all memory banks in NPM. 2.7 GHz is the highest core(s) frequency in which the
streamcluster benchmark reaches the thermal threshold of 78 °C in our 3D-stacked processor-
memory system but does not cross it in the steady state, as shown in Figure 3(a). Running at a
frequency higher than 2.7 GHz will violate the thermal threshold. We observe a response time of
670.96 ms in the first scenario. We know that streamcluster is a benchmark involving significant
computations. Consequently, the effect of LPM on its performance is limited. Therefore, in the sec-
ond scenario, we turn the first fourteen memory banks of memory layer M0 into LPM, as shown
in Figure 2. We transfer the power saved from the memory layers using LPM to the core layer
using DVFS to run streamcluster at a higher core(s) frequency of 4 GHz. Figure 3(b) shows that
streamcluster continues to remain below the thermal threshold of 78 °C in the steady state. How-
ever, being a compute-intensive benchmark, streamcluster benefits more from the higher core(s)
frequency than its penalization due to the use of LPM. We observe a response time of 547.95 ms in
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(b) 2nd Scenario: 4 GHz core(s) frequency with 14 memory banks in LPM and 114 memory banks in NPM.

Fig. 3. Layer-wised peak temperature for different layers in a 3D-stacked processor-memory system running
a four-threaded instance of streamcluster benchmark with and without LPM and varying core(s) frequency.

the second scenario. The performance of the streamcluster in the second scenario (Figure 3(b)) is
18.33% better than the first scenario (Figure 3(a)).

In practice, it remains a challenge to identify the correct combination of DVFS and LPM based
on application characteristics that will minimize the application’s response time on a 3D processor-
memory system. Recent works [40] have shown machine learning-based thermal management for
multi-/many-core processor-memory systems to be an effective strategy. Therefore, in this work,
we propose a reinforcement-learning-based technique that unifies DVFS and LPM in one technique
to identify near-optimal settings for both knobs synergistically for maximizing an application’s
performance on 3D processor-memory systems.

Our Novel Engineering Contributions: Several simulators come equipped with power-
performance modeling for core DVFS. However, no simulator capable of modeling the thermals
of 3D-stacked processor-memory systems comes with an LPM implementation for memory banks.
Past research evaluates LPM-based thermal management by offline retrospective manipulation of
power and performance traces collected from various simulators [45]. Such evaluation may be an
incomplete representation of real-world execution. Therefore, we extend the CoMeT [46] interval
thermal simulator to model the impact of LPM on application performance and power consump-
tion in a 3D-stacked processor-memory system. We have merged the code for our extensions with
the main branch of the open-source CoMeT repository at GitHub.

Our Novel Scientific Contributions: We propose the first technique for thermal management
of 3D-stacked processor-memory systems that synergistically employ core DVFS and memory
bank LPM in a unified manner. The technique uses a learning-based algorithm to determine the
frequency of every active core and the mode of every memory bank to minimize the response of an
application running on a 3D-stacked processor-memory system under a given thermal threshold.
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Fig. 4. Flow in simulated 3D-stacked processor-memory systems [46] with extensions in blue.

We compare the proposed technique with state-of-the-art thermal management techniques for
3D-stacked and 2.5D processor-memory systems via detailed interval thermal simulations.

2 LOW POWER MODE FOR 3D-STACKED PROCESSOR-MEMORY SYSTEMS

2D memories rarely suffer from thermal issues, given their low power density and slow operating
frequencies. However, the emergence of high-capacity, high-bandwidth, high-density 3D-stacked
memories significantly increased the power density of main memories. Consequently, the thermal
management of high-density memories became integral to their operation [44]. In contrast to cores,
static (leakage) power consumption dominates the total power consumption for memory banks.
Therefore, unlike in cores, DVFS that reduces the active (dynamic) power consumption was inef-
fective for the thermal management of memories. Instead, Low Power Mode (LPM) for main mem-
ory that reduces both active and static power consumption of memory banks became the power
management knob of choice for thermal management of high-density memories. LPM eliminates
the need for data migration or replication by preserving the memory data in situ. However, cores
cannot access the data in the memory banks when they are in LPM mode. Therefore, any memory
access to memory banks in LPM requires the memory bank to toggle to Normal Power Mode (NPM).
Transitioning to the NPM from LPM necessitates a resynchronization process. During this period,
the data stored within the memory bank becomes temporarily inaccessible. We model this resyn-
chronization duration based on the findings presented in [30, 45]. As such, the total time associated
with every memory access event in the LPM comprises both the resynchronization duration and
the standard memory access time. Note that once a memory bank has transitioned to the NPM due
to a memory access event, it immediately switches back to LPM to save power. This design choice
prioritizes saving power at the cost of increased overheads due to mode toggling.

3D-stacked processor-memory systems inherit the LPM power management knob from their
predecessor systems. However, none of the few thermal simulators capable of modeling the ther-
mals of 3D-stacked processor-memory systems provides an implementation for LPM. Therefore,
we extend the recently introduced state-of-art interval thermal simulator CoMeT [46] with the nec-
essary power-performance modeling associated with LPM. Figure 4 shows the extended CoMeT
tool flow. The parts in blue represent the new extensions.

The @ Performance Simulator (Sniper [3]) simulates a workload and tracks access counts to
internal components such as execution units, caches, and register files. CoMeT[46] extends the
performance simulator to count memory access for every memory bank based on the memory
addresses. Our extensions keep count of both NPM and LPM memory accesses. Sniperuses memory
access latencies to model performance. Our extensions make the latencies a function of memory
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Fig. 5. The execution time and peak temperature with varying LPM memory banks for streamcluster.

bank power modes. We introduce the concept of heterogeneous latencies. We make memory access
latency for a memory bank in LPM higher than for a bank in NPM.

CoMeT uses McPat [24] and CACTI-3DD [4] to model the power consumption of cores and mem-
ory banks, respectively. Our extensions target the CACTI-3DD integration in CoMeT. The ® Power
Model receives the accumulated access counts at every simulation interval. It needs to be aware
of the power mode of each memory bank, as banks in LPM consume a fraction of the power com-
pared to those in NPM, with different fractions accounting for leakage and dynamic power. These
fractions are determined based on technical specifications, as outlined in [30]. The power model
generates a response corresponding to the power consumption based on the different power modes
of each memory bank and the energy per access for read (RD) and write (WR) operations.

The role of the @ Thermal Simulator in the CoMeT tool is to calculate the temperature of each
thermal component at each interval using the power consumption data received from the @ Power
Model and @ Floorplan Configuration. The @ Thermal Simulator does not need to know the power
modes of the memory banks. It inherently models memory banks in LPM to produce less heat
due to their lower power consumption. We extend the scheduling API in CoMeT, SchedAPI, to
allow the scheduler to read memory bank temperature. We also add extensions to the API that
allow the scheduler to toggle a memory bank between LPM and NPM. Therefore, based on the
temperature feedback from the @ Thermal Simulator, the ® Scheduler can switch the power mode
of a memory bank for thermal management. Finally, the ® Profile Module offers statistical data
that reflects the impact of LPM on power, temperature, and energy consumption at each interval,
as well as the overall performance data. We gain insights into how the applications behave in LPM
per their power, energy, and thermals through profiling. A scheduler can use this information to
make informed decisions about LPM to achieve the desired results.

3 EXTRA-FUNCTIONAL ANALYSIS OF DRAM ACCESS FOR LOW POWER MODE

We conduct an empirical extra-functional analysis to characterize changes in performance and
peak temperature of 3D processor-memory systems by the number and location of memory banks
in LPM. Figure 5 shows the variation in streamcluster performance by turning different memory
banks from NPM into LPM one at a time. We observe a non-uniform distribution that indicates
putting different memory banks in LPM leads to different performance (up to 1.5%).

Figure 5 also illustrates the corresponding observed peak temperature. As with the performance
results, there is a significant difference in peak temperature between distinct memory banks in
LPM (up to 0.32 °C). Figure 6 charts the large variation in memory access count in memory banks
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Fig. 7. Execution time and peak temperature for streamcluster with one memory bank in LPM against the
memory access count of the memory bank that is in LPM.

that can explain these results. Figure 7 combines the data from Figure 5 and Figure 6 to plot the
execution time and peak temperature for streamcluster with one memory bank in LPM against
the memory access count of the memory bank that is in LPM. The figure shows a positive cor-
relation between execution time and memory access count. This correlation indicates memory
banks with a higher memory access count lead to a higher performance penalty when they go
into LPM. However, the figure also shows no correlation between observed peak temperature and
memory access count. Nevertheless, we still observe turning off memory banks in higher memory
layers (near the PCB) leads to a bigger decrease in peak temperature regardless of memory access
counts. Therefore, the spatial location of the memory bank also plays a role in the peak temperature
observation.

Based on these observations, we draw the following conclusions. We conclude that memory
banks located in the upper memory layer (close to the PCB layer) with fewer memory access
counts tend to provide better performance and thermal benefits when placed in LPM. Conversely,
memory banks located in the lower memory layer with high memory access count tend to result
in higher performance penalties and fewer thermal benefits when placed in LPM. This observation
suggests that a careful selection of the memory banks for LPM based on their location and memory
access count is quintessential to better performance-aware thermal management.

4 THERMAL MANAGEMENT DESIGN

Thermally managing the 3D-stacked processor-memory systems by intelligently switching the
memory bank into LPM is already a complex problem, as discussed in Section 3. However, in
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combination with core DVFS, achieving a unified thermal management strategy becomes even
more daunting. We aim to delve deeper into the design space of this unified thermal management
for 3D-stacked processor-memory systems. Let the system has N cores and M memory banks. Each
core has G DVFS settings. Each memory bank has K actions (i.e., LPM and NPM). The action design
space A is GN . KM We then consider the state space S, which has I features, including core IPC,
core utilization, memory read/write count, etc. Each state feature has H values, and the total design
space is A- S, which is GV - KM . H!. Faced with such a colossal design space, selecting appropriate
DVES levels and memory modes for efficient thermal management is computationally expensive.
It is challenging to find one-size-fits-all approaches due to the complexity of the problem and the
lack of feasible solutions in polynomial time for a run-time thermal management policy.

We propose a DON (Deep Q-network) [34]-based algorithm, 3QUTM, for performing unified
thermal management on 3D-stacked processor-memory systems. 3QUTM coordinates DVFS and
LPM and continuously learns the application performance, the interdependent impact of one sub-
system on another (i.e., the overcompensation effect), and environmental changes using reinforce-
ment learning. 3QUTM selects actions based on the anticipated maximum future rewards. The re-
wards are determined by evaluating the current state and selecting the optimal action that yields
the highest future reward. 3QUTM plays a crucial role in periodically adjusting frequency/voltage
strategies for the core and LPM for the memory bank to improve performance while mitigating
thermal stress. 3QUTM leverages a neural network to manage the high-dimensional action and
state spaces A - S. We use a prioritized experience replay buffer and the sampling copies from past
data to minimize the adaptation time to environmental changes and improve the convergence
speed. 3QUTM consistently achieves high IPC in 3D-stacked systems with high compute intensity
while effectively balancing the overhead in systems with high memory intensity. 3QUTM learns the
interlinked effects from both subsystems to adapt to the application and environmental changes.

Architecture model: We employ 3D-stacked processor-memory systems with one layer of
homogeneous processing cores and multiple layers of main memory banks, as illustrated in
Figure 1. The core layer features cores with identical micro-architectures sharing the same mem-
ory address space. The core layer stacks directly above the heat sink. Multiple layers of memory
banks stack above the core layer, with the topmost memory layer embedded in the secondary
minor heat sink (PCB). Communication between the cores and memory banks occurs through
Through-Silicon Vias (TSVs). The 3D processor-memory system operates in a thermally con-
strained environment, and its temperature must remain below a threshold, denoted by Tpry, to
prevent hardware-controlled Dynamic Thermal Management (DTM) from being triggered. The 3D
processor-memory system executes multi-threaded multi-program shared-memory benchmarks
using a one-thread-per-core model.

4.1 Problem Formulation

We formulate the optimization problem by incorporating the observations from Section 3. Specif-
ically, we define the system throughput T and the total power consumption of the system as P;,;.
The overall objective is to maximize system throughput T while minimizing total power consump-
tion P;o;. We define the optimization problem as follows:

1 (0]
max— T; +
) ,:Z:f) {{ ' Ptott} 1)

s.t. Theak < Ter

Maximizing the average value of Equation (1) across tp (the duration of the optimization prob-
lem execution) leads to maximum performance max T;, while minimizing power consumption
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min P;o; under thermal limitations. Here, Tpeqx and T, denote the peak and critical temperatures
of 3D-stacked systems, respectively. { and ® are trade-off coefficients for balancing performance
and power consumption. Each decision epoch seeks to maximize long-term rewards (a central
concept in reinforcement learning), as realized through the scheduling policy 7z, represented by
decision variables such as core DVFS settings and LPM knobs. This reward-driven approach lends
itself naturally to the framework of a Markov Decision Process (MDP), thereby bridging our opti-
mization problem with the principles of reinforcement learning. The Bellman optimality equation
shown in Equation (2) substantiates this connection. We assume an action set A and a state set S.
We have Ya € A and Vs € S for each action and state, respectively.

Vi« (st) = max {r(st, St41) + ¥ Z P(staalse, at)Vn*(st+1)} ()

St+1

where V- (s;) represents the value function of state s; for an optimal scheduling policy 7*,
P(st41ls¢, ar) is the probability of transitioning from state s; to s;4+1 by taking action a;, r(s;, St+1)
represents the immediate reward received when the agent acts a, at state s; after observing s;,,
and y is the discount factor that determines the importance of future rewards relative to immediate
rewards. A value of y = 1 indicates that the future reward is as important as the immediate reward,
while y = 0 indicates that the agent does not consider future rewards.

Finding an optimal scheduling policy 7" is essential to maximize future rewards. However, ac-
curately modeling the transitions between the peak temperature of a 3D-stacked system and the
employed DVFS and LPM policy can be practically challenging due to the difficulty of estimat-
ing transition probabilities. As a solution, we adopt a model-free approach. One such approach
is Q-learning [48], which can converge to the Bellman equation without requiring probabilistic
modeling of state transitions. Q-learning aims to identify a scheduling policy that maximizes the
long-term reward by transforming the value function V(s;) into the Q-function Q(s;, a;).

Qn*(sta a;) = mfrlXS(r(St, Se+1) + Qn (S+1> Ar+1)) (3)

where Q.+ (s;,a;) represents the cumulative expected reward for a given action a; at a specific
state sy, and r (s, s;+1) denotes the immediate reward received after taking action a, at state s, fol-
lowing the resulting state s;.;. However, Q-learning is not a perfect approach to solving our prob-
lem. Firstly, it only supports finite discrete states and action sets, making it incapable of handling
continuous values such as power consumption. Secondly, even after discretizing our continuous
attributes based on statistical distribution, the resulting design space remains vast, requiring ex-
tensive storage space and rendering convergence difficult. Consequently, it is impractical for our
problem with large state and action spaces. We adopt a Deep Q-network (DQN) to address the
limitations of Q-learning. We propose a lightweight Q-network to approximate the Q-function.

4.2 State, Action and Reward Design

4.2.1 State. We select features for defining the state of 3D-stacked systems, namely IPC (In-
structions Per Cycle), frequency, core utilization, peak temperature, the average temperature of
the hottest memory layer, total power consumption, and memory access count for their significant
relevance to the performance, power consumption, and thermal management of these systems. We
define the system state of 3D-stacked systems presented in Table 1 by utilizing these internal fea-
tures. Many of the features in Table 1 are execution-specific. Therefore, 3QUTM is an application-
(thread-)specific solution. Some features are discrete to provide a balance between model com-
plexity and accuracy. Thotr, Tpeak, and Pyo; are retained as continuous variables, demonstrating a
prioritization of thermal management over performance. For efficient training, the features s/
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Table 1. State-related Features and its Quantized Values for s'PC, sV, and sMAC for
3D-stacked Systems

State Description Discrete values

sTPC Billion Instructions per Cycle per Core 0,1

sf Frequency per Core 1.0,1.2,...,4.0

sV Utilization per Core 0,1,2,3,4,5,6

sTpeak Peak temperature of 3D-stacked Systems -

sThott  Average Temperature of the Hottest Memory Layer -

sPror Total Power Consumption -

sMAac Memory Access Count per Memory Bank 0,1,2,3,4

and sV are discrete. To this end, we employ clustering, a flexible and data-driven approach capable
of discerning intricate patterns potentially missed by simpler thresholding techniques. We con-
duct basic experiments on all PARSEC-2 benchmarks to obtain and quantize the feature values.
We use K-means clustering [15] to group s'FC into two categories — computer-intensive thread
or memory-intensive thread. For the discrete s4C and sV attributes, we employ DBSCAN [42]
to determine the optimal number of clusters, considering the variation in densities and shapes
for these two state features as revealed by the profiling data. Figure 8 visualizes the |s*4€| using
the swaptions benchmark. Assuming N cores and M memory banks in the 3D-stacked systems,

we represent the system state using a tuple, s; = {S{PCO, el s{PCN‘l, s’f’, e, S{N’l, s?", o, syN‘l,

SA'IACM,I }

Tpeak T, P, MAC
5. Pee ’sthOtL’sttOt’st 0"”’ ;

t
4.2.2  Action. We define the set of actions as the clock frequency of cores and the number and
location of the LPM memory bank. For the V/F action set, we set the minimum operating frequency
to 1.0 GHz, with a step of 0.2 GHz for dynamic frequency adjustment. The maximum frequency is
4.0 GHz. However, exploring the entire search space for selecting the number of LPM memory
bank locations is prohibitively expensive (i.e., N = 4, M = 128, 16* - 2128 = 21%* combinations). We
exploit the observation in Section 3 that transitioning the memory banks located in higher memory
layers with lower access counts to LPM results in minimal performance penalties while increasing
thermal headroom. The core is the main heat source in a 3D-stacked processor-memory system.
The primary heat sink convects away most of the heat. Still, a significant amount of heat also flows
towards the secondary heat sink (PCB) for a less efficient convected dissipation. Consequently, the
layer closest to the PCB layer has a high chance of violating the thermal threshold. Under these
considerations, we perform the LPM actions as per:

e alPMo: The action entails transitioning the hottest memory bank alongside its neighboring
six memory banks (i.e., front, back, left, right, upper, bottom) into LPM.

e alPMi: Place all the memory banks in the hottest layer into LPM.

aPMz-¢. This action category entails transitioning a set number m of memory banks into

LPM, where m € {1,2,4,8,16}. These memory banks are from the first six layers, with each

selected memory bank showing memory access count attribute |s*4C| = 0.

e alPMr10: Analogous to the prior category, this group of actions also places m memory banks
into LPM (where m € {1,2,4,8}). However, we based the selection on [sMAC| = 1.

e alPMu-1s: Similarly, this action places m memory banks (where m € {1,2,4,8}) into LPM,
selecting from memory banks from the first six layers when |s*A€| = 2.

e glPMis-19; This category of actions targets memory banks from the first six layers with
|sMAC| = 3, placing m (where m € {1,2,4,8,16}) into LPM.
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o qlPMz-2; The final category of actions operates on memory banks with |s*4€| = 4 in the

first six layers, transitioning m (where m € {1,2,4,8,16}) into LPM.

LPM actions entail transitioning a specific quantity (m) of memory banks into a low-power state
based on a memory access count attribute s*4C. As illustrated in Figure 7(b), we opted to imple-
ment LPM actions for the first six layers due to the performance trade-off. While switching off
memory banks in these layers results in minimal thermal benefits, it concurrently imposes perfor-
mance penalties. When selecting memory banks to put into LPM using the actions a'"Mz-15, we
follow a top-down approach based on the memory bank layers. This selection means we prioritize
selecting memory banks from higher layers before moving on to lower layers. All non-selected
memory banks remain in NPM. We determine the LPM state of a memory bank per epoch, and
thus a memory bank placed in LPM during the previous epoch may or may not remain in LPM
for the next epoch, contingent on the new LPM action chosen by the agent. This strategy has a
significantly condensed action space, leading to 25 - 21¢ possible actions for a 4-core 3D-stacked
system. Similarly, the strategy reduces the action space from 2'%2 to 25-2%* for a 16-core 3D-stacked
system.

4.2.3 Reward. We propose a dedicated reward function for the 3QUTM architecture, which
considers several key performance factors, including core throughput, the peak temperature of
3D-stacked systems, the compound effect of LPM memory banks, and power consumption. The
reward function is defined as follows:

[}
Fea1(Se>Sea1) = (o, + Qr,,, + Q1o + TP (4)
41

where r;11(ss, s; + 1) represents the immediate reward after the next state s, is observed and is

Tpeak

capable of capturing all the relevant information of the next state (i.e., core throughput, s and

r+1
stTfr“l”L), and ISfJ:‘i’I is the total power consumption (memory and core) of 3D-stacked systems in

the next decision epoch. It is inevitable to increase power consumption in pursuit of higher perfor-
mance. However, to save power, we introduce subtle rewards to minimize the urge. We define three
criterion functions, ry, 1, and ry, to represent performance, temperature, and the impact of LPM
memory banks, respectively. Here, T;, denotes the thermal threshold, and T,, represents the ex-
pected baseline temperature of the system. Temperatures below these thresholds indicate a higher
potential for performance boosting. The coefficients {, ¢, ¢, and ® represent the significance of
each reward sub-function. These coefficients are all between 0 and 1, where their sum equals 1. We
have assigned a larger value to { to underscore the importance of performance. We presume ¢ and
¢ to be equal, acknowledging their significant impact on thermal headroom. Lastly, ® is the small-
est among all four coefficients to minimize power consumption. We established the parameters ¢,
¢, ¢, and @ at values of 0.4, 0.25, 0.25, and 0.1, respectively. This deliberate calibration strategically
oriented the agent towards comprehending the intricate balance between performance and en-
ergy consumption, a correlation illustrated in Figure 7(a). We reward shape based on the transient
system temperature and performance metrics. The ry sub-function is as follows:

Tpeak |
pea
—5 P | t+1 > Tcr
_J1 vNa Is;iq Tpeak | ThotL
o0 =\ N 21’:0 Uty - IPCHI:‘ " |sfmax ISt+1 < Tcr&lstﬂ | > TOP ®)
31  vN-1 . sl Thott| Tpeak
2N i=0 Ut+1,- IPCt+1,- |s/max | |st+1 < Top&|3t+1 | < Tcr

wherein IPC,,4, represents the number of instructions that can execute in a single clock cycle per
core. Uy41, represents the percentage of time that the CPU core is busy executing instructions. The
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product of these two values estimates the number of instructions executed per unit of time. Finally,

multiplying this value by the clock frequency of the CPU core Isf ++1] gives an estimate of the core
throughput in instructions at the t+1 decision epoch. We normalized to the maximum available
frequency for that core |s/mex| and averaged the throughputs across all the cores. The value of
the sub-reward function r; links closely to the average system throughput. Its design promotes
high throughput by including an empirically-determined amplification factor of % under certain

conditions. This factor is applied when the system maintains considerable thermal headroom, i.e.,

when |stfi“k| < Top. This design choice assumes that a higher IPC generally leads to improved sys-

tem performance. Therefore, a positive reward from the ry sub-function signifies that the actions
contribute to a performance-boosting state. The reward sub-function ry is as follows:

-5 |sT”Mk| > Ty
t+1
Pl = 3 exp(Tamp = 15,13 1) 15,25 | < Tor&ls i > T (©)
L PUamb el r+1 er e op
k T, k
2 exp(Tamp — |5tiia s ti‘ftﬂ < Top&|3tiia | < Ter

where T, is the ambient temperature, and |s, " “*| is the peak temperature of 3D-stacked systems

measured in decision epoch t+1. Temperature varlatlons often follow an exponential law [17].
Therefore, we design the value of X to tie closely to temperature. We use an exponential form to
capture the temperature gap in our reward function. Increasing the temperature can lead to higher
performance, provided the system has sufficient thermal headroom. Therefore, we associate it with
a higher reward. Empirically, we set this reward multiplier to two for performance enhancement.

However, as the temperature climbs and nears the thermal threshold, we decrease the reward

gradually. This reduction is due to the expanding gap between T,,,, and |st£i”k| The decreasing

reward encourages the agent to moderate the rate of temperature increase to maintain system
stability. In other words, we try to prevent the temperature from rising too quickly or reaching the
thermal threshold too soon. If the system temperature continues to rise and crosses the thermal
threshold, we assign a high penalty to protect the system from potential damage. This penalty
serves as a warning to the agents to take corrective actions and prevent the temperature from
reaching a critical level. The reward sub-function ry, is:

—1 -1, -1, -1, -1 PE“"
on, T ten T Taw S | > Ter
={ L 1 1 1 1 i=N-1 IPC: _ i=N-1 IPCL peak
Y20 = \1/0"'\1!1"'\1/2"'\1!3"'\1/4 iz (Usp '1=1) > 250 sy 'l = )|zT+1 | < Ter
1 1 1 1 i=N-1,, .IPC; i= N 1. IPCiy _ peak
ot Tt an T Zico Sk =1 < T sy 1= 0&ls, {17 < Ter
(7
i=M—1| MAC; .
where we define ¥ = >;27" {ls,,] ‘| = k} as the sum of all instances where the number of
. MAC] : . . IPC;
LPM banks in memory access feature |s;',{“| is k, as shown in Figure 8. 3}(|s,,|) represents the

sum of the quantized values of IPC attributes. The r; sub-reward function reflects the cumulative
effect of LPM actions, with the understanding that frequently accessed memory banks switching
to LPM would incur more substantial penalties. The coefficient attributed to each term within
the reward function signifies its relative significance. Specifically, in scenarios where compute-
intensive threads dominate the system, we grant higher rewards. The rationale for utilizing the
reciprocal of ¥ (assigning the corresponding term in r, to 0 if ¥ equals 0) to represent the reward
is to ensure that the r, reward falls within a similar range to the other sub-reward functions. A
larger ¥ value indicates a higher penalty resulting in a lesser reward. When memory-intensive
threads dominate the system, we vary the coefficient for the reward. LPM memory banks that
are accessed less frequently are given a relatively higher reward, whereas those that are accessed
more often are given a lesser reward. However, symmetrical coefficients penalize the agent during
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Fig. 8. The value of state feature s?i‘f‘c when we run the swaptions benchmark with 4 core and 128 memory

bank. Based on the observation in Section 3, we concentrate the action space in the top six layers.

a thermal emergency. This reward structure ensures a balance between system performance and
energy efficiency while factoring in the critical aspects of thermal management.

4.3 Optimal Design, Adaptive Control and Training Techniques for DQNs

Design. Reducing the action space by integrating memory behavior profiling and domain knowl-
edge is an effective strategy. Nevertheless, managing an expanding action space, particularly in the
context of increasing cores, poses a substantial challenge. A conventional DQN algorithm gener-
ates a distinct Q-value for each action during a single forward pass, with each state-action pair as
input. In scenarios where the action space is relatively small, the one-hot encoded representation
of Q-values, characterized by one output neuron per action, is a suitable mechanism for network
learning. This method facilitates the training process by weight updating to enable the action as-
sociated with the highest Q-value. However, this approach becomes untenable when dealing with
a large action space. For instance, a 16-core system has an action space of 25 - 2%%, rendering it
entirely impractical to store these output neurons. Moreover, selecting the action with the highest
Q-value for each training step becomes exceedingly complex.

To further effectively address the surging complexity and scalability of the action space, which
is due to the diverse combinations of DVFS settings for each core and LPM choice for memory,
we employ a composite approach that incorporates parameterized actions [31] and action embed-
dings [5]. We treat each core’s DVFS setting and the LPM memory choice as separate embedding
matrices. These matrices serve as lookup tables, where each row corresponds to a unique DVFS
setting (for cores) or a unique memory choice (for memory), and each column corresponds to a
dimension |E| in the embedding space, as illustrated in Figure 9. The size of the action embedding
matrix equates to (N + 1) X |E|, where N is the number of core DVES settings plus LPM memory
choices, and |E| is the embedding dimension. This embedding dimension, E, is a hyperparameter
whose value is experimentally determined via sensitivity analysis, as shown in Table 2. It is evident
from the table that an embedding dimension of 16 provides a desirable trade-off between storage
overhead, accumulated reward, and episode length.

Take a 16-core 3D-stacked system with 16 DVFS settings per core and 25 LPM knobs. The size
of each core’s action embedding matrix would then be 16 x 16. Analogously, with 25 LPM knobs,
the memory’s action embedding matrix would be 25 X 16. The state space dimension is 179 and
the action space dimension is 17*16 = 272, the input dimension of the network is 451 - a concate-
nation of the current state of the 3D-stacked systems and the action embeddings. We select the
corresponding DVFS and LPM embeddings from the respective lookup tables for each core at ev-
ery time step. The concatenated state-action pair (s;, a;) is then forwarded through the Q-network,
generating a predicted action embedding and the corresponding Q-value. Our Q-network architec-
ture comprises two output layers - the predicted action embedding layer and the corresponding
Q-value layer. The initial state of the embedding matrix is determined by small random values,
following a Gaussian distribution with a mean of 0 and a small standard deviation (e.g., 0.01). This
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Fig. 9. An abstract diagram depicting the design of the Q-network.

Table 2. The Sensitivity Analysis of Embedding Dimension E

Embedding Dimension E 4 8 12 16 20 24 28
Accumulated Reward 374.09 761.94 92931 1632.25 1652.79 1677.36 1699.66
Episode Length 1730 1850 1950 2010 2200 2390 2650

update process occurs via back-propagation, guided by our dedicated loss function, L(6), allowing
the action embedding matrices and their corresponding lookup table to be updated jointly with
the Q-network.

L(6) = %(Qtar = Q(st a3 0))* + Ae - [1 — cosine(E(ar), E(ap)) - 1(Qrar = Qsr,ar; 0)11 (8)

The first term represents the Temporal Difference (TD) error for the Q-values, signifying the gap
between the predicted and actual Q-values. The second term corresponds to the cosine similarity
between the predicted action embedding E(a,) and the actual action embedding E(a;). The cosine
similarity ranges between —1 and 1, with one indicating that two embedding vectors are identi-
cal. Therefore, subtracting the cosine similarity from 1 allows us to treat this term as a form of
divergence that we target to minimize. This effect gives rise to a symbiotic relationship between
the two components of the loss function. Large TD errors result in a more substantial penalty for
the divergence in action embeddings. Contrarily, a diminishing TD error, indicative of improved
Q-value predictions, reduces the emphasis on refining action embeddings. Factor A, is a hyperpa-
rameter that modulates the relative significance of the action embedding loss in contrast to the
Q-learning loss. This balance is crucial for harmonizing the simultaneous learning of action em-
beddings and Q-values. Initially, setting 1. to 0.01 provides the Q-network with a priority focus
on mastering Q-values. As the training progresses, we gradually elevate A, in increments of 0.001
until it reaches 1, shifting the focus towards refining action embeddings. This strategy ensures that
the model captures the immediate and long-term influences of actions on the system state.

We employ a lightweight fully-connected neural network with few hidden layers to predict the
action embedding and Q-value. The activation function used is the tanh [11] function. This choice
is motivated by its gradual and continuous slope and the potential for capturing the relationship
between the input experience tuple and the output Q-values. In addition, it reduces the vanishing
gradient problem. We perform L2 regularization to enhance the generalization and engage the
Adam [21] optimizer to lower memory requirements and improve convergence during training,.

We propagate the current state through the Q-network to generate a corresponding action em-
bedding upon model convergence. Subsequently, we compute the cosine similarity between this
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Fig. 10. An abstraction depicting the training of 3QUTM on a 3D-stacked processor-memory system.

resulting action embedding and all stored action embeddings in the corresponding action embed-
ding matrix. We then choose the action (i.e., the DVFS setting and LPM operation) correspond-
ing to the action embedding exhibiting the highest cosine similarity for thermal scheduling. The
computation of cosine similarity serves as a proxy for traditional Q-value calculations. This proxy
emerges as a robust mechanism for action selection, particularly adept at managing the challenges
presented by a high-dimensional action space.

However, the run-time overhead is also critical for schedulers. Executing a tanh function in-
volves computationally expensive exponentiation and a multiplication operation. Therefore, we
perform a piece-wise linear variant of tanh [35] (tanh®). tanh™ has a similar shape to tanh, but it
is computationally cheaper because it only involves simple linear operations and does not require
any expensive transcendental functions. We evaluate these two activation functions, and the tanh*
bears a 3.75% loss of accuracy for a 12.22% reduction in run-time inference time.

Understanding the interaction between cores and memory is crucial within our architecture.
Our Q-network structure inherently captures this detail despite using separate lookup tables for
each core’s and memory’s actions. Shared network layers facilitate comprehension of the nuanced
correlations between actions across cores and memory, given the process of forward-propagation
and subsequent back-propagation. Moreover, temporal learning offers the agent insight into the
repercussions of specific actions taken by cores and memory over time while revealing the under-
lying inter-dependencies. The cumulative effect of all actions is subtly underscored by the global
reward signal post-action execution, reinforcing the overall learning process. Therefore, regard-
less of the independence of action embeddings for each core and memory, our approach indirectly
incorporates these interrelationships within the learning framework.

Training algorithm. Figure 10 provides an overview of 3QUT M. We use all the benchmarks in
the PARSEC-2 suite to generate experience tuples and use them to populate the replay buffer. We
conduct training under two distinct scenarios: the first scenario engages homogeneous workloads,
where similar benchmarks concurrently deploy on the 3D-stacked system during each training
episode. The second scenario introduces heterogeneous workloads wherein different benchmarks
arrive in the system as per a Poisson distribution.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 120. Publication date: September 2023.



120:16 Y. Shen et al.

ALGORITHM 1: 3QUTM Algorithm

Configuration: T¢r, Top, Tamp» sfn ax» Coefficient of reward function ¢, ¢, ¢, ®, Discount factor y, Core size
N, Memory bank size M.

Initialization: Reply memory buffer RB to capacity |RB|, Neural network 0, Target network 0% = 0, Mini-
batch size |MB|, Exploration rate ¢% = 1, i, = 0.001, Decay rate v = 0.01, 1, = 0.01, Learning rate
ag, = 0.001, 1 = 0.9, fo = 0.999, Priority Vp = 0.001.

1t s = {si’PCo’ o S{OPCN_l, %fg o sjt;N_l, Stlf’, . SZN_l, Z}”E“k, sZ}hotL’ skret, s%mco’ . S?()IACA[—l}.
2: foreacht =1y, t;...,tp_1 do
3: /* &€ — greedy approach
4: Obtain action a;
5: Record the state transition s; — $;41
6: Calculate the reward r;41(s¢, Sr+1)
7: Add experience tuple (sz, as, re+1, St+1. Pt flag) in RB
8: if rpp1 < =50rr;41 = 3 then
9: /* Duplicate the informative experience tuples
10: Add copy of experience tuple (s, ar, rr+1, St+1, pPr» flag) into RB
11: if num((s¢, ag, re+1, Se+1, pe» flag)) € IRB|) > [MB| then
12: Sample random minibatch |MB| experience tuples from RB.
13: /* Freeze 6 parameter during J iterations
14: for each (s;, as, r+1, St+1, pt, flag) € MB do
15: Qtar = res1 + Y’Zl[‘iic{stﬂa ars1; 0"}
16: Pt =1Qtar — Q(s¢, ar; 0)|(1 - Ae-cosine(E(a;), E(ap))) + n> Update priority of the experience tuple p;
17: /* Perform gradient decent (i.e, Adam optimizer)
18: L(0) = 5(Qrar — Q(s, a;0))* + A - [1 - cosine(E(a,), E(ap))] - |Qrar — Q(sz, ar; 0]
19: 0 — 60—-aVgL(0)
20: St = St+1 > Environment transitions to next state sy41
21: 0" = 0, § initialization > Update target network every & iterations
22: &t = Emin + (€4p — €min) - exp(=v - 1) > ¢ decay
23: ar = ag x(1- ﬁzl)z/(l -BhH > Every minibatch update, learning rate update

Algorithm 1 provides a pseudo-code for implementing the training algorithm for 3QUTM. The
algorithm invokes every scheduling epoch to ensure the system continues to learn and adjust
according to the changing states and rewards. During the execution of 3QUTM, we initialize the
Q-network 6 with random weights. In the first training epoch, we obtain the initial state from the
profiling module. We set ¢ to 1, indicating that the agents take a uniform random approach over the
V /F levels and varying LPM memory banks. We also observe s;,; and assess the immediate reward
r(s¢, St+1), as shown in Lines 4-6. Afterward, we collect the experience tuple (s;, as, ry+1, S¢+1) and
store it in the experience replay buffer RB. We duplicate these experience tuples in the replay buffer
to emphasize their significance if the reward r > 3 indicates the high-performance potential or
r < =5 indicates an increased likelihood of the thermal crisis. When the size of the experience
tuples exceeds the minibatch size |[MB|, we uniformly and randomly select |MB| experience tuples
from RM to train the DQN model.

To predict the Q-value in DQN, we use both the Q-network 6 and a separate target network 6*.
The reason for this is that the target Q-value Q;,, is calculated recursively based on the Bellman
equation, which depends on the current weights of the Q-network 6. Since these weights update
during training, the target Q-value also changes, leading to a moving target problem that can
hinder learning. To address this issue, we use the target network 0%, an identical copy of the Q-
network but with fixed weights for a specified number of iterations § (e.g., § = 1000), as shown in
Line 21. The target network weights periodically update after a fixed number of training iterations
by copying the parameters from the Q-network.
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Fig. 11. The learning rates with and without duplicate experience tuples on 3D-stacked systems.

We utilize the Adam [21] optimizer to minimize the difference between the predicted Q(s, a; 0)
and target Q,,, and iterate the process of updating the weights of the Q-network 6 until it reaches
convergence, as shown in Lines 17-19. The balance between exploration and exploitation is crucial
to achieving the optimal cumulative reward in the training process. We achieve this balance by
updating the exploration rate ¢ over time, as shown in Line 22. The learning rate « is updated for
every minibatch in order to improve the efficiency of experience tuple processing, especially in
the case of dynamic changes in the environment. This approach leads to faster training and better
adaptation capabilities, as detailed in Line 23. We attain a high level of accuracy in predicting the
Q-value after training predefined D iterations by utilizing a neural network architecture consisting
of three hidden layers, each containing 64, 32, and 16 neurons, respectively.

Prioritized Experience Replay Buffer. We propose a priority scheme [41] for experience
tuples to improve the sample efficiency of neural network agents. That is, experience tuples with a
high priority, indicating that they are representative, have priority when selecting for training. We
leverage the absolute value of the temporal difference (TD) error to quantify the priority, which is
the difference between the predicted Q-value Q(s, a;; 0) and the target Q-value Q;,, for a given
state-action pair (s;, a;). The priority function for an experience tuple i is formulated as follows:

Pi = 1Qtar — Q(ss, a5 0)[(1 = Ae - cosine(E(a;), E(ap)) + 1 9)

where 7 is a small positive constant (i.e., 7 = 0.001) to ensure no experience tuple has zero priority.
To implement a prioritized experience replay buffer, we use a deque data structure, where each
experience tuple consists of state s;, action a;, reward r;;;, a boolean variable called the done
flag, and a priority value. The done flag indicates whether the current state is a terminal state.
Figure 11 displays the advantages associated with duplicative experience tuples. We utilized a t-
test to compare average rewards with the p-values of our tests (0.0000006 and 0.000001) in Figure 11,
providing evidence that 3QUTM-Dup offers increased stability and facilitates faster convergence.
Fine-Tuning for Increased Adaptability. When reconfiguring the floorplan of 3D-stacked
systems, such as altering the number of cores in a core layer from 4 to 16, the state space undergoes
a change. We adapt the network architecture by adding neurons to the input layer and incorporat-
ing an additional hidden layer to accommodate this larger input size (i.e., from an input dimension
of 223 to 451). However, it is not required to train the Q-network 6 from scratch. We leverage pre-
existing weights from counterparts of the 4-core system. Specifically, the state space dimension
increases from 143 to 179. We retain the weights for the original 143 neurons while the weights
of the additional 36 neurons initialize randomly. We construct a four-layer hidden network with
a neuron configuration of 128, 64, 32, and 16 per layer. The weights of the newly introduced first
layer, consisting of 128 neurons, are initialized randomly. However, the weights of the subsequent
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Table 3. Core and Memory Parameters for the Simulated 3D-stacked System

Core Parameters

Number of Cores 4/16, 1 layer
Core Model x86, 4.0 GHz, 22 nm, out-of-order
L11/D cache 32/32 KB, 4/4-way,64 B-block
L2 cache private,512 KB, 8-way, 64 B-block
L3 cache 512 KB, 16-way, 64 B-block

Memory Parameters
3D-stacked Memory 8 GB, 8 layers, 16 channels, 128 banks
Memory Bandwidth 25.6 GB/s

layers directly transfer from the corresponding layers of the pre-trained 4-core system. We load
the weights for the memory action embedding matrix and replicate the core action matrix four
times to populate the expanded core action embedding matrix. The new Q-network 6 can adapt to
the new state and action space more efficiently and achieve faster convergence. This strategy of
reusing the Q-network 6 for a transformed state and action space is especially advantageous as it
bypasses the need for extensive training sessions and accelerates the adaptation of the Q-network
0 to the new state and action space.

5 EVALUATION

We validate our work using interval thermal simulations via the state-of-the-art CoMeT simula-
tor [46] with LPM extensions. CoMeT integrates Sniper [3], McPat [24] with 22nm FinFET and
CACTI [4], and HotSpot [17] into one toolchain for simulating thermals of 3D-stacked systems.
Table 3 lists the parameters for the simulated system. For the 4-core 3D-stacked system, the area
of each core is 11.65 mm?, while for the 16-core 3D-stacked system, the area of each core is 2.89 mm?.
Additionally, the area of each memory bank is 2.89 mm?. We use multi-threaded multi-program
workloads from PARSEC 2.1 [2] (with sim-medium inputs) and SPLASH-2 [49] (with large inputs) as
the workload. We use all the benchmarks in the benchmark suites that successfully execute to com-
pletion using CoMeT. We set the Tc,iscals Toperates and Tamp to 75 °C, 70 °C, and 45 °C, respectively.

Baselines: We compare our work with state-of-art thermal management on 3D-stacked ar-
chitecture. CoreMemDTM is a recent thermal management technique for 2.5D processor-memory
systems that synergistically employs DVFS and LPM. We port CoreMemDTM [45] to 3D-stacked
processor-memory systems by implementing it in CoMeT. CoreMemDTM is the state-of-the-art
technique closest to 3QUTM in principle. In addition, we port the advanced thermal management
technique for cores TPAVA [25] and 3D-stacked memory fastcool [47] to 3D-stacked processor-
memory systems. Furthermore, we consider FBTM [43] and DCA-DVFS [19], methods originally
devised for jointly managing temperature in 3D-stacked caches and cores, as comparative baselines.
We tailored the fuzzy logic rules of FBTM to govern the 3D-stacked processor-memory systems.
Similarly, we adopted a dynamic programming in DCA-DVFS to work with 3D-stacked processor-
memory systems. The assessment criteria mainly focus on performance, energy consumption, and
peak temperature.

5.1 Performance and Energy Improvement on a 4-core 3D-Stacked System

We evaluated our 3QUTM against five state-of-the-art thermal management policies. 3QUTM trains
using the PARSEC benchmarks and then work as a scheduler to perform core DVFS and LPM
for the memory bank in tandem in each interval epoch (i.e., 1ms) across PARSEC and SPLASH-2
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Fig. 12. Comparison with state-of-the-art techniques across the PARSEC and SPLASH-2 benchmarks suite
on a 4-core 3D-stacked processor-memory system.

benchmarks. The first eight benchmarks are from PARSEC with simmedium input. The rest are
from SPLASH-2 with large input.

The speedup of 3QUTM over CoreMemDTM for high compute intensity benchmarks such as
blacksholes, streamcluster, and x264 is prominently evident in Figure 12(a). The 3QUTM over Core-
MemDTM achieves the highest speedup of 16.96% with blacksholes. This speedup is because black-
sholes is a compute-intensive benchmark that 3QUTM can learn the performance metric, and
its execution time is very short, implying less opportunity for it to overheat. As a result, the
chance of triggering the high penalty LPM bank is correspondingly less. The average speedup
over CoreMemDTM is 11.45%. The average speedup over fastcool, TPAVA, FBTM, and DCA-DVFS
is 17.89%, 12.33%, 16.36%, and 12.45%, respectively. Our well-trained model inferred the unified
thermal management policy on SPLASH-2 benchmarks. In Figure 12(a), 3QUTM achieved a maxi-
mum speedup of 13.69% against CoreMemDTM with an average speedup of 8.83%. Moreover, the
average speedup over fastcool, TPAVA, FBTM, and DCA-DVFS is 15.32%, 19.35%, 15.13% and 11.67%,
respectively.

Figure 12(b) and (c) exhibit core and memory energy consumption, respectively. 3QUTM ob-
tained an average energy saving of 35.92% compared to CoreMemDTM on the PARSEC benchmarks.
We observe the highest energy saving of 42.87% (core:15.12%, memory:36.33%) on the blackscholes,
attributed to 3QUTM learning the memory access pattern and reducing the dynamic and leak-
age power with LPM and quicker execution time. The barnes and cholesky benchmarks did not
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Fig. 13. Comparison with state-of-the-art techniques across the PARSEC and SPLASH-2 benchmarks suite
on a 16-core 3D-stacked processor-memory system.

meet expectations with energy savings of —0.03% and —0.01%, respectively. This observation is
because 3QUTM prioritized performance over energy consumption due to less heat generation.
It continuously infers the action that leads to high throughput, making the core run at the full
frequency. With sufficient thermal headroom, 3QUTM made fewer memory banks switch to LPM,
thereby trading off performance over energy consumption. 3QUTM achieved an average of energy
savings of 13.22% (CoreMemDTM), 16.63% (fastcool), 20.76% (TPAVA), 17.39% (FBTM), and 17.61%
(DCA-DVFS).

5.2 Performance and Energy Improvement on a 16-core 3D-Stacked System

We evaluated 3QUTM on a 16-core system, observing modifications in the state space which neces-
sitated fine-tuning of the Q-network. To accomplish this, we utilized a portion of the weights of the
Q-network (as presented in Section 5.1) to retrain the model. Notably, the fine-tuned Q-network
demonstrated rapid convergence, with results, as shown in Figure 13(a), indicating a consider-
able speedup over the five other thermal management policies. The 3QUTM delivered the highest
speedup relative to CoreMemDTM on the fluidanimate benchmark, achieving a speedup of 18.50%,
with an average speedup of 11.07%. 3QUTM performs exceptionally well on high compute inten-
sity benchmarks. Compared with fastcool, the 3QUTM achieved a speedup of 20.05%. We credit this
to 3QTM’s ability to mitigate thermal crises by transitioning the memory bank into LPM without
necessitating the deactivation of the memory bank or offloading of data from 3D-stacked mem-
ory to 2D DRAM. Furthermore, 3QUTM surpassed TPAVA in performance terms by an average of
18.71%. We attribute this advantage to 3QUTM’s strategic use of LPM for memory banks, which
provides thermal headroom for performance enhancement without the frequent triggering of ther-
mal throttling. On the SPLASH-2 benchmark suite, 3QUTM excelled over CoreMemDTM by 10.39%
in performance on average. More broadly, 3QUTM outstripped fastcool, TPAVA, FBTM, and DCA-
DVFS by average margins of 19.72%, 12.54%, 16.90%, and 12.49%, respectively. Notably, as shown
in Figure 13(b), 3QUTM achieved energy savings across all benchmarks.
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Fig. 14. Comparison with state-of-the-art techniques across 7 DNN popular workloads in single-program
mode on a 16-core processor-memory system.
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Fig. 15. Comparison with state-of-the-art techniques across 7 DNN popular workloads executing in multi-
program mode on a 16-core processor-memory system.

5.3 Performance and Energy Consumption for DNN Workloads in Inference on a
3D-stacked Processor-memory System

Our evaluation consisted of two experimental groups. The first group entailed homogeneous work-
loads, specifically threads from a singular DNN workload [38] within the 3D-stacked system. As
Figure 14 elucidates, 3QUTM delivers the highest speedup, especially notable in high compute in-
tensity workloads like ResNet34. 3QUTM achieved an impressive 18.97% and 16.91% speedup over
FBTM and DCA-DVFS, respectively, in terms of performance. 3QUTM demonstrated 10.85% and
12.55% energy savings compared to FBTM and DCA-DVFS, respectively. The second experiment
group dealt with heterogeneous workloads. We developed 21 DNN workloads, each of which oc-
curred three times. DNN workloads were introduced in 3D-stacked systems at varying rates follow-
ing a Poisson distribution. 3QUTM consistently outperforms the other five policies under all load
scenarios. The speedup gains with 3QUTM are most pronounced in medium-loaded systems (with
an arrival rate per 10s of 8 DNN workloads). Under these conditions, 3QUTM achieved perfor-
mance improvements of up to 11.95%, 13.27%, 18.16%, 18.51%, and 16.72% over CoreMemDTM, fast-
cool, TPAVA, FBTM, and DCA-DVFS, respectively. Energy savings with 3QUTM against the other
five policies are also noteworthy, as depicted in Figure 15. The uniqueness of 3QUTM lies in its
ability to learn the intricate interaction between memory and core actions, understanding their
intertwined effects on thermal management. This feature distinguishes 3QUTM from approaches
like FBTM, which is application-agnostic and cannot account for this interaction, and DCA-DVFS,
a dynamic programming approach, which, while effective in thermal control, does not exhibit the
same learning capacity. The success of 3QUTM underlines the efficacy of machine learning in effi-
ciently managing thermal conditions and achieving superior performance and energy efficiency.
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Fig. 16. Peak temperature comparison between different version of 3D-stacked processor-memory system.

Table 4. Overheads for Varisized Scheduling Epoch on Varisized Version
of 3D Processor-memory Systems

1ms 2ms 5ms 10 ms
4-core | 16-core | 4-core | 16-core | 4-core | 16-core | 4-core | 16-core
Overhead 4.52% 6.91% 3.96% 511% 1.59% 317% 0.79% 1.72%
Theak 75.23°C | 75.09°C | 75.51°C | 75.36°C | 76.71°C | 76.16°C | 77.33°C | 76.96°C

Epoch size

5.4 Peak Temperature Analysis

Figure 16 illustrates the comparison of peak temperature between 3QUTM and the baselines.
Figure 16(a) shows that 3QUTM controls the temperature below the thermal threshold, except
for the ocean.ncont benchmark, where the peak temperature of 3QUTM slightly exceeds the ther-
mal threshold at 75.23 °C. This exception is because 3QUTM learns unified thermal management at
intervals, and it may encounter difficulty in cases where abnormal spikes in power occur within
the decision epoch. Additionally, 3QUTM experiences high fluctuations in power consumption
throughout its execution. Similarly, Figure 16(b) demonstrates the performance of 3QUTM in terms
of temperature control on a 16-core 3D-stacked system. The fuzzy control in FBTM is less effective
in managing complex thermal environments due to its lack of ability to learn from the complex in-
teraction between memory and core actions. Similarly, DCA-DVFS, a design-time approach, faces
limitations in dynamically managing the thermal environment in an open system.

5.5 Sensitivity Analysis and Overhead Assessment of Scheduling Epoch Size

We performed a sensitivity analysis targeting the scheduling epoch size and its corresponding
run-time overhead of 3QUTM, as presented in Table 4. We translate the well-trained Q-network
from Python to C++ and compile it into binary code for execution. We ensured our experimental
setup matched the configuration, as outlined in Table 3. Our findings illustrate that increasing the
scheduling epoch size from 1 ms to 10 ms reduces the overhead for both 4-core and 16-core systems
due to infrequent invocation. However, this reduction in overhead comes at the cost of less control
over the peak temperature. This pattern underscores the trade-off between decision frequency
(and associated overhead) and the system’s peak temperature control. For example, employing a
decision epoch of 1 ms on a 4-core system results in 3QUTM incurring an overhead of 4.52% while
sustaining a peak temperature of 75.23°C. In the same conditions, but on a 16-core system, the
overhead sees a minor increase to 6.91%. This increment comes from the heightened computational
and communication demands of managing several cores. These results demonstrate that 3QUTM
can work across systems with varying core counts while balancing overhead and control.
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6 RELATED WORK

Thermal management is a vital area of research for processor-memory systems. There are several
approaches for managing the temperature of cores in the literature. These approaches encompass
DVES [10, 37] and task scheduling [8, 9, 14, 18, 20, 23, 26, 39, 40, 50]. Stijn et al. [10] proposed a
3D fine-DVFS algorithm that restricts a core’s frequency and voltage to prevent it from negatively
affecting neighboring cores. Noltsis et al. [37] used a PID controller to monitor the chip’s temper-
ature and adjust DVFES based on temperature differences. Fazal et al. [14] distributed active tasks
close to the heat sink to reduce switching activity. Additionally, several researchers have employed
innovative learning-based approaches to the thermal management problem. Martin et al. [40]
devised a network-based task migration scheduler to determine the best time and place to mi-
grate tasks for optimal performance. Arman et al. [18] developed a reinforcement learning-based
DTM policy that considers fan speed, DVFS, and task allocation to optimize performance. Despite
the notable progress made in thermal management for processors, these works did not consider
memory.

3D-stacked memory (HMC, HBM) has gained significant popularity. Consequently, thermal
management for 3D-stacked memory has become a growing area of research. Typical thermal
management methods for 3D-stacked memory include page allocation [16, 27, 32], data migra-
tion [1, 44, 47], and power regulations [29, 33]. Authors of [16, 32] proposed a memory mapping
algorithm that takes both the physical location of the memory and its temperature into account.
Lo et al. considered access patterns to map frequently accessed pages to memory banks where the
heat dissipates more quickly. Mohammad et al. [13] developed a thermal-aware bandwidth allo-
cation policy. Lokesh et al. [44, 47] migrated data of hot memory channels from 3D memory to
off-chip 2D memory and turned off those memory channels to save leakage and dynamic power.

There is limited research on the coordination of thermal management for processor cores and
memory. Chen et al. [6, 7] pointed out that synergistically controlling the voltage-frequency levels
of cores and DRAMs could achieve higher thermal efficiency than controlling cores only. Jawad
etal. [12] proposed a multi-domain power management technique to improve the energy efficiency
of mobile SoCs, but they did not jointly perform thermal management for cores and memory.
Lokesh et al. [45] attempted to integrate core DVFS and memory LPM for thermal management,
but their proposed solution, CoreMemDTM, has some limitations. CoreMemDTM employs trace
simulations to retroactively model the impact on application performance acquired under NPM
execution. They also use two different instances of HotSpot [17] for thermal modeling, which limits
their ability to model heat transfer between core and memory. Their setup limits their ability to
model the power-thermal-performance impact of LPM realistically. Therefore, a unified thermal
management solution for 3D-stacked processor-memory systems is still missing.

7 CONCLUSION

We developed extensions for the CoMeT simulator to support Low Power Mode (LPM) in 3D-
stacked processor-memory systems. This extension allows us to propose a novel thermal manage-
ment scheduler, 3QUTM, for 3D-stacked processor-memory systems. 3QUTM is a Deep Q-Network
(DQN)-based learning scheduler that intelligently performs scheduling policy at every decision
epoch. The scheduler learns the performance metric and memory access pattern for optimal ther-
mal management. To evaluate the efficacy of 3QUTM, we conducted experiments using all the
benchmarks from PARSEC and SPLASH-2. We substantiated our approach on popular DNN work-
loads, leading to an approximate performance gain of 12.37% and energy savings of around 10%.
The results indicate that 3QUTM can effectively perform thermal management, achieving a 10.15%
performance speedup and a 13.22% energy savings compared to the state-of-the-art technique
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CoreMemDTM. We also verified that 3QUTM adapts to environmental changes by fine-tuning the
Q-network. Overall, our proposed approach, 3QUTM, is a unified core and memory power regula-
tion scheduler that offers a promising solution to the challenges posed by 3D-stacked processor-
memory systems, highlighting the potential for reduced power consumption and enhanced per-
formance in 3D-stacked processor-memory systems.
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