
772168-2356/16 © 2016 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJanuary/February 2017

Exploring Exploration:
A Tutorial Introduction
to Embedded Systems
Design Space
Exploration

Digital Object Identifier 10.1109/MDAT.2016.2626445

Date of publication: 8 November 2016; date of current version:

10 January 2017.

Andy D. Pimentel
University of Amsterdam

J DESIGNERS OF MODERN embedded systems face
several daunting challenges since these systems typ-
ically have to meet a range of stringent, and often
conflicting, design requirements. As many embedded
systems target mass production and battery-based
devices or devices that cannot use active cooling,
they should be cheap and power efficient. At the
same time, a great deal of these systems must, increas-
ingly, support multiple applications and standards for
which they need to provide real-time performance.
For example, mobile devices must support different
standards for communication and coding of digital
contents. Furthermore, modern embedded systems
also need to be reliable as well as flexible such that
they can easily be updated and extended with future

applications and stand-
ards. The latter calls for a
high degree of program-
mability of these systems,
whereas performance,
power consumption, and
cost constraints require
implementing substan-
tial parts of these systems
in dedicated hardware

blocks. As a result, modern embedded systems often
have a heterogeneous multiprocessor system archi-
tecture. They consist of processors that range from
fully programmable cores to fully dedicated hardware
blocks for time-critical application tasks. Increasingly,
the components in such systems are integrated onto
a single chip, yielding heterogeneous multiprocessor
system-on-chip (MPSoC) architectures [1].

To cope with the design complexity of such sys-
tems, we have witnessed the emergence of a new
design methodology in the past 15–20 years, called
electronic system-level (ESL) design. It aims at rais-
ing the level of abstraction of the design process to
improve the design productivity. Key enablers to this
end are the use of architectural MPSoC platforms to
facilitate reuse of IP components and the concept of
high-level system modeling and simulation [2], [3].
The latter allows for capturing the behavior of plat-
form components and their interactions at a high

Editor’s note:
As embedded systems grow more complex and as new applications such
as IoT require many design constraints, sophisticated design space explo-
ration techniques are essential in order to find the best compromise between
different design goals and their tradeoff. This tutorial gives a structured
 insight into the field of design space exploration for embedded systems.

—Jörg Henkel, Karlsruhe Institute of Technology

78 IEEE Design&Test

Tutorial

level of abstraction. As such, these high-level mod-
els minimize the modeling effort and are optimized
for execution speed, and can therefore be applied
during the very early design stages to perform design
space exploration (DSE) [4]. During such DSE, a
large variety of different design alternatives can be
explored, such as the number and type of proces-
sors deployed in the platform architecture, the type
of interconnection network used to connect system
components, or the spatial binding and temporal
binding (i.e., scheduling) of application tasks to
processor cores. This process of early DSE is of para-
mount importance as the considered design choices
may heavily influence the success or failure of the
final product. However, the process of DSE also is
highly challenging because the design space that
needs to be explored typically is vast, especially
during the early stages of design. For instance, the
design space for exploring different mappings of
application tasks to processing resources and trying
to optimize the mapping for, e.g., performance or
power consumption exponentially grows with the
number of application tasks and processors, and is
generally considered to be an NP-hard problem [5].
Therefore, the development of efficient and effective
DSE methods has received significant research atten-
tion in recent years. In this article, we will provide a
tutorial introduction to the topic of embedded sys-
tems DSE.

DSE: Basic concepts
During the DSE of embedded systems, multi-

ple optimization objectives, such as performance,
power/energy consumption, and cost, should be
considered simultaneously. This is called multiob-
jective DSE. Since the objectives are often in con-
flict, there cannot be a single optimal solution that
simultaneously optimizes all objectives. Therefore,
optimal decisions need to be taken in the presence
of tradeoffs between design criteria.

Given a set of m decision variables, which are the
degrees of freedom (e.g., MPSoC system parameters
like the number and type of processors, applica-
tion mapping, etc.) that are explored during DSE, a
so-called fitness function must optimize the n objec-
tive values. The fitness function is defined as

 f i : R m → R 1 . (1)

A potential solution x ∈ R m is an assignment of the m
decision variables. The fitness function f i translates

a point in the solution space X into the i th objective
value (where 1 ≤ i ≤ n). For example, a particular
fitness function f i could assess the performance or
energy efficiency of a certain solution x (represent-
ing a specific design instance). The combined fit-
ness function f(x) subsequently translates a point in
the solution space into the objective space Y . For-
mally, a multiobjective optimization problem (MOP)
that tries to identify a solution x for the m decision
variables that minimizes the n objective values using
objective functions f i with 1 ≤ i ≤ n

 Minimize y = f(x) = (f 1 (x) , f 2 (x) , …, f n (x))
where x = (x 1 , x 2 , …, x m) ∈ X

y = (y 1 , y 2 , …, y n) ∈ Y.

In the remainder of this discussion, we assume a
minimization procedure, but without loss of general-
ity, this minimization procedure can be converted
into a maximization problem by multiplying the
 fitness values y i with −1.

With an optimization of a single objective, the
comparison of solutions is trivial. A better fitness
(i.e., objective value) means a better solution.
With multiple objectives, however, the comparison
becomes nontrivial. Take, for example, two different
MPSoC designs: a high-performance MPSoC and a
slower but much cheaper MPSoC. In case there is
no preference defined with respect to the objectives
and there are also no restrictions for the objectives,
one cannot say if the high-performance MPSoC or
the low-cost MPSoC is better. A MOP can have even
more different objectives, like the performance,
energy consumption, cost, and reliability of an
MPSoC-based embedded system. To compare differ-
ent solutions in the case of multiple objectives, the
Pareto dominance relation is typically used. Here, a
solution x 1 ∈ X is said to dominate solution x 2 ∈ X if
and only if x 1 < x 2

 x 1 < x 2 ⇔ ∀ i ∈ { 1, 2, …, n} : f i (x 1) ≤ f i (x 2) ∧
 ∃ i ∈ { 1, 2, …, n} : f i (x 1) < f i (x 2).

Hence, a solution x 1 dominates x 2 if its objec-
tive values are superior to the objective values of x 2 .
For all of the objectives, x 1 must not have a worse
objective value than solution x 2 . Additionally, there
must be at least one objective in which solution x 1 is
 better (otherwise they are equal).

An example of the dominance relation is given
in Figure 1, which illustrates a 2-D MOP. For solution
H , the dominance relations are shown. Solution H is

79January/February 2017

dominated by solutions B , C , and D as all of them
have a lower value for both f 1 and f 2 . On the other
hand, solution H is superior to solutions M , N , and O .
Finally, some of the solutions are not comparable
to H . These solutions are better for one objective but
worse for the other.

The Pareto dominance relation only provides a
partial ordering. For example, the solutions A to F of
the example in Figure 1 cannot be ordered using the
ordering relation. Since not all solutions x ∈ X can
be ordered, the result of a MOP is not a single solu-
tion, but a front of nondominated solutions, called
the Pareto front. A set X ′ is defined to be a Pareto
front of the set of solutions X as follows:

 {x ∈ X ′ |

∃

⧸

 x i ∈ X:x i < x}

The Pareto front of Figure 1 contains six solutions:
A − F . Each of these solutions does not dominate the
other. An improvement on objective f 1 is matched
by the worse value for f 2 . Generally, it is up to the
designer to decide which of the solutions provides
the best tradeoff.

The search for Pareto optimal design points
with respect to multiple design criteria entails two
distinct elements [4]: 1) the evaluation of a single
design point using the fitness function(s) regarding
all the objectives in question like system perfor-
mance, power/energy consumption, and so on; and
2) the search strategy for covering the design space
during the DSE process. Figure 2 shows a simple
taxonomy for DSE approaches, recognizing the two
DSE elements as well as different properties of these
DSE elements. As will be discussed in more detail
later on, there usually exists a tradeoff between the
accuracy and speed with which the fitness of single
design points can be evaluated. In addition to this,
the various fitness evaluation techniques also differ

with respect to the implementation effort and the
capability of evaluating the fitness for a wide range
of systems, involving issues such as modularity, reus-
ability of models etc.

Regarding the search strategy element of DSE, the
confidence characteristic denotes how certain we are
that the design points returned by the DSE include
the true optimum, or alternatively, how close they
are to the true optimum. In many search algorithms,
confidence is obtained by avoiding local optima and
ensuring sufficient design space coverage. Clearly,
an exhaustive search in which every single point in
the design space is evaluated and compared would
provide a 100% confidence. However, such exhaus-
tive search is usually prohibitive due to the sheer size
of the design space. In those cases, heuristic search
techniques can be used to search the design space
for optimal solutions using only a finite number of
design point evaluations. The convergence property
denotes the speed of evaluating a range of design
points, and, more specifically, the rate at which the
DSE search algorithm manages to converge to an opti-
mum. Finally, analogous with the effort property in
the case of evaluating a single design point, the effort
for searching the design space refers to the implemen-
tation of the search method and setting its parame-
ters, as well as setting up, running, and evaluating
the results of the exploration experiment. In the two
subsequent sections, we will provide a more detailed
overview of the different techniques, and their proper-
ties, applied in each of the two elements of DSE.

Evaluation of a single design point
Methods for evaluating the fitness of a single

design point in the design space roughly fall into
one of three categories: 1) measurements on a
(prototype) implementation; 2) simulation-based

Figure 1. A Pareto front and an example of
the dominance relation.

Figure 2. A taxonomy for DSE approaches
(taken from [6]).

80 IEEE Design&Test

Tutorial

evaluations; and 3) estimations based on some kind
of analytical model. Each of these methods has dif-
ferent properties with regard to evaluation time and
accuracy. Evaluation of prototype implementations
provides the highest accuracy, but long develop-
ment times prohibit evaluation of many design
options. Analytical estimations are considered the
fastest, but accuracy is limited since they are typi-
cally unable to sufficiently capture particular intri-
cate system behavior. Simulation-based evaluation
fills up the range in between these two extremes:
both highly accurate (but slower) and fast (but less
accurate) simulation techniques are available. This
tradeoff between accuracy and speed is very impor-
tant, since successful DSE depends both on the abil-
ity to evaluate a single design point as well as being
able to efficiently search the entire design space.
As current DSE efforts in the domain of embedded
systems design typically use simulation or analytical
models to evaluate single design points, the remain-
der of this section will focus on these methods.

Simulative fitness evaluation
Simulating system components can, as was

already mentioned above, be performed at differ-
ent levels of abstraction. The higher the abstraction
level, the less intricately the system components are
modeled and, therefore, the higher the simulation
speed is. Evidently, such efficiency improvements
come at the cost of a less accurate fitness estimation
because of the fact that particular system details are
not taken into account. This simulation speed-accu-
racy tradeoff is shown in Figure 3. This figure depicts

several widely used simulation abstraction levels,
and it does so for both the simulation of processor
components as well as the simulation of communi-
cation between system components.

For both the simulation of processor and commu-
nication components, the lowest level of abstraction
for simulating a digital system is the register-transfer
level (RTL). At this level of abstraction, the flow of
digital signals between registers and combinational
logic is explicitly simulated. This yields a highly
accurate but also very slow simulation. As a result,
the use of RTL simulation in the process of DSE is
confined to only relatively small and narrow design
spaces focusing on, for example, the design of one
specific system component. Performing system-level
DSE is infeasible using RTL simulation.

Raising the level of abstraction, one can simulate
system components at the cycle accurate level. This
means that the system components are simulated
on a cycle-by-cycle basis and, as such, that the sim-
ulated system state conforms to the cycle-by-cycle
behavior of the target design. This results in more
efficient simulations as compared to RTL simulation
at the cost of a somewhat reduced accuracy since
the system state between cycles is not accounted for.
Cycle-accurate simulation is a popular technique for
simulating microprocessors: so-called cycle-accu-
rate instruction set simulation (ISS). These ISS sim-
ulators try to capture the cycle-by-cycle behavior of
the microarchitectural components of a micropro-
cessor, such as the pipeline logic, out-of-order pro-
cessing, branch predictors, caches, and so on. To
account for power consumption behavior, ISS sim-
ulators often use activity-based power models that
accumulate the power consumption of the relevant
microarchitecture components based on their activ-
ity ratio. A good example is the widely used cycle-ac-
curate Gem5 ISS [7], which can be extended to also
support area and power predictions using activi-
ty-based modeling frameworks such CACTI [8] and
McPAT [9]. Although these ISS simulators can be
deployed to perform microarchitectural DSE for pro-
cessor components, they are typically still too slow
for performing full system-scale DSE.

In cycle-accurate ISS simulators, the fetching,
decoding, and execution of instructions are explic-
itly simulated. To further optimize the speed of such
simulators, one could translate the instructions from
the target binary to be simulated to an equivalent
sequence of instructions (using static or dynamic

Figure 3. Different levels of abstraction for
(a) simulating processors and (b) simulating
 communication.

81January/February 2017

just-in-time translation) that can be executed on
the simulation host computer. This so-called binary
translation technique, which is, e.g., deployed in the
widely used QEMU simulator [10], aims at reducing
the overhead of explicitly simulating the instruction
fetch and decode stages. The translated instruction
sequences are often instrumented with additional
code to keep track of the extra-functional behavior,
such as timing and power consumption, of the origi-
nal code as it would have been executed on the tar-
get processor.

For simulating communication between system
components, one could use so-called bus-cycle
accurate simulation [11] to speed up the simula-
tion process. In this type of simulation, all signals of
the communication bus are modeled explicitly in
a cycle accurate fashion, but this accuracy is only
maintained for the signals on the communication
bus and not for the logic around it. The surround-
ing components can thus use more abstract timing
models.

Raising the abstraction level even further for
processor simulation yields so-called host-compiled
simulation [12]. In this technique, the source code of
the target program is directly compiled into a binary
program that can run on the host computer. In addi-
tion, and similar to the binary translation technique,
the source code can be instrumented with a timing
and power consumption model based on the target
architecture. Since these simulations are efficient as
they directly execute target programs on the host
computer, they are very suitable for system-level
DSE. However, at this level of abstraction, it is dif-
ficult to accurately capture intricate microarchitec-
tural behavior, like pipeline and cacheing behavior.
Another drawback of this simulation approach is
that one needs to have access to the source code of
a target program.

For simulating communication, transaction-level
modeling (TLM) [11] provides the highest level of
abstraction. In TLM, communication details at the
level of signals and protocols are abstracted away
by means of encapsulation into entire transactions
between system components. At this level, the
emphasis is more on the functionality of the data
transfers, i.e., what data are transferred to and from
what locations, rather than on their actual imple-
mentation. Evidently, the extra-functional behavior
in TLM simulation models is also captured at the
level of entire transactions.

The above processor simulation techniques are
all execution-driven simulation methods as they
are directly driven by the execution of a program.
Alternatively, there are also trace-driven simulation
techniques in which the simulation is driven by
event traces that have been collected through the
execution of a program (e.g., [13] and [14]). These
trace events can focus on the evaluation of specific
system elements such as memory address traces for
cache simulation. However, an event trace may also
consist of the full sequence of executed instructions,
thereby allowing full, trace-driven microprocessor
simulation for the purpose of performance and/or
power estimation. To optimize for simulation speed,
the trace events may also represent computations
(and, if needed, communication) at a higher level
of abstraction than the level of machine instructions,
like at the level of the execution of basic blocks or
even entire functions. Another advantage of trace-
driven simulation is the fact that the event traces
often only need to be generated once (i.e., executing
the program to collect the traces once), after which
they can be reused in the DSE process. Drawbacks
of trace-driven simulation evidently are the need
for storing the event traces which can become
extremely large in size, and the fact that trace-driven
simulation does not allow for simulating all intricate
system behavior, such as the effects of speculative
instruction execution in microprocessors.

An example of a high-level, trace-driven MPSoC
simulation environment is the Sesame system-level
modeling and simulation framework [15]. Sesame
is based on the Y-chart methodology [16], and
accordingly it recognizes separate application and
architecture models. The application models are
explicitly mapped onto the architecture models by
means of trace-driven simulation. The workload
of an application is captured by instrumenting the
application model, which is a parallel specification
of the application, with annotations that describe
the application’s computational and communica-
tion actions at a coarse-grained level (typically at the
level of the execution of entire functions). By exe-
cuting this instrumented application model, these
annotations cause the generation of traces of appli-
cation events that subsequently drive the underlying
architecture model. This architecture model, cap-
turing the system resources and their constraints,
then simulates the consequences of the consumed
computation and communication events in terms

82 IEEE Design&Test

Tutorial

of extra-functional system behavior (performance,
power consumption, etc.). Figure 4 depicts Sesame’s
layered organization, illustrating the mapping of
two multimedia applications (an MP3 encoder and
video decoder) onto a bus-based MPSoC platform.
A special mapping layer in Sesame provides the
scheduling of application events in the case multi-
ple application processes are mapped onto a single
processing resource.

Orthogonal to most of the (processor) simula-
tion methods described above, there are additional
techniques to further improve the simulation speed
[17]. In sampled simulation, for example, the sim-
ulation does not cover the execution of an entire
program but only simulates relatively small samples
of the program’s execution. Here, the challenge is
to select the samples in such a manner that they
sufficiently represent the behavior as if the entire
program was simulated. Another technique for
speeding up simulation is statistical simulation.
Rather than using real (benchmark) programs for
simulation, it uses a statistical program profile. This
profile captures the distributions of important pro-
gram characteristics, and is used for generating a
synthetic instruction trace that drives a simple trace-
driven simulator. As the synthetic trace is randomly
generated from a statistical profile, this type of simu-
lations can converge to a set of performance predic-
tions fairly quickly.

Analytical fitness evaluation
In comparison to simulation, analytical mod-

els allow for much more efficient prediction of the
extra-functional system behavior at the expense of
a reduced accuracy. This makes analytical models
very suitable for exploring large design spaces to
rapidly identify regions of interest that can be later
explored in more detail using simulation. Another
advantage of analytical models is that they can pro-
vide direct insight into the relationship between
model parameters (representing design choices)
and the predicted extra-functional behavior. For sim-
ulative methods, such understanding would require
a large number of simulations.

Analytical models can roughly be divided into
three classes [17]: 1) mechanistic (or whitebox)
models; 2) empirical (or blackbox) models; and
3) a hybrid combination of mechanistic and empir-
ical modeling. Mechanistic models are based on
first principles, which implies that they are built in
a bottom-up fashion starting from a basic under-
standing of the mechanics of the modeled system.
For example, in a mechanistic microprocessor per-
formance model, penalties due to cache misses,
branch mispredictions, the execution of instruc-
tions with different latencies, etc., are explicitly
captured in the model.

In empirical models, statistical inference and
machine learning techniques, like regression models
or neural networks, are used to automatically synthe-
size a model through the process of learning from train-
ing data. For example, using a set of microarchitectural
parameters such as pipeline depth, issue width, caches
sizes, etc., one could train a model that predicts the
Instructions Per Cycle (IPC) or Cycles Per Instruction
(CPI) of a microprocessor. Inferring a model by means
of automatic training typically is easier than develop-
ing a mechanistic model because it does not require
intimate understanding of the mechanics of the mod-
eled system. Evidently, the latter is also an immediate
drawback as empirical models also tend to provide
less insight than mechanistic models.

In hybrid mechanistic-empirical modeling,
which is sometimes referred to as greybox mode-
ling, extra-functional system aspects are captured
using a formula that has been derived from insights
in the underlying system. However, this formula
includes a number of unknown parameters, which
are then inferred through fitting (e.g., using regres-
sion), similarly to empirical modeling. Such hybrid

Figure 4. The Sesame system-level MPSoC
simulation infrastructure.

83January/February 2017

mechanistic-empirical modeling is motivated by the
fact that it provides insight (like mechanistic mod-
eling) while easing the construction of the model
(like empirical modeling).

Searching the design space
As explained before, searching a design space is

a multiobjective optimization process. This process
will evidently benefit from a good tradeoff between
speed, accuracy, and effort of the method for evalu-
ating the fitness of a single design point, as discussed
in the previous section. But, even if this tradeoff is
ideal, we still have to make sure that each evaluation
of a design point contributes as much as possible to
an effective and efficient search of the design space.
A crucial component toward this goal is the search
algorithm that navigates the design space toward
areas of interest by proposing which design points
to evaluate next. Regardless of the specific type of
search method that is used for such a design space
traversal, its success depends on three major con-
cerns, as was shown in Figure 2: confidence, conver-
gence, and effort. These concerns typically cannot
be considered in isolation, as they are highly interde-
pendent, contradictory, and sometimes overlapping.
The state of the art in DSE can be summarized as
finding a good tradeoff between these concerns.

DSE search algorithms can be divided into exact
and heuristic methods. In exact DSE methods, like
those implemented using integer linear program-
ming (ILP) solutions (e.g., [18] and [19]) or branch
& bound algorithms (e.g., [20]), the optimum is guar-
anteed to be found. As such methods generally are
compute intensive, they typically use design space
pruning (i.e., discarding unsuitable design points)
to optimize the efficiency of the search, thereby
allowing to handle larger design spaces. However,
for realistic design problems with design spaces
that are vast, these methods may still be less suited.
Alternatively, in heuristic methods, metaheuristics
are used to find a design point in the known design
space that meets the design requirements as best
as possible. To this end, these methods search the
design space for optimal solutions using only a finite
number of design point evaluations, and can thus
handle larger design spaces. However, there is no
guarantee that the global optimum will be found
using metaheuristics, and therefore the result can be
a local optimum within the design space. Examples
of metaheuristics are hill climbing, tabu search,

simulated annealing, ant colony optimization, parti-
cle swarm optimization, and genetic algorithms. In
this tutorial, we will focus on methods to navigate
the design space that are based on genetic algo-
rithms (GA). GA-based DSE has been widely stud-
ied in the domain of system-level embedded design
(e.g., [21] and [22]) and has been demonstrated to
yield good results. Moreover, GAs can be used in
their basic (domain-independent) form or, as will
also be explained later on, with custom extensions
that incorporate domain-dependent knowledge in
order to improve search performance even further.

GA-based DSE
GAs operate by searching through the solution

space (spanned by the design variables/decisions
being explored) where each possible solution
is encoded as a string-like representation, often
referred to as the chromosome [23]. A (randomly
initialized) population of these chromosomes is then
iteratively modified by performing a fixed sequence
of actions that are inspired by their counterparts
from biology: fitness evaluation and selection, cross-
over, and mutation. A fundamental design choice
of a GA is the genetic representation of the solution
space, because each of the crossover and mutation
steps depends on it. To illustrate how such a genetic
representation could look like, let us use a widely
studied DSE problem in the domain of system-level
embedded system design as an example: optimizing
the mapping of a (set of) concurrent application(s)
onto an underlying (heterogeneous) MPSoC plat-
form architecture [5]. As a convenient mapping
description for an application with n tasks, we use a
vector of size n with processor identifiers p i , where p i
indicates the mapping target of task i

 [p 0 , …, p i , …, p n−1].

This commonly used description is very suitable to
serve as the chromosome representation for a GA. A
valid mapping specification is a feasible partition-
ing of all n tasks. With feasible, we mean that tasks
are mapped onto processing elements that can exe-
cute those tasks (i.e., there are no functional restric-
tions of the processing element in question, like an
ASIC component that only allows the execution
of one particular piece of functionality), and that
communicating tasks are mapped onto processing
elements that can actually communicate with each
other (i.e., there are no topological communication

84 IEEE Design&Test

Tutorial

 restrictions). In case an infeasible mapping is cre-
ated by the genetic operators of a GA (crossover
and mutation), a mechanism is required that either
discards or repairs such a chromosome. Repairing
a chromosome implies that it is transformed into
a valid chromosome (mapping) that is as close
as possible to the original, invalid one. Moreover,
note that task partitions specifying a mapping may
also be empty [particular processor(s) not in use]
or contain all n tasks (a single processor system).
A processor that is not assigned any tasks (having
an empty task partition) can be considered idle or
nonexistent.

In Figure 5a, the different steps of a GA are
shown. This figure also illustrates the mapping rep-
resentation of a chromosome for an application
with six tasks and a 4-processor bus-based MPSoC
platform. Starting from a (randomly initialized) pop-
ulation of chromosomes, representing the different
mapping design instances, the fitness of the mapping
solutions in the population is first evaluated. To this
end, any of the previously discussed analytical or
simulative techniques can be used. Subsequently,
based on the fitness evaluation, a selection of
chromosomes is made that will be used to create
offspring. This offspring is created by combining

genetic material from two parents using a crossover
operation, as illustrated in the top part of in Figure 5b.
There exist various forms of this crossover opera-
tor, of which the uniform, onepoint, and two-point
crossovers are the most popular. Next, new genetic
material is introduced in the offspring by means of
a mutation operator as illustrated at the bottom of
Figure 5b. Such a mutation randomly changes one
or more genes within chromosomes. Finally, the
newly created offspring is used to update the popu-
lation by either replacing it or by deploying so-called
elitism. Such elitism involves the combination of the
new offspring with a small number of the best solu-
tions from the original population to avoid loosing
strong solutions.

To provide a small example of the results a
GA-based DSE could obtain, we present some
results of a small-scale case study where the design
space consists of an application with 11 tasks that is
to be mapped onto a 4-processor MPSoC architec-
ture with a crossbar interconnect [6]. The mapping
design space contains more than four million design
points, of which 175 000 are unique ones (as the tar-
get platform is a homogeneous, symmetric MPSoC).
Because of the relatively small design space, in this
particular case, we were also able to perform an

Figure 5. GA-based mapping DSE: (a) general overview of the GA steps; and
(b) crossover and mutation operators.

85January/February 2017

exhaustive search, allowing us to evaluate the qual-
ity of the GA-based search results. To account for
the stochastic behavior of GAs, all results are aver-
ages over 300 GA runs. The fitness of mapping solu-
tions has been evaluated using the Sesame MPSoC
simulation framework [15] (see also the Simulative
fitness evaluation section). Figure 6 shows the
results of the GA-based DSE with different popula-
tion sizes (10, 15, 40, or 80 chromosomes), a con-
stant mutation rate (0.1) and crossover probability
(0.9), and a uniform crossover in a so-called prob-
ability-quality (P-Q) plot. Regarding the top part of
this plot, the horizontal axis (top x -axis) represents
the quality of the result as a percentile toward the
true optimum (a lower percentile indicates a result
closer to the optimum) and the vertical axis repre-
sents the probability of achieving a result with that
quality. The straight lines in the graph represent the
theoretically derived probabilities of finding results
using a simple, uniform random search. We have
also computed the 80%–95% confidence intervals
of the mean fitness value (execution time in cycles,
in this case) of mapping solutions found by the
GA, averaged over the 300 runs of each GA search.
These confidence intervals, shown at the bottom
of the graph in Figure 6, indicate how certain (as
specified by the confidence level) we are that the
real mean lies within the confidence interval. The
more the confidence intervals for different exper-
iments are nonoverlapping, the more significant
the difference of the mean behavior (which is
clearly the case in the example of Figure 6). The
results from this particular case study show that the
GA-based DSE with the largest population size can
find mapping solutions that are always very close to
the real optimum: within the 0.1 percentile, imply-
ing that they belong to the best 175 000 / 1000 = 175
solutions. A larger population size, however, comes
with a higher number of fitness evaluations during
the search and thus requires a longer search time
(assuming the number of search iterations remains
constant). According to Figure 6, a population size
of 40 may therefore provide a good compromise.

Optimizing GA-based DSE
There are various methods for making the search

process of a GA-based DSE more efficient. This
allows the DSE process to either find the design
candidates quicker (i.e., improve the convergence
behavior of the DSE) or to spend the same amount

of time to evaluate more design points. The latter
can be used to enable the search of larger design
spaces or to improve the chance of finding better
design candidates (i.e., improve the confidence
property of the DSE). One approach for optimizing
the GA-based search is to enrich the genetic opera-
tors of the GA with domain knowledge such that they
produce more diverse offspring or offspring with a
higher probability of being closer to the optimum.
For example, in [24], new GA operators have been
proposed that optimize the search performance by
1) reducing the redundancy present in chromo-
some representations (e.g., mapping symmetries in
the case of homogeneous, symmetrical MPSoC plat-
forms); or 2) using a new crossover operator that is
based on a mapping distance metric that provides a
measure of similarity between mappings. Using this
mapping distance information, the new crossover
operator aims at retaining the strong chromosome
parts of both of the parents. In [25], a new mutation
operator has been proposed that considers the affin-
ity of tasks with respect to processors, the commu-
nication cost between tasks, and the differences of
processor workloads to steer the mutation in such a
way that offspring is produced with a higher proba-
bility of being (near) optimal.

Another approach for optimizing GA-based DSE
concerns the reduction of the time taken to evaluate
the fitness of solutions during the GA’s execution.
As mentioned before, DSE approaches typically use
either simulation or an analytical model to evalu-
ate the fitness of design points, where simulative
approaches prohibit the evaluation of many design
options due to the higher evaluation performance

Figure 6. P-Q plot for GA-based DSE with different
 population sizes.

86 IEEE Design&Test

Tutorial

costs and analytical approaches suffer from accu-
racy issues. Therefore, in [26], a hybrid form of
mapping DSE has been proposed that combines
simulation with analytical estimations to prune the
design space in terms of application mappings that
need to be evaluated using simulation. To this end,
the DSE technique uses an analytical model that
estimates the expected throughput of an applica-
tion given a certain architectural configuration and
application-to-architecture mapping. In the majority
of the search iterations of the DSE process, this ana-
lytical throughput estimation avoids the use of simu-
lations to evaluate the design points. However, since
the analytical estimations may in some cases be less
accurate, the analytical estimations still need to be
interleaved with simulative evaluations in order to
ensure that the DSE process is steered into the right
direction. A similar approach is taken in [27], where
an iterative DSE methodology is proposed exploiting
the statistical properties of the design space to infer,
by means of an empirical analytic model, the design
points to be analyzed with low-level simulations.
The knowledge of a few design points is used to
predict the expected improvement of unknown con-
figurations. Alternatively, in hierarchical DSE (e.g.,
[28], [29], and [30]), DSE is first performed using
analytical or symbolic models to quickly find the
interesting parts in the design space, after which sim-
ulation-based DSE is performed to more accurately
search for the optimal design points.

Workload models: Static versus
 dynamic

The DSE techniques discussed so far focus on the
evaluation and exploration of MPSoC architectures
under static, single-application workloads. Todays
MPSoC systems, however, often require supporting
an increasing number of applications and standards,
where multiple applications can run simultaneously
and concurrently contend for system resources. For
each single application, there may also be different
execution modes (or program phases) with different
computational and communication requirements.
For example, in software-defined radio appliances, a
radio may change its behavior according to resource
availability, such as the long-term evolution (LTE)
standard which uses adaptive modulation and cod-
ing to dynamically adjust modulation schemes and
transport block sizes based on channel conditions.
Another example would be a video application that

dynamically lowers its resolution to decrease its com-
putational demands in order to save battery life. As a
consequence, the behavior of application workloads
executing on the embedded system can change dra-
matically over time.

To capture the dynamism in application work-
load behavior during the design process, this section
describes the concept of application scenarios [31]
as well as scenario-based DSE [32], [33]. Like in the
previous section, we will again use the example of
application mapping exploration to illustrate the
concepts. Application scenarios are able to describe
the dynamism of embedded applications and the
interaction between the different applications on
the embedded system. An application scenario con-
sists of two parts: an inter-application scenario and
an intra-application scenario. An inter-application
scenario describes the interaction between multiple
applications, i.e., which applications are concur-
rently executing at a certain moment in time. Inter-
application scenarios can be used to prevent the
overdesign of a system. If some of the applications
cannot run concurrently, then there is no need of
reserving resources for the situation where these
applications are running together. Intra-application
scenarios, on the other hand, describe the different
execution modes for each individual application.

The number of different application scenarios
grows exponentially with the number of applications
involved. So, to perform DSE with these application
scenarios, this so-called scenario-based DSE needs to
solve the problem that the number of possible appli-
cation scenarios is too large to exhaustively evaluate
the fitness of design points with all of these scenarios.
Therefore, a small but representative subset of sce-
narios must be selected for the evaluation of MPSoC
design points. This representative subset must be used
for comparing mappings and should lead to the same
performance ordering as would have been produced
when the complete set of the application scenarios
would have been used. That is, if mapping m1 is better
than mapping m2, the representative subset should be
able to give a better predicted fitness to mapping m1
than it assigns to mapping m2. However, the selection
of such a representative subset is not trivial [34]. This
is because the representative subset is dependent on
the current set of mappings that are being explored.
Depending on the set of mappings, a different subset of
application scenarios may reflect the relative mapping
qualities of the majority of the application scenarios.

87January/February 2017

As a result, the representative subset cannot stat-
ically be selected. For a static selection, one would
need to have a large fraction of the mappings that
are going to be explored during the MPSoC DSE.
However, since these mappings are only available
during DSE, a dynamic selection method must be
used. Thus, both the set of optimal mappings and the
representative subset of scenarios need to be coex-
plored simultaneously such that the representative
subset is able to adapt to the set of mappings that are
currently being explored. Figure 7 shows the scenar-
io-based DSE framework. The left part of the picture
provides a general overview of the exploration flow,
whereas the right part illustrates the scenario-based
DSE in more detail. As an input, the scenario-based
DSE requires a scenario database, application mod-
els, and an MPSoC platform architecture model. The
description of the application workload is split into
two parts: 1) the structure and 2) the behavior. The
structure of applications is described using appli-
cation models (as described before), whereas a
scenario database [35] explicitly stores all the pos-
sible multiapplication workload behaviors in terms
of application scenarios (i.e., intra-application and
inter-application scenarios). In the scenario-based
DSE framework, two separate components are rec-
ognized that simultaneously perform the coexplora-
tion tasks: the design explorer searches for the set
of optimal mappings while the subset selector tries
to select a representative subset of scenarios. To this
end, they exchange data in an asynchronous fashion
after every search iteration. Here, the design explorer
sends a sample of the current mapping population
to the subset selector, whereas the subset selector
makes the most representative subset available for
the fitness prediction in the design explorer.

The design explorer performs a traditional
mapping DSE using a GA, as discussed in the pre-
vious section. As explained above, it uses a rep-
resentative subset of scenarios to evaluate the
fitness of mapping solutions. At every iteration
of the GA, the design explorer reads in the most
recent representative scenario subset from the
subset selector and submits the current popula-
tion of mapping solutions to the subset selector in
order to allow the latter to select the appropriate
representative subset. This subset selection is not
trivial as there are many scenarios to pick from,
leading to a huge number of possible scenario
subsets. Therefore, the subset selector uses the set
of mappings it regularly receives from the design
explorer to train the scenario subset such that it
is representative for the current population in the
design explorer. As the population of the design
explorer slowly changes over time, the representa-
tive subset will change accordingly. In [33], three
different techniques for selecting a representative
scenario subset are presented and evaluated: a
GA-based scenario space search (which means
that two GAs are running concurrently, one for the
design explorer and one for the subset selector),
a feature selection (FS)-based search algorithm,
and a hybrid combination (HYB) between these
two. The latter aims at combining the strengths
of both the GA-based and FS-based searches.
That is, a GA is capable of quickly exploring the
space of potential scenario subsets, but due to its
stochastic nature, it is susceptible to missing the
optimal scenario subsets. This is not the case with
the feature selection algorithm as it more system-
atically explores the local neighborhood of a sce-
nario subset.

Figure 7. The exploration framework for scenario-based DSE.

88 IEEE Design&Test

Tutorial

To give a feeling of the performance of the three
different fitness prediction techniques, Figure 8
shows the results of a scenario-based DSE experi-
ment in which the three techniques are compared
for three different scenario subset sizes: 1%, 4%, and
8% of the total number of application scenarios. In
this experiment, the mapping of ten applications
with a total of 58 tasks and 75 communication chan-
nels is explored. The multiapplication workload
consists of 4607 different application scenarios in
total. The target platform is a heterogeneous MPSoC
with four general-purpose processors, two ASIPs and
two ASICs, all connected using a crossbar network.
In this experiment, a DSE with a fixed duration of
100 min is performed for all three subset selector
approaches. The results have been averaged over
nine runs. To evaluate the fitness of mapping solu-
tions, we have again deployed the Sesame MPSoC
simulation framework (see the Simulative fitness
evaluation section). To determine the efficiency of
the multiobjective DSE, we obtain the distance of
the estimated Pareto front (execution time versus
energy consumption of mapping solutions) to the
optimal Pareto front. For this purpose, we normal-
ized execution time and energy consumption to a
range from 0 to 1. As the optimal Pareto front is not
exactly known since the design space is too large to
exhaustively search it, we have used the combined
Pareto front of all our experiments for this.

The size of the scenario subset provides a trade-
off between accuracy and convergence of the

search. That is, a larger scenario subset will lead
to a more accurate fitness prediction of mappings
in the design explorer at the cost of a larger com-
putational overhead to obtain the fitness of a sin-
gle mapping causing a slower convergence of the
search. This can be seen in Figure 8. The GA and
the FS subset selection methods have worse results
when the subset becomes larger (remember that
we use a fixed DSE duration of 100 min). For a sub-
set size of 4%, the hybrid selector is, however, still
able to benefit from a subset with a higher accu-
racy. The slower convergence only starts to effect
the efficiency for the 8% subset. Comparing the dif-
ferent methods, the hybrid method shows the best
results. The only exception is for the 1% subset. In
this case, the GA is still able to search the smaller
design space of possible subsets. Still, the result of
the hybrid method at 4% is better than the result
of the GA at 1%. With the larger subset sizes, the
hybrid method can exploit both the benefits of
the feature selection and the GA.

IN THIS ARTICLE, we have presented various aspects
of the state of the art in embedded systems DSE. Here,
we have organized our discussion along the lines of
the two primary elements of DSE: the evaluation of
single design points and the search strategy for cover-
ing the design space. For the coming years, there are
still many open research challenges for this domain.
Just to give a few examples, first, embedded systems
more and more need to become adaptive systems due
to increasingly dynamic application workload behav-
ior (as was previously discussed), the need for QoS
management to dynamically trade off different system
qualities such as performance, precision, and power
consumption, and the fact that we have reached a
technology level where our circuits are no longer fully
reliable, increasing the chances of transient and per-
manent faults. This calls for research to take system
adaptivity, in which a system can continuously cus-
tomize itself at runtime according to the application
workload at hand and the state of the system (e.g., [5]
and [36]), into account in the process of DSE.

Second, the trend toward cyberphysical systems
and the IoT makes the process of DSE even more
complicated since DSE in this context requires
taking the behavior of the physical environment
(including user behavior) into account. This calls for
renewed research into the speed-accuracy tradeoff
for the different models and their possible co-simula-
tion applied in DSE for this domain.

Figure 8. Quality of the DSE for the different subset
selection approaches. The quality is determined
based on the distance between the estimated Pareto
front and the optimal front.

89January/February 2017

A FINAL RESEARCH direction involves the introduc-
tion of new design objectives in the process of (early)
DSE, in addition to the traditional objectives such as
system performance and power/energy consumption.
Arguably, a good example is the need for taking system
security into account as an optimization objective. As
embedded systems are becoming increasingly ubiq-
uitous and interconnected, they attract a worldwide
attention of attackers, which makes the security aspect
more important than ever during the design of those
systems. Currently, system security is still mostly consid-
ered as an afterthought and typically is not taken into
account during the very early design stages. However,
any security measure that may eventually be taken
later in the design process does affect the already
established tradeoffs with respect to the other system
objectives such as performance, power/energy con-
sumption, cost, etc. Thus, covering the security aspect
in the earliest phases of design is necessary to design
systems that are, in the end, optimal with regard to all
system objectives. However, this poses great difficulties
because unlike the earlier mentioned conventional
system objectives like performance and power con-
sumption, security is hard to quantify. This necessitates
research on techniques that make it possible to incor-
porate security as an objective in early DSE. �

J References
 [1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor

system-on-chip (MPSoC) technology,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 27,

no. 10, pp. 1701–1713, Oct. 2008.

 [2] K. Keutzer, A. R. Newton, J. M. Rabaey, and A.

Sangiovanni-Vincentelli, “System-level design:

Orthogonalization of concerns and platform-based

design,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

 [3] A. Sangiovanni-Vincentelli and G. Martin, “Platform-

based design and software design methodology for

embedded systems,” IEEE Design Test Comput.,

vol. 18, no. 6, pp. 23–33, Nov./Dec. 2001.

 [4] M. Gries, “Methods for evaluating and covering the

design space during early design development,”

Integr., VLSI J., vol. 38, no. 2, pp. 131–183, Dec. 2004.

 [5] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel,

“Mapping on multi/many-core systems: Survey of

current and emerging trends,” in Proc. Design Autom.

Conf., Jun. 2013, pp. 1–10.

 [6] M. Thompson, “Tools and techniques for efficient

system-level design space exploration,” Ph.D.

dissertation, Univ. Amsterdam, Amsterdam, The

Netherlands, Jan. 2012.

 [7] N. Binkert et al., “The gem5 simulator,” ACM

SIGARCH Comput. Architecture News,” vol. 39, no. 2,

pp. 17, May 2011.

 [8] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman,

and N. P. Jouppi, “A comprehensive memory

modeling tool and its application to the design and

analysis of future memory hierarchies,” in Proc. Int.

Symp. Comput. Architect., Jun. 2008, pp. 51–62.

 [9] S. Li et al., “The mcpat framework for multicore and

manycore architectures: Simultaneously modeling

power, area, and timing,” ACM Trans. Architect. Code

Optim., vol. 10, no. 1, p. 5, 2013.

[10] F. Bellard, “Qemu, a fast and portable dynamic

translator,” in Proc. USENIX Annu. Tech. Conf., Apr.

2005, pp. 41–46.

[11] L. Cai and D. Gajski, “Transaction level modeling: An

overview,” in Proc. Int. Conf. Hardw./Softw. Codesign

Syst. Synthesis, Oct. 2003, pp. 19–24.

[12] O. Bringmann et al., “The next generation of virtual

prototyping: Ultra-fast yet accurate simulation of hw/sw

systems,” in Proc. Int. Conf. Design Autom. Test Eur.,

Mar. 2015, pp. 1698–1707.

[13] A. Butko et al., “A trace-driven approach for fast and

accurate simulation of manycore architectures,” in

Proc. Asia South Pacific Design Autom. Conf., Jan.

2015, pp. 707–712.

[14] J. Castrillon et al., “Trace-based KPN composability

analysis for mapping simultaneous applications to

MPSoC platforms,” in Proc. Conf. Design Autom. Test

Eur., Mar. 2010, pp. 753–758.

[15] A. D. Pimentel, C. Erbas, and S. Polstra,

“A systematic approach to exploring embedded system

architectures at multiple abstraction levels,” IEEE Trans.

Comput., vol. 55, no. 2, pp. 99–112, Feb. 2006.

[16] B. Kienhuis, F. Deprettere, P. van der Wolf, and K.

Vissers, “A methodology to design programmble

embedded systems: The y-chart approach,”

Embedded Processor Design Challenges, ser.

Lecture Notes in Computer Science, Berlin, Germany:

Springer-Verlag, 2002, vol. 2268, pp. 18–37.

[17] L. Eeckhout, Computer Architecture Performance

Evaluation Methods (Synthesis Lectures on Computer

Architecture). San Rafael, CA, USA: Morgan Claypool

Publishers, 2010.

[18] R. Niemann and P. Marwedel, “An algorithm for

hardware/software partitioning using mixed integer

linear programming,” Design Autom. Embedded Syst.,

vol. 2, no. 2, pp. 165–193, 1997.

90 IEEE Design&Test

Tutorial

[19] M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich,

“Efficient symbolic multi-objective design space

exploration,” in Proc. Asia South Pacific Design Autom.

Conf., Mar. 2008, pp. 691–696.

[20] S. Padmanabhan, Y. Chen, and R. D. Chamberlain,

“Optimal design space exploration of streaming

applications,” in Proc. IEEE Int. Conf. Appl.-Specific

Syst. Architect. Process., Sep. 2011, pp. 227–230.

[21] M. Palesi and T. Givargis, “Multi-objective design

space exploration using genetic algorithms,” in Proc.

Int. Symp. Hardw./Softw. Codesign, 2002, pp. 67–72.

[22] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel,

“Multiobjective optimization and evolutionary

algorithms for the application mapping problem in

multiprocessor system-on-chip design,” IEEE Trans.

Evol. Comput., vol. 10, no. 3, pp. 358–374, Jun. 2006.

[23] D. Beasley, D. R. Bull, and R. R. Martin, “An overview

of genetic algorithms: Part I—Fundamentals,” Univ.

Comput., vol. 15, no. 2, pp. 58–69, 1993.

[24] M. Thompson and A. D. Pimentel, “Exploiting

domain knowledge in system-level MPSoC design

space exploration,” J. Syst. Architect., vol. 59, no. 7,

pp. 351–360, Aug. 2013.

[25] W. Quan and A. D. Pimentel, “Towards exploring vast

mpsoc mapping design spaces using a bias-elitist

evolutionary approach,” in Proc. Euromicro Digital

Syst. Design Conf., Aug. 2014, pp. 655–658.

[26] R. Piscitelli and A. D. Pimentel, “Design space pruning

through hybrid analysis in system-level design space

exploration,” in Proc. Int. Conf. Design Autom. Test

Eur., Mar. 2012, pp. 781–786.

[27] G. Mariani, A. Brankovic, G. Palermo, J. Jovic, V.

Zaccaria, and C. Silvano, “A correlation-based design

space exploration methodology for multi-processor

systems-on-chip,” in Proc. Design Autom. Conf.,

2010, pp. 120–125.

[28] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis,

“Rapid design space exploration of heterogeneous

embedded systems using symbolic search and multi-

granular simulation,” in Proc. LCTES+SCOPES, 2002,

pp. 18–27.

[29] Z. J. Jia, T. Bautista, A. Núñez, M. Thompson,

and A. D. Pimentel, “A system-level infrastructure

for multidimensional MP-SoC design space co-

exploration,” ACM Trans. Embedded Comput. Syst.,

vol. 13, no. 15, p. 27, 2013.

[30] Z. J. Jia, A. Núñez, T. Bautista, and A. D. Pimentel,

“A two-phase design space exploration strategy for

system-level real-time application mapping onto

MPSoC,” Microprocess. Microsyst., vol. 38, no. 1,

pp. 9–21, 2014.

[31] S. V. Gheorghita et al., “System-scenario-based

design of dynamic embedded systems,” ACM Trans.

Design Autom. Electron. Syst., vol. 14, no. 1,

pp. 1–45, 2009.

[32] P. van Stralen and A. D. Pimentel, “Scenario-based

design space exploration of MPSoCs,” in Proc. Int.

Conf. Comput. Design, Oct. 2010, pp. 305–312.

[33] P. van Stralen and A. Pimentel, “Fitness prediction

techniques for scenario-based design space

exploration,” IEEE Trans. Comput.-Aided Design

Integr., vol. 32, no. 8, pp. 1240–1253, Aug. 2013.

[34] P. van Stralen, “Applications of scenarios in early

embedded system design space exploration”, Ph.D.

dissertation, Univ. Amsterdam, Amsterdam, The

Netherlands, Jan. 2014.

[35] P. van Stralen and A. D. Pimentel, “A trace-based

scenario database for high-level simulation of multimedia

MP-SoCs,” in Proc. Int. Conf. Embedded Comput. Syst.

Architect. Model. Simul., Jul. 2010, pp. 11–19.

[36] W. Quan and A. D. Pimentel, “A hybrid task mapping

algorithm for heterogeneous MPSoCs”, ACM Trans.

Embedded Comput. Syst., vol. 14, no. 1, p. 14, Jan.

2015.

Andy D. Pimentel is an Associate Professor at
the System and Network Engineering Lab, University
of Amsterdam, Amsterdam, The Netherlands. His
research centers around system-level modeling,
simulation, and exploration of (embedded) multicore
and manycore computer systems with the purpose
of effectively designing and programming these
systems. Pimentel has a PhD in computer science
from the University of Amsterdam. He is a cofounder
of the International Conference on Embedded
Computer Systems: Architectures, Modeling, and
Simulation (SAMOS). He has (co)authored more
than 100 scientific publications and is an Associate
Editor of Elseviers Simulation Modelling Practice
and Theory as well as Springers Journal of Signal
Processing Systems. He served as the General Chair
of HIPEAC’15, as Local Organization Co-Chair of
ESWeek’15, and he serves as Program (Vice-)Chair
of CODES+ISSS in 2016 and 2017. Furthermore, he
has served on the TPC of many leading (embedded)
computer systems design conferences, such as DAC,
DATE, CODES+ISSS, ICCD, ICCAD, FPL, SAMOS,
and ESTIMedia.

J Direct questions and comments about this article to
Andy D. Pimentel, Institute of Informatics, University of
Amsterdam, 1098XH Amsterdam, The Netherlands;
a.d.pimentel@uva.nl.

