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J DESIGNERS OF MODERN embedded systems face 
several daunting challenges since these systems typ-
ically have to meet a range of stringent, and often 
conflicting, design requirements. As many embedded 
systems target mass production and battery-based 
devices or devices that cannot use active cooling, 
they should be cheap and power efficient. At the 
same time, a great deal of these systems must, increas-
ingly, support multiple applications and standards for 
which they need to provide real-time performance. 
For example, mobile devices must support different 
standards for communication and coding of digital 
contents. Furthermore, modern embedded systems 
also need to be reliable as well as flexible such that 
they can easily be updated and extended with future 

applications and stand-
ards. The latter calls for a 
high degree of program-
mability of these systems, 
whereas performance, 
power consumption, and 
cost constraints require 
implementing substan-
tial parts of these systems 
in dedicated hardware 

blocks. As a result, modern embedded systems often 
have a heterogeneous multiprocessor system archi-
tecture. They consist of processors that range from 
fully programmable cores to fully dedicated hardware 
blocks for time-critical application tasks. Increasingly, 
the components in such systems are integrated onto 
a single chip, yielding heterogeneous multiprocessor 
system-on-chip (MPSoC) architectures [1].

To cope with the design complexity of such sys-
tems, we have witnessed the emergence of a new 
design methodology in the past 15–20 years, called 
electronic system-level (ESL) design. It aims at rais-
ing the level of abstraction of the design process to 
improve the design productivity. Key enablers to this 
end are the use of architectural MPSoC platforms to 
facilitate reuse of IP components and the concept of 
high-level system modeling and simulation [2], [3]. 
The latter allows for capturing the behavior of plat-
form components and their interactions at a high 

Editor’s note:
As embedded systems grow more complex and as new applications such 
as IoT require many design constraints, sophisticated design space explo-
ration techniques are essential in order to find the best compromise between 
different design goals and their tradeoff. This tutorial gives a structured 
 insight into the field of design space exploration for embedded systems.
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level of abstraction. As such, these high-level mod-
els minimize the modeling effort and are optimized 
for execution speed, and can therefore be applied 
during the very early design stages to perform design 
space exploration (DSE) [4]. During such DSE, a 
large variety of different design alternatives can be 
explored, such as the number and type of proces-
sors deployed in the platform architecture, the type 
of interconnection network used to connect system 
components, or the spatial binding and temporal 
binding (i.e., scheduling) of application tasks to 
processor cores. This process of early DSE is of para-
mount importance as the considered design choices 
may heavily influence the success or failure of the 
final product. However, the process of DSE also is 
highly challenging because the design space that 
needs to be explored typically is vast, especially 
during the early stages of design. For instance, the 
design space for exploring different mappings of 
application tasks to processing resources and trying 
to optimize the mapping for, e.g., performance or 
power consumption exponentially grows with the 
number of application tasks and processors, and is 
generally considered to be an NP-hard problem [5]. 
Therefore, the development of efficient and effective 
DSE methods has received significant research atten-
tion in recent years. In this article, we will provide a 
tutorial introduction to the topic of embedded sys-
tems DSE.

DSE: Basic concepts
During the DSE of embedded systems, multi-

ple optimization objectives, such as performance, 
power/energy consumption, and cost, should be 
considered simultaneously. This is called multiob-
jective DSE. Since the objectives are often in con-
flict, there cannot be a single optimal solution that 
simultaneously optimizes all objectives. Therefore, 
optimal decisions need to be taken in the presence 
of tradeoffs between design criteria.

Given a set of  m  decision variables, which are the 
degrees of freedom (e.g., MPSoC system parameters 
like the number and type of processors, applica-
tion mapping, etc.) that are explored during DSE, a 
so-called fitness function must optimize the  n  objec-
tive values. The fitness function is defined as

   f  i   :  R   m  →  R   1 .  (1)

A potential solution  x ∈  R   m    is an assignment of the  m  
decision variables. The fitness function   f  i     translates 

a point in the solution space  X  into the  i th objective 
value (where  1 ≤ i ≤ n ). For example, a particular 
fitness function   f  i    could assess the performance or 
energy efficiency of a certain solution  x  (represent-
ing a specific design instance). The combined fit-
ness function  f(x )  subsequently translates a point in 
the solution space into the objective space  Y . For-
mally, a multiobjective optimization problem (MOP) 
that tries to identify a solution  x  for the  m  decision 
variables that minimizes the  n  objective values using 
objective functions   f  i    with  1 ≤ i ≤ n 

 Minimize y = f(x ) = (  f  1   (x ) ,  f  2   (x ) , …,   f  n   (x )) 
where x = (  x  1   ,   x  2   , …,   x  m   ) ∈ X

y = (  y  1   ,   y  2   , …,   y  n   ) ∈ Y.  

In the remainder of this discussion, we assume a 
minimization procedure, but without loss of general-
ity, this minimization procedure can be converted 
into a maximization problem by multiplying the 
 fitness values   y  i    with −1.

With an optimization of a single objective, the 
comparison of solutions is trivial. A better fitness 
(i.e., objective value) means a better solution. 
With multiple objectives, however, the comparison 
becomes nontrivial. Take, for example, two different 
MPSoC designs: a high-performance MPSoC and a 
slower but much cheaper MPSoC. In case there is 
no preference defined with respect to the objectives 
and there are also no restrictions for the objectives, 
one cannot say if the high-performance MPSoC or 
the low-cost MPSoC is better. A MOP can have even 
more different objectives, like the performance, 
energy consumption, cost, and reliability of an 
MPSoC-based embedded system. To compare differ-
ent solutions in the case of multiple objectives, the 
Pareto dominance relation is typically used. Here, a 
solution   x  1   ∈ X  is said to dominate solution   x  2   ∈ X  if 
and only if   x  1   <  x  2   

  x  1   <  x  2   ⇔  ∀ i ∈ { 1, 2, …, n} :  f  i   (  x  1   )  ≤   f  i   (  x  2   ) ∧ 
 ∃ i ∈ { 1, 2, …, n} :  f  i   (  x  1   ) <  f  i   (  x  2   ).  

Hence, a solution   x  1    dominates   x  2    if its objec-
tive values are superior to the objective values of   x  2   . 
For all of the objectives,   x  1    must not have a worse 
objective value than solution   x  2   . Additionally, there 
must be at least one objective in which solution   x  1    is 
 better (otherwise they are equal).

An example of the dominance relation is given 
in Figure 1, which illustrates a 2-D MOP. For solution  
H , the dominance relations are shown. Solution  H  is 
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dominated by solutions  B ,  C , and  D  as all of them 
have a lower value for both   f  1    and   f  2   . On the other 
hand, solution  H  is superior to solutions  M ,  N , and  O . 
Finally, some of the solutions are not comparable 
to  H . These solutions are better for one objective but 
worse for the other.

The Pareto dominance relation only provides a 
partial ordering. For example, the solutions  A  to  F  of 
the example in Figure 1 cannot be ordered using the 
ordering relation. Since not all solutions  x ∈ X  can 
be ordered, the result of a MOP is not a single solu-
tion, but a front of nondominated solutions, called 
the Pareto front. A set   X  ′    is defined to be a Pareto 
front of the set of solutions   X   as follows:

 {x ∈  X ′   | 
  
∃

 
⧸

  
  x  i   ∈  X:x  i    < x} 

The Pareto front of Figure 1 contains six solutions:  
A − F . Each of these solutions does not dominate the 
other. An improvement on objective   f  1    is matched 
by the worse value for   f  2   . Generally, it is up to the 
designer to decide which of the solutions provides 
the best tradeoff.

The search for Pareto optimal design points 
with respect to multiple design criteria entails two 
distinct elements [4]: 1) the evaluation of a single 
design point using the fitness function(s) regarding 
all the objectives in question like system perfor-
mance, power/energy consumption, and so on; and 
2) the search strategy for covering the design space 
during the DSE process. Figure 2 shows a simple 
taxonomy for DSE approaches, recognizing the two 
DSE elements as well as different properties of these 
DSE elements. As will be discussed in more detail 
later on, there usually exists a tradeoff between the 
accuracy and speed with which the fitness of single 
design points can be evaluated. In addition to this, 
the various fitness evaluation techniques also differ 

with respect to the implementation effort and the 
capability of evaluating the fitness for a wide range 
of systems, involving issues such as modularity, reus-
ability of models etc.

Regarding the search strategy element of DSE, the 
confidence characteristic denotes how certain we are 
that the design points returned by the DSE include 
the true optimum, or alternatively, how close they 
are to the true optimum. In many search algorithms, 
confidence is obtained by avoiding local optima and 
ensuring sufficient design space coverage. Clearly, 
an exhaustive search in which every single point in 
the design space is evaluated and compared would 
provide a 100% confidence. However, such exhaus-
tive search is usually prohibitive due to the sheer size 
of the design space. In those cases, heuristic search 
techniques can be used to search the design space 
for optimal solutions using only a finite number of 
design point evaluations. The convergence property 
denotes the speed of evaluating a range of design 
points, and, more specifically, the rate at which the 
DSE search algorithm manages to converge to an opti-
mum. Finally, analogous with the effort property in 
the case of evaluating a single design point, the effort 
for searching the design space refers to the implemen-
tation of the search method and setting its parame-
ters, as well as setting up, running, and evaluating 
the results of the exploration experiment. In the two 
subsequent sections, we will provide a more detailed 
overview of the different techniques, and their proper-
ties, applied in each of the two elements of DSE.

Evaluation of a single design point
Methods for evaluating the fitness of a single 

design point in the design space roughly fall into 
one of three categories: 1) measurements on a 
(prototype) implementation; 2) simulation-based 

Figure 1. A Pareto front and an example of 
the dominance relation.

Figure 2. A taxonomy for DSE approaches 
(taken from [6]).



80 IEEE Design&Test

Tutorial

evaluations; and 3) estimations based on some kind 
of analytical model. Each of these methods has dif-
ferent properties with regard to evaluation time and 
accuracy. Evaluation of prototype implementations 
provides the highest accuracy, but long develop-
ment times prohibit evaluation of many design 
options. Analytical estimations are considered the 
fastest, but accuracy is limited since they are typi-
cally unable to sufficiently capture particular intri-
cate system behavior. Simulation-based evaluation 
fills up the range in between these two extremes: 
both highly accurate (but slower) and fast (but less 
accurate) simulation techniques are available. This 
tradeoff between accuracy and speed is very impor-
tant, since successful DSE depends both on the abil-
ity to evaluate a single design point as well as being 
able to efficiently search the entire design space. 
As current DSE efforts in the domain of embedded 
systems design typically use simulation or analytical 
models to evaluate single design points, the remain-
der of this section will focus on these methods.

Simulative fitness evaluation
Simulating system components can, as was 

already mentioned above, be performed at differ-
ent levels of abstraction. The higher the abstraction 
level, the less intricately the system components are 
modeled and, therefore, the higher the simulation 
speed is. Evidently, such efficiency improvements 
come at the cost of a less accurate fitness estimation 
because of the fact that particular system details are 
not taken into account. This simulation speed-accu-
racy tradeoff is shown in Figure 3. This figure depicts 

several widely used simulation abstraction levels, 
and it does so for both the simulation of processor 
components as well as the simulation of communi-
cation between system components.

For both the simulation of processor and commu-
nication components, the lowest level of abstraction 
for simulating a digital system is the register-transfer 
level (RTL). At this level of abstraction, the flow of 
digital signals between registers and combinational 
logic is explicitly simulated. This yields a highly 
accurate but also very slow simulation. As a result, 
the use of RTL simulation in the process of DSE is 
confined to only relatively small and narrow design 
spaces focusing on, for example, the design of one 
specific system component. Performing system-level 
DSE is infeasible using RTL simulation.

Raising the level of abstraction, one can simulate 
system components at the cycle accurate level. This 
means that the system components are simulated 
on a cycle-by-cycle basis and, as such, that the sim-
ulated system state conforms to the cycle-by-cycle 
behavior of the target design. This results in more 
efficient simulations as compared to RTL simulation 
at the cost of a somewhat reduced accuracy since 
the system state between cycles is not accounted for. 
Cycle-accurate simulation is a popular technique for 
simulating microprocessors: so-called cycle-accu-
rate instruction set simulation (ISS). These ISS sim-
ulators try to capture the cycle-by-cycle behavior of 
the microarchitectural components of a micropro-
cessor, such as the pipeline logic, out-of-order pro-
cessing, branch predictors, caches, and so on. To 
account for power consumption behavior, ISS sim-
ulators often use activity-based power models that 
accumulate the power consumption of the relevant 
microarchitecture components based on their activ-
ity ratio. A good example is the widely used cycle-ac-
curate Gem5 ISS [7], which can be extended to also 
support area and power predictions using activi-
ty-based modeling frameworks such CACTI [8] and 
McPAT [9]. Although these ISS simulators can be 
deployed to perform microarchitectural DSE for pro-
cessor components, they are typically still too slow 
for performing full system-scale DSE.

In cycle-accurate ISS simulators, the fetching, 
decoding, and execution of instructions are explic-
itly simulated. To further optimize the speed of such 
simulators, one could translate the instructions from 
the target binary to be simulated to an equivalent 
sequence of instructions (using static or dynamic 

Figure 3. Different levels of abstraction for 
(a)  simulating processors and (b) simulating 
 communication.
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just-in-time translation) that can be executed on 
the simulation host computer. This so-called binary 
translation technique, which is, e.g., deployed in the 
widely used QEMU simulator [10], aims at reducing 
the overhead of explicitly simulating the instruction 
fetch and decode stages. The translated instruction 
sequences are often instrumented with additional 
code to keep track of the extra-functional behavior, 
such as timing and power consumption, of the origi-
nal code as it would have been executed on the tar-
get processor.

For simulating communication between system 
components, one could use so-called bus-cycle 
accurate simulation [11] to speed up the simula-
tion process. In this type of simulation, all signals of 
the communication bus are modeled explicitly in 
a cycle accurate fashion, but this accuracy is only 
maintained for the signals on the communication 
bus and not for the logic around it. The surround-
ing components can thus use more abstract timing 
models.

Raising the abstraction level even further for 
processor simulation yields so-called host-compiled 
simulation [12]. In this technique, the source code of 
the target program is directly compiled into a binary 
program that can run on the host computer. In addi-
tion, and similar to the binary translation technique, 
the source code can be instrumented with a timing 
and power consumption model based on the target 
architecture. Since these simulations are efficient as 
they directly execute target programs on the host 
computer, they are very suitable for system-level 
DSE. However, at this level of abstraction, it is dif-
ficult to accurately capture intricate microarchitec-
tural behavior, like pipeline and cacheing behavior. 
Another drawback of this simulation approach is 
that one needs to have access to the source code of 
a target program.

For simulating communication, transaction-level 
modeling (TLM) [11] provides the highest level of 
abstraction. In TLM, communication details at the 
level of signals and protocols are abstracted away 
by means of encapsulation into entire transactions 
between system components. At this level, the 
emphasis is more on the functionality of the data 
transfers, i.e., what data are transferred to and from 
what locations, rather than on their actual imple-
mentation. Evidently, the extra-functional behavior 
in TLM simulation models is also captured at the 
level of entire transactions.

The above processor simulation techniques are 
all execution-driven simulation methods as they 
are directly driven by the execution of a program. 
Alternatively, there are also trace-driven simulation 
techniques in which the simulation is driven by 
event traces that have been collected through the 
execution of a program (e.g., [13] and [14]). These 
trace events can focus on the evaluation of specific 
system elements such as memory address traces for 
cache simulation. However, an event trace may also 
consist of the full sequence of executed instructions, 
thereby allowing full, trace-driven microprocessor 
simulation for the purpose of performance and/or 
power estimation. To optimize for simulation speed, 
the trace events may also represent computations 
(and, if needed, communication) at a higher level 
of abstraction than the level of machine instructions, 
like at the level of the execution of basic blocks or 
even entire functions. Another advantage of trace-
driven simulation is the fact that the event traces 
often only need to be generated once (i.e., executing 
the program to collect the traces once), after which 
they can be reused in the DSE process. Drawbacks 
of trace-driven simulation evidently are the need 
for storing the event traces which can become 
extremely large in size, and the fact that trace-driven 
simulation does not allow for simulating all intricate 
system behavior, such as the effects of speculative 
instruction execution in microprocessors.

An example of a high-level, trace-driven MPSoC 
simulation environment is the Sesame system-level 
modeling and simulation framework [15]. Sesame 
is based on the Y-chart methodology [16], and 
accordingly it recognizes separate application and 
architecture models. The application models are 
explicitly mapped onto the architecture models by 
means of trace-driven simulation. The workload 
of an application is captured by instrumenting the 
application model, which is a parallel specification 
of the application, with annotations that describe 
the application’s computational and communica-
tion actions at a coarse-grained level (typically at the 
level of the execution of entire functions). By exe-
cuting this instrumented application model, these 
annotations cause the generation of traces of appli-
cation events that subsequently drive the underlying 
architecture model. This architecture model, cap-
turing the system resources and their constraints, 
then simulates the consequences of the consumed 
computation and communication events in terms 
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of extra-functional system behavior (performance, 
power consumption, etc.). Figure 4 depicts Sesame’s 
layered organization, illustrating the mapping of 
two multimedia applications (an MP3 encoder and 
video decoder) onto a bus-based MPSoC platform. 
A special mapping layer in Sesame provides the 
scheduling of application events in the case multi-
ple application processes are mapped onto a single 
processing resource.

Orthogonal to most of the (processor) simula-
tion methods described above, there are additional 
techniques to further improve the simulation speed 
[17]. In sampled simulation, for example, the sim-
ulation does not cover the execution of an entire 
program but only simulates relatively small samples 
of the program’s execution. Here, the challenge is 
to select the samples in such a manner that they 
sufficiently represent the behavior as if the entire 
program was simulated. Another technique for 
speeding up simulation is statistical simulation. 
Rather than using real (benchmark) programs for 
simulation, it uses a statistical program profile. This 
profile captures the distributions of important pro-
gram characteristics, and is used for generating a 
synthetic instruction trace that drives a simple trace-
driven simulator. As the synthetic trace is randomly 
generated from a statistical profile, this type of simu-
lations can converge to a set of performance predic-
tions fairly quickly.

Analytical fitness evaluation
In comparison to simulation, analytical mod-

els allow for much more efficient prediction of the 
extra-functional system behavior at the expense of 
a reduced accuracy. This makes analytical models 
very suitable for exploring large design spaces to 
rapidly identify regions of interest that can be later 
explored in more detail using simulation. Another 
advantage of analytical models is that they can pro-
vide direct insight into the relationship between 
model parameters (representing design choices) 
and the predicted extra-functional behavior. For sim-
ulative methods, such understanding would require 
a large number of simulations.

Analytical models can roughly be divided into 
three classes [17]: 1) mechanistic (or whitebox) 
models; 2) empirical (or blackbox) models; and 
3) a hybrid combination of mechanistic and empir-
ical modeling. Mechanistic models are based on 
first principles, which implies that they are built in 
a bottom-up fashion starting from a basic under-
standing of the mechanics of the modeled system. 
For example, in a mechanistic microprocessor per-
formance model, penalties due to cache misses, 
branch mispredictions, the execution of instruc-
tions with different latencies, etc., are explicitly 
captured in the model.

In empirical models, statistical inference and 
machine learning techniques, like regression models 
or neural networks, are used to automatically synthe-
size a model through the process of learning from train-
ing data. For example, using a set of microarchitectural 
parameters such as pipeline depth, issue width, caches 
sizes, etc., one could train a model that predicts the 
Instructions Per Cycle (IPC) or Cycles Per Instruction 
(CPI) of a microprocessor. Inferring a model by means 
of automatic training typically is easier than develop-
ing a mechanistic model because it does not require 
intimate understanding of the mechanics of the mod-
eled system. Evidently, the latter is also an immediate 
drawback as empirical models also tend to provide 
less insight than mechanistic models.

In hybrid mechanistic-empirical modeling, 
which is sometimes referred to as greybox mode-
ling, extra-functional system aspects are captured 
using a formula that has been derived from insights 
in the underlying system. However, this formula 
includes a number of unknown parameters, which 
are then inferred through fitting (e.g., using regres-
sion), similarly to empirical modeling. Such hybrid 

Figure 4. The Sesame system-level MPSoC 
simulation infrastructure.
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mechanistic-empirical modeling is motivated by the 
fact that it provides insight (like mechanistic mod-
eling) while easing the construction of the model 
(like empirical modeling).

Searching the design space
As explained before, searching a design space is 

a multiobjective optimization process. This process 
will evidently benefit from a good tradeoff between 
speed, accuracy, and effort of the method for evalu-
ating the fitness of a single design point, as discussed 
in the previous section. But, even if this tradeoff is 
ideal, we still have to make sure that each evaluation 
of a design point contributes as much as possible to 
an effective and efficient search of the design space. 
A crucial component toward this goal is the search 
algorithm that navigates the design space toward 
areas of interest by proposing which design points 
to evaluate next. Regardless of the specific type of 
search method that is used for such a design space 
traversal, its success depends on three major con-
cerns, as was shown in Figure 2: confidence, conver-
gence, and effort. These concerns typically cannot 
be considered in isolation, as they are highly interde-
pendent, contradictory, and sometimes overlapping. 
The state of the art in DSE can be summarized as 
finding a good tradeoff between these concerns.

DSE search algorithms can be divided into exact 
and heuristic methods. In exact DSE methods, like 
those implemented using integer linear program-
ming (ILP) solutions (e.g., [18] and [19]) or branch 
& bound algorithms (e.g., [20]), the optimum is guar-
anteed to be found. As such methods generally are 
compute intensive, they typically use design space 
pruning (i.e., discarding unsuitable design points) 
to optimize the efficiency of the search, thereby 
allowing to handle larger design spaces. However, 
for realistic design problems with design spaces 
that are vast, these methods may still be less suited. 
Alternatively, in heuristic methods, metaheuristics 
are used to find a design point in the known design 
space that meets the design requirements as best 
as possible. To this end, these methods search the 
design space for optimal solutions using only a finite 
number of design point evaluations, and can thus 
handle larger design spaces. However, there is no 
guarantee that the global optimum will be found 
using metaheuristics, and therefore the result can be 
a local optimum within the design space. Examples 
of metaheuristics are hill climbing, tabu search, 

simulated annealing, ant colony optimization, parti-
cle swarm optimization, and genetic algorithms. In 
this tutorial, we will focus on methods to navigate 
the design space that are based on genetic algo-
rithms (GA). GA-based DSE has been widely stud-
ied in the domain of system-level embedded design 
(e.g., [21] and [22]) and has been demonstrated to 
yield good results. Moreover, GAs can be used in 
their basic (domain-independent) form or, as will 
also be explained later on, with custom extensions 
that incorporate domain-dependent knowledge in 
order to improve search performance even further.

GA-based DSE
GAs operate by searching through the solution 

space (spanned by the design variables/decisions 
being explored) where each possible solution 
is encoded as a string-like representation, often 
referred to as the chromosome [23]. A (randomly 
initialized) population of these chromosomes is then 
iteratively modified by performing a fixed sequence 
of actions that are inspired by their counterparts 
from biology: fitness evaluation and selection, cross-
over, and mutation. A fundamental design choice 
of a GA is the genetic representation of the solution 
space, because each of the crossover and mutation 
steps depends on it. To illustrate how such a genetic 
representation could look like, let us use a widely 
studied DSE problem in the domain of system-level 
embedded system design as an example: optimizing 
the mapping of a (set of) concurrent application(s) 
onto an underlying (heterogeneous) MPSoC plat-
form architecture [5]. As a convenient mapping 
description for an application with  n  tasks, we use a 
vector of size  n  with processor identifiers   p  i   , where   p  i    
indicates the mapping target of task  i 

 [  p  0   , …,  p  i   , …,  p  n−1   ]. 

This commonly used description is very suitable to 
serve as the chromosome representation for a GA. A 
valid mapping specification is a feasible partition-
ing of all  n  tasks. With feasible, we mean that tasks 
are mapped onto processing elements that can exe-
cute those tasks (i.e., there are no functional restric-
tions of the processing element in question, like an 
ASIC component that only allows the execution 
of one particular piece of functionality), and that 
communicating tasks are mapped onto processing 
elements that can actually communicate with each 
other (i.e., there are no topological communication 



84 IEEE Design&Test

Tutorial

 restrictions). In case an infeasible mapping is cre-
ated by the genetic operators of a GA (crossover 
and mutation), a mechanism is required that either 
discards or repairs such a chromosome. Repairing 
a chromosome implies that it is transformed into 
a valid chromosome (mapping) that is as close 
as possible to the original, invalid one. Moreover, 
note that task partitions specifying a mapping may 
also be empty [particular processor(s) not in use] 
or contain all  n  tasks (a single processor system). 
A processor that is not assigned any tasks (having 
an empty task partition) can be considered idle or 
nonexistent.

In Figure 5a, the different steps of a GA are 
shown. This figure also illustrates the mapping rep-
resentation of a chromosome for an application 
with six tasks and a 4-processor bus-based MPSoC 
platform. Starting from a (randomly initialized) pop-
ulation of chromosomes, representing the different 
mapping design instances, the fitness of the mapping 
solutions in the population is first evaluated. To this 
end, any of the previously discussed analytical or 
simulative techniques can be used. Subsequently, 
based on the fitness evaluation, a selection of 
chromosomes is made that will be used to create 
offspring. This offspring is created by combining 

genetic material from two parents using a crossover 
operation, as illustrated in the top part of in Figure 5b. 
There exist various forms of this crossover opera-
tor, of which the uniform, onepoint, and two-point 
crossovers are the most popular. Next, new genetic 
material is introduced in the offspring by means of 
a mutation operator as illustrated at the bottom of 
Figure 5b. Such a mutation randomly changes one 
or more genes within chromosomes. Finally, the 
newly created offspring is used to update the popu-
lation by either replacing it or by deploying so-called 
elitism. Such elitism involves the combination of the 
new offspring with a small number of the best solu-
tions from the original population to avoid loosing 
strong solutions.

To provide a small example of the results a 
GA-based DSE could obtain, we present some 
results of a small-scale case study where the design 
space consists of an application with 11 tasks that is 
to be mapped onto a 4-processor MPSoC architec-
ture with a crossbar interconnect [6]. The mapping 
design space contains more than four million design 
points, of which 175   000 are unique ones (as the tar-
get platform is a homogeneous, symmetric MPSoC). 
Because of the relatively small design space, in this 
particular case, we were also able to perform an 

Figure 5. GA-based mapping DSE: (a) general overview of the GA steps; and 
(b)  crossover and mutation operators.
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exhaustive search, allowing us to evaluate the qual-
ity of the GA-based search results. To account for 
the stochastic behavior of GAs, all results are aver-
ages over 300 GA runs. The fitness of mapping solu-
tions has been evaluated using the Sesame MPSoC 
simulation framework [15] (see also the Simulative 
fitness evaluation section). Figure 6 shows the 
results of the GA-based DSE with different popula-
tion sizes (10, 15, 40, or 80 chromosomes), a con-
stant mutation rate (0.1) and crossover probability 
(0.9), and a uniform crossover in a so-called prob-
ability-quality (P-Q) plot. Regarding the top part of 
this plot, the horizontal axis (top  x -axis) represents 
the quality of the result as a percentile toward the 
true optimum (a lower percentile indicates a result 
closer to the optimum) and the vertical axis repre-
sents the probability of achieving a result with that 
quality. The straight lines in the graph represent the 
theoretically derived probabilities of finding results 
using a simple, uniform random search. We have 
also computed the 80%–95% confidence intervals 
of the mean fitness value (execution time in cycles, 
in this case) of mapping solutions found by the 
GA, averaged over the 300 runs of each GA search. 
These confidence intervals, shown at the bottom 
of the graph in Figure 6, indicate how certain (as 
specified by the confidence level) we are that the 
real mean lies within the confidence interval. The 
more the confidence intervals for different exper-
iments are nonoverlapping, the more significant 
the difference of the mean behavior (which is 
clearly the case in the example of Figure 6). The 
results from this particular case study show that the 
GA-based DSE with the largest population size can 
find mapping solutions that are always very close to 
the real optimum: within the 0.1 percentile, imply-
ing that they belong to the best  175    000 / 1000 = 175  
solutions. A larger population size, however, comes 
with a higher number of fitness evaluations during 
the search and thus requires a longer search time 
(assuming the number of search iterations remains 
constant). According to Figure 6, a population size 
of 40 may therefore provide a good compromise.

Optimizing GA-based DSE
There are various methods for making the search 

process of a GA-based DSE more efficient. This 
allows the DSE process to either find the design 
candidates quicker (i.e., improve the convergence 
behavior of the DSE) or to spend the same amount 

of time to evaluate more design points. The latter 
can be used to enable the search of larger design 
spaces or to improve the chance of finding better 
design candidates (i.e., improve the confidence 
property of the DSE). One approach for optimizing 
the GA-based search is to enrich the genetic opera-
tors of the GA with domain knowledge such that they 
produce more diverse offspring or offspring with a 
higher probability of being closer to the optimum. 
For example, in [24], new GA operators have been 
proposed that optimize the search performance by 
1) reducing the redundancy present in chromo-
some representations (e.g., mapping symmetries in 
the case of homogeneous, symmetrical MPSoC plat-
forms); or 2) using a new crossover operator that is 
based on a mapping distance metric that provides a 
measure of similarity between mappings. Using this 
mapping distance information, the new crossover 
operator aims at retaining the strong chromosome 
parts of both of the parents. In [25], a new mutation 
operator has been proposed that considers the affin-
ity of tasks with respect to processors, the commu-
nication cost between tasks, and the differences of 
processor workloads to steer the mutation in such a 
way that offspring is produced with a higher proba-
bility of being (near) optimal.

Another approach for optimizing GA-based DSE 
concerns the reduction of the time taken to evaluate 
the fitness of solutions during the GA’s execution. 
As mentioned before, DSE approaches typically use 
either simulation or an analytical model to evalu-
ate the fitness of design points, where simulative 
approaches prohibit the evaluation of many design 
options due to the higher evaluation performance 

Figure 6. P-Q plot for GA-based DSE with different 
 population sizes.
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costs and analytical approaches suffer from accu-
racy issues. Therefore, in [26], a hybrid form of 
mapping DSE has been proposed that combines 
simulation with analytical estimations to prune the 
design space in terms of application mappings that 
need to be evaluated using simulation. To this end, 
the DSE technique uses an analytical model that 
estimates the expected throughput of an applica-
tion given a certain architectural configuration and 
application-to-architecture mapping. In the majority 
of the search iterations of the DSE process, this ana-
lytical throughput estimation avoids the use of simu-
lations to evaluate the design points. However, since 
the analytical estimations may in some cases be less 
accurate, the analytical estimations still need to be 
interleaved with simulative evaluations in order to 
ensure that the DSE process is steered into the right 
direction. A similar approach is taken in [27], where 
an iterative DSE methodology is proposed exploiting 
the statistical properties of the design space to infer, 
by means of an empirical analytic model, the design 
points to be analyzed with low-level simulations. 
The knowledge of a few design points is used to 
predict the expected improvement of unknown con-
figurations. Alternatively, in hierarchical DSE (e.g., 
[28], [29], and [30]), DSE is first performed using 
analytical or symbolic models to quickly find the 
interesting parts in the design space, after which sim-
ulation-based DSE is performed to more accurately 
search for the optimal design points.

Workload models: Static versus 
 dynamic

The DSE techniques discussed so far focus on the 
evaluation and exploration of MPSoC architectures 
under static, single-application workloads. Todays 
MPSoC systems, however, often require supporting 
an increasing number of applications and standards, 
where multiple applications can run simultaneously 
and concurrently contend for system resources. For 
each single application, there may also be different 
execution modes (or program phases) with different 
computational and communication requirements. 
For example, in software-defined radio appliances, a 
radio may change its behavior according to resource 
availability, such as the long-term evolution (LTE) 
standard which uses adaptive modulation and cod-
ing to dynamically adjust modulation schemes and 
transport block sizes based on channel conditions. 
Another example would be a video application that 

dynamically lowers its resolution to decrease its com-
putational demands in order to save battery life. As a 
consequence, the behavior of application workloads 
executing on the embedded system can change dra-
matically over time.

To capture the dynamism in application work-
load behavior during the design process, this section 
describes the concept of application scenarios [31] 
as well as scenario-based DSE [32], [33]. Like in the 
previous section, we will again use the example of 
application mapping exploration to illustrate the 
concepts. Application scenarios are able to describe 
the dynamism of embedded applications and the 
interaction between the different applications on 
the embedded system. An application scenario con-
sists of two parts: an inter-application scenario and 
an intra-application scenario. An inter-application 
scenario describes the interaction between multiple 
applications, i.e., which applications are concur-
rently executing at a certain moment in time. Inter-
application scenarios can be used to prevent the 
overdesign of a system. If some of the applications 
cannot run concurrently, then there is no need of 
reserving resources for the situation where these 
applications are running together. Intra-application 
scenarios, on the other hand, describe the different 
execution modes for each individual application.

The number of different application scenarios 
grows exponentially with the number of applications 
involved. So, to perform DSE with these application 
scenarios, this so-called scenario-based DSE needs to 
solve the problem that the number of possible appli-
cation scenarios is too large to exhaustively evaluate 
the fitness of design points with all of these scenarios. 
Therefore, a small but representative subset of sce-
narios must be selected for the evaluation of MPSoC 
design points. This representative subset must be used 
for comparing mappings and should lead to the same 
performance ordering as would have been produced 
when the complete set of the application scenarios 
would have been used. That is, if mapping m1 is better 
than mapping m2, the representative subset should be 
able to give a better predicted fitness to mapping m1 
than it assigns to mapping m2. However, the selection 
of such a representative subset is not trivial [34]. This 
is because the representative subset is dependent on 
the current set of mappings that are being explored. 
Depending on the set of mappings, a different subset of 
application scenarios may reflect the relative mapping 
qualities of the majority of the application scenarios.
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As a result, the representative subset cannot stat-
ically be selected. For a static selection, one would 
need to have a large fraction of the mappings that 
are going to be explored during the MPSoC DSE. 
However, since these mappings are only available 
during DSE, a dynamic selection method must be 
used. Thus, both the set of optimal mappings and the 
representative subset of scenarios need to be coex-
plored simultaneously such that the representative 
subset is able to adapt to the set of mappings that are 
currently being explored. Figure 7 shows the scenar-
io-based DSE framework. The left part of the picture 
provides a general overview of the exploration flow, 
whereas the right part illustrates the scenario-based 
DSE in more detail. As an input, the scenario-based 
DSE requires a scenario database, application mod-
els, and an MPSoC platform architecture model. The 
description of the application workload is split into 
two parts: 1) the structure and 2) the behavior. The 
structure of applications is described using appli-
cation models (as described before), whereas a 
scenario database [35] explicitly stores all the pos-
sible multiapplication workload behaviors in terms 
of application scenarios (i.e., intra-application and 
inter-application scenarios). In the scenario-based 
DSE framework, two separate components are rec-
ognized that simultaneously perform the coexplora-
tion tasks: the design explorer searches for the set 
of optimal mappings while the subset selector tries 
to select a representative subset of scenarios. To this 
end, they exchange data in an asynchronous fashion 
after every search iteration. Here, the design explorer 
sends a sample of the current mapping population 
to the subset selector, whereas the subset selector 
makes the most representative subset available for 
the fitness prediction in the design explorer.

The design explorer performs a traditional 
mapping DSE using a GA, as discussed in the pre-
vious section. As explained above, it uses a rep-
resentative subset of scenarios to evaluate the 
fitness of mapping solutions. At every iteration 
of the GA, the design explorer reads in the most 
recent representative scenario subset from the 
subset selector and submits the current popula-
tion of mapping solutions to the subset selector in 
order to allow the latter to select the appropriate 
representative subset. This subset selection is not 
trivial as there are many scenarios to pick from, 
leading to a huge number of possible scenario 
subsets. Therefore, the subset selector uses the set 
of mappings it regularly receives from the design 
explorer to train the scenario subset such that it 
is representative for the current population in the 
design explorer. As the population of the design 
explorer slowly changes over time, the representa-
tive subset will change accordingly. In [33], three 
different techniques for selecting a representative 
scenario subset are presented and evaluated: a 
GA-based scenario space search (which means 
that two GAs are running concurrently, one for the 
design explorer and one for the subset selector), 
a feature selection (FS)-based search algorithm, 
and a hybrid combination (HYB) between these 
two. The latter aims at combining the strengths 
of both the GA-based and FS-based searches. 
That is, a GA is capable of quickly exploring the 
space of potential scenario subsets, but due to its 
stochastic nature, it is susceptible to missing the 
optimal scenario subsets. This is not the case with 
the  feature selection algorithm as it more system-
atically explores the local neighborhood of a sce-
nario subset.

Figure 7. The exploration framework for scenario-based DSE.
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To give a feeling of the performance of the three 
different fitness prediction techniques, Figure 8 
shows the results of a scenario-based DSE experi-
ment in which the three techniques are compared 
for three different scenario subset sizes: 1%, 4%, and 
8% of the total number of application scenarios. In 
this experiment, the mapping of ten applications 
with a total of 58 tasks and 75 communication chan-
nels is explored. The multiapplication workload 
consists of 4607 different application scenarios in 
total. The target platform is a heterogeneous MPSoC 
with four general-purpose processors, two ASIPs and 
two ASICs, all connected using a crossbar network. 
In this experiment, a DSE with a fixed duration of 
100 min is performed for all three subset selector 
approaches. The results have been averaged over 
nine runs. To evaluate the fitness of mapping solu-
tions, we have again deployed the Sesame MPSoC 
simulation framework (see the Simulative fitness 
evaluation section). To determine the efficiency of 
the multiobjective DSE, we obtain the distance of 
the estimated Pareto front (execution time versus 
energy consumption of mapping solutions) to the 
optimal Pareto front. For this purpose, we normal-
ized execution time and energy consumption to a 
range from 0 to 1. As the optimal Pareto front is not 
exactly known since the design space is too large to 
exhaustively search it, we have used the combined 
Pareto front of all our experiments for this. 

The size of the scenario subset provides a trade-
off between accuracy and convergence of the 

search. That is, a larger scenario subset will lead 
to a more accurate fitness prediction of mappings 
in the design explorer at the cost of a larger com-
putational overhead to obtain the fitness of a sin-
gle mapping causing a slower convergence of the 
search. This can be seen in Figure 8. The GA and 
the FS subset selection methods have worse results 
when the subset becomes larger (remember that 
we use a fixed DSE duration of 100 min). For a sub-
set size of 4%, the hybrid selector is, however, still 
able to benefit from a subset with a higher accu-
racy. The slower convergence only starts to effect 
the efficiency for the 8% subset.  Comparing the dif-
ferent methods, the hybrid method shows the best 
results. The only exception is for the 1% subset. In 
this case, the GA is still able to search the smaller 
design space of possible subsets. Still, the result of 
the hybrid method at 4% is better than the result  
of the GA at 1%. With the larger subset sizes, the 
hybrid method can exploit both the benefits of  
the feature selection and the GA.

IN THIS ARTICLE, we have presented various aspects 
of the state of the art in embedded systems DSE. Here, 
we have organized our discussion along the lines of 
the two primary elements of DSE: the evaluation of 
single design points and the search strategy for cover-
ing the design space. For the coming years, there are 
still many open research challenges for this domain. 
Just to give a few examples, first, embedded systems 
more and more need to become adaptive systems due 
to increasingly dynamic application workload behav-
ior (as was previously discussed), the need for QoS 
management to dynamically trade off different system 
qualities such as performance, precision, and power 
consumption, and the fact that we have reached a 
technology level where our circuits are no longer fully 
reliable, increasing the chances of transient and per-
manent faults. This calls for research to take system 
adaptivity, in which a system can continuously cus-
tomize itself at runtime according to the application 
workload at hand and the state of the system (e.g., [5] 
and  [36]), into account in the process of DSE.

Second, the trend toward cyberphysical systems 
and the IoT makes the process of DSE even more 
complicated since DSE in this context requires 
taking the behavior of the physical environment 
(including user behavior) into account. This calls for 
renewed research into the speed-accuracy tradeoff 
for the different models and their possible co-simula-
tion applied in DSE for this domain.

Figure 8. Quality of the DSE for the different subset 
selection approaches. The quality is determined 
based on the distance between the estimated Pareto 
front and the optimal front.
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A FINAL RESEARCH direction involves the introduc-
tion of new design objectives in the process of (early) 
DSE, in addition to the traditional objectives such as 
system performance and power/energy consumption. 
Arguably, a good example is the need for taking system 
security into account as an optimization objective. As 
embedded systems are becoming increasingly ubiq-
uitous and interconnected, they attract a worldwide 
attention of attackers, which makes the security aspect 
more important than ever during the design of those 
systems. Currently, system security is still mostly consid-
ered as an afterthought and typically is not taken into 
account during the very early design stages. However, 
any security measure that may eventually be taken 
later in the design process does affect the already 
established tradeoffs with respect to the other system 
objectives such as performance, power/energy con-
sumption, cost, etc. Thus, covering the security aspect 
in the earliest phases of design is necessary to design 
systems that are, in the end, optimal with regard to all 
system objectives. However, this poses great difficulties 
because unlike the earlier mentioned conventional 
system objectives like performance and power con-
sumption, security is hard to quantify. This necessitates 
research on techniques that make it possible to incor-
porate security as an objective in early DSE. �
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