
EDiFy: An Execution time Distribution Finder

Boudewijn Braams
University of Amsterdam
bbx1992@gmail.com

Sebastian Altmeyer
University of Amsterdam
altmeyer@uva.nlm

Andy D. Pimentel
University of Amsterdam
a.d.pimentel@uva.nl

ABSTRACT
Embedded real-time systems are subjected to stringent timing
constraints. Analysing their timing behaviour is therefore of
great significance. So far, research on the timing behaviour of
real-time systems has been primarily focused on finding out
what happens in the worst-case (i.e., finding the worst case
execution time, or WCET).

While a WCET estimate can be used to verify that a system
is able to meet deadlines, it does not contain any further infor-
mation about how the system behaves most of the time. An
execution time distribution does contain this information and
can provide useful insights regarding the timing behaviour of
a system. In this paper, we present EDiFy, a measurement-
based framework that derives execution time distributions by
exhaustive evaluation of program inputs. We overcome the
scalability and state-space explosion problem by i) using static
analysis to reduce the input space and ii) using an anytime al-
gorithm which allows deriving a precise approximation on the
execution time distribution. We exemplify EDiFy on several
benchmarks from the TACLeBench and EEMBC benchmark
suites, and show that the anytime algorithm provides precise
estimates already after a short time.

1. INTRODUCTION
Research on the timing behaviour of embedded real-time

systems has been primarily focused on determining the worst-
case execution time (WCET). This focus is clearly motivated
by the need for timing verification, i.e, the need to guaran-
tee at design time that all deadlines will be met. Figure 1
taken from the survey paper on WCET analyses [15] illus-
trates the simplification of this focus: It shows the fictitious
execution time distribution of a real-time task, i.e the smallest
individual software component within the system. A WCET
analysis reduces the often complex timing-behaviour of a task
to a single value. Speaking in terms of Figure 1, all values left
of the WCET are ignored. Timing verification, in its tradi-
tional form, only requires bounds on the WCET of all tasks in
the system. It assumes conservatively that the system oper-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18 - 22, 2017, Austin, TX, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062233

ates correctly, only if it does so when all tasks run up to their
WCET value. For many industries, this assumption is un-
necessarily conservative and leads to costly over-provisioning
of hardware resources. In fact, only very few real-time appli-
cations, mostly from the avionics industry, require a timing
verification up to the highest standard. In most cases, infre-
quent deadline misses are acceptable and also preferable to
excessive hardware costs. The state-of-the-art in timing anal-
ysis, however, does not provide the necessary means to derive
richer information about the timing behaviour.

Figure 1: An execution time distribution, with an-
notated best-case execution time (BCET) and worst-
case execution time (WCET), source [15] (modified)

In this paper, we close this gap and present EDiFy, a frame-
work for the estimation of execution time distributions of em-
bedded real-time tasks. While a WCET estimate merely de-
scribes the execution time in the worst case scenario, a distri-
bution describes the execution times in all possible scenarios.
It can therefore be a valuable asset to the development pro-
cess of real-time embedded systems, and can answer questions
such as: is the worst-case a common or a rare case, what is
the average execution time, or, what is the difference between
best and worst-case execution time.

Deriving execution time distributions is an even more com-
plex task than bounding the WCET value, as it subsumes the
former: A correct and complete execution time distribution
would also contain the information about the WCET value.
Consequently, we have to restrict the problem setting: First of
all, we rely on measurements instead of static analyses. Rely-
ing on measurements implies that the resulting execution time
distribution will never show the full picture, unless the input
space allows for exhaustive measurements, which is highly
unlikely. Secondly, EDiFy is task-centric: we assume that
only the task under examination is running on the hardware.
Analysing the timing behaviour of a complete task set and
schedule is future work. Thirdly, we assume an input value
probability distribution to be provided. Even though it may
seem as a strong assumption, it is an absolute necessity. Not
even the average execution time is well defined, if we do not
know which inputs occur how often. The burden of provid-
ing these distributions is clearly on the system designer. We

also consider this assumption feasible as sample data can be
derived via test runs, control simulations and so on. Last but
not least, we concentrate for now on control applications, in-
stead of data-intensive image or video-processing benchmarks
due to the size of the input data. With these restrictions in
place, which we consider reasonable and realistic, the prob-
lem remains computationally intractable. EDiFy overcomes
this obstacle by a combination of i) a static analysis to reduce
the state-space, ii) a distributed anytime algorithm, and iii)
an evenly-distributed state-space traversal that ensures quick
convergence of the anytime algorithm.

We note that our work differs fundamentally from proba-
bilistic timing analyses as currently advocated for real-time
verification. We do not employ any statistical methods. In-
stead, EDiFy uses a heuristic to approximate the distribution.
If executed for a sufficiently long time, EDiFy will eventually
result in the ground-truth under the restriction detailed above,
and assuming that the distribution of the distribution of the
input values is provided. Hence, as a side-effect, the EDiFy
framework enables us to evaluate the precision and correct-
ness of measurement-based probabilistic timing analyses [4].
Yet, we are ultimately interested in providing a precise ap-
proximation on the execution-time distribution, and not in
providing estimates on the WCET.

Related Work. Execution time analyses can be classified as
static analyses or measurements-based analyses [15]. Static
analyses are based on analysing program code and control
flow and do not involve any actual execution of program code.
aiT [11] and Bound-T [12] are examples of commercial static
analysis tools used in the real-time embedded systems indus-
try. However, these tools are designed for producing WCET
estimates only, and are not suited for deriving execution time
distributions. In 2004, David and Puaut [9] developed a
static analysis to derive complete execution time distribu-
tions, but without considering any hardware effects, such as
caching, branch-prediction or pipelining. Their approach con-
sists purely of a source-code analysis, hence the resulting dis-
tribution can only be an abstract indication of the actual ex-
ecution times on real hardware.

Measurement-based analyses, in contrast, extract timing
behaviour by taking actual run-time measurements of exe-
cution times. This method is inherently simpler and merely
requires the program code and/or binary and a means to ex-
ecute it (either on real hardware or in a simulated environ-
ment). RapiTime [3] represents an example of a commercial
measurement-based tool. As it is in general intractable to de-
rive all measurements, measurement-based WCET analyses
tend to steer the input values towards the worst-case. This
is again in stark contrast to our approach, where we need
to cover a wide range of input values. Recently, probabilis-
tic timing analyses, especially measurement-based probabilis-
tic timing analyses [4], have received ample attention in the
real-time community. Despite arguing about execution time
distributions in general, these approaches only serve to de-
rive upper bounds on the execution and employ extreme-value
theory [8] or copulas [5] to this end. As a consequence, these
methods rely on strong assumptions about the probabilistic
nature [13] of the hardware and input values, and foremost,
they only derive cumulative distribution functions to assign
exceedance probabilities to WCET estimates. To the best
of our knowledge, no methods are available so far to derive
complete execution time distributions on modern hardware.

Structure. The paper is structured as follows: Section 2 in-
troduces the EDiFy framework, its inputs and outputs and
the tools used. In Section 3 we detail the state-space pruning,
and in Section 4, we detail the anytime algorithm. Section 5
provides an evaluation based on selected TACLeBench and
EEMBC benchmarks, and Section 6 concludes the paper.

2. THE EDIFY FRAMEWORK
In this section, we explain the overall structure of the ED-

iFy framework and the required input and derived output.
The input to the framework is the C-code of the program to
be analysed, and the input value probability distributions of
each input variable. The output is an approximation on the
corresponding execution time distribution. We define an exe-
cution time distribution (ETD), as a probability distribution,
which gives the likelihood of a certain execution time t occur-
ring: ETD: N→ R with

∑
t ETD(t) = 1. Such a distribution

captures the complete timing behaviour of a system.
We note that for real-world applications of embedded real-

time systems it can be assumed that input values are not
uniformly distributed. Take for example a control system in
a modern car where the engine temperature is an input vari-
able. Initially, the engine temperature will be low, but after
driving the car for a while the engine will remain warm. It
is hence evident that the input value distribution (IVD) in-
fluences the ETD, and must therefore be taken into account.
An IVD assigns each value of an input variable its likelihood:
IVD: VT → N with

∑
v∈VT

IVD(v) = 1 where VT is the set of
values of a variable of type T . We require an IVD for each
independent input variable, and a conditional probability dis-
tribution for a dependent variable. We note that dependency
between variables do not change the complexity of the EDiFy
framework, as the input probabilities are solely used to weight
the measured execution times.

For the sake of simplicity, we only present the equations
assuming independent variables. Further details on handling
depending types can be found in [7].

2.1 Structure of the EDiFy Framework
The framework (see Figure 2) consists of two main compo-

nents, a static part to prepare the input space, shown on the
left side, and a dynamic part to run the measurements, shown
on the right side. The input preparation is executed once, and
performs a static program analysis to derive the set of vari-
ables that indeed influence the execution time of the task, and
how these variables influence the execution time. The ratio-
nal behind this step is to reduce the input space by pruning
irrelevant input variables and variable ranges: not each in-
put variable influences the execution behaviour, and not each
input value leads to a distinct execution time. Section 3 pro-
vides the details on the input preparation. The measurements,
i.e. the dynamic part of the EDiFy framework, are executed
distributively by a fixed number of worker processes. Each
process is assigned a dedicated range of the complete input
space, and traverses this range until either each input value
of the assigned range has been visited, or until the algorithm
is aborted. In each iteration for each process, an input gener-
ator computes the next state of the input space to be visited,
injects these values in the test-harness of the C-code provided
by the user, and creates a stand-alone executable to be ex-
ecuted in the simulator. The result of each measurement is
forwarded to the execution time distribution calculator, which
weighs the measured execution times with the input distribu-

tion. The ETD calculator continuously updates the resulting
ETD estimation. The algorithm can thus be aborted at any
time, while still producing meaningful results. Section 4 pro-
vides the details on the anytime algorithm.

Program Analysis

Input

Classification

Range Division

Input Range

Division

Input Generator

Input Values

Code Generator

Compiler

Simulator

Exec. Time

rep
ea

t

Input Dist. C-code

ETD Calculator

Exec. Time
Distribution

Figure 2: Toolchain of the EDiFy Framework. The
input to the framework are the C-code, and the Input
distributions for each input variable, the output is the
corresponding execution time distribution. The left
part of the toolchain (input preparation) is executed
exactly once, whereas the right part (measurements)
is executed iteratively and distributively.

2.2 Supported Input Types
For each supported type, we require a bijective function

that maps the complete domain of the variable to the natural
numbers N, which enumerates all values of that type E : T→
N. For example, the enumeration function for Boolean values
simply assigns 0, resp. 1, to the values true and false. The
enumeration function for integer shifts the complete range by
the minimum integer value, i.e., Eint(x) = x + |INT MIN|
to ensure that the enumeration function starts at 0, instead
of a negative value. For arrays with n unique values, the
lexicographic order is used as an enumeration function.

Built-in types such as floats and doubles can also be in-
tegrated: We can simply interpret the bit-representation of
a float value as an integer value, and apply the enumeration
function for in integers Eint. Compound types such as structs,
or arrays are supported by interpreting each component as an
independent input variables. Only domain specific knowledge
must be encoded using a dedicated enumeration function.

We note that input variables can influence the execution
time either by influencing the control flow directly, i.e., through
conditionals, or loop-statements, or through instructions with
variable execution times, such as floating-point or memory
operations. While the EDiFy framework also supports vari-
able instruction execution times by exhaustive evaluation of
pointer or floating point values, dedicated support for this
type of input-dependent execution time is future work.

2.3 Hardware State
The EDiFy Framework is task-centric, meaning that we

assume no other tasks or code to be executed on the same
hardware system. Consequently, there are only two hardware
states that can occur, a cold system, where no data or in-
structions have yet been cached, or a warm system, where the
cache has already been filled with data from the task under

examination. Results for the first can be achieved by reset-
ting the simulation after each measurement, and the second
by executing the same task with the same input data twice,
but only measuring the second iteration.

We acknowledge that this restriction is rather substantial.
We do however believe that the information about the execu-
tion time distribution based on warm or cold system hardware
states only, is already valuable on its own. The extension to
other hardware states is considered future work.

2.4 Implementation details
The EDiFy framework is implemented using Python to con-

trol the tool chain and the anytime algorithm. The static pro-
gram analysis is implemented within the CIL framework [14].
As target architecture, we have selected the ARMv8, for which
a cycle accurate simulator (gem5) [6] and a gcc cross-compiler
are freely available. The implementation of the framework is
made available online [2].

3. INPUT-SPACE ANALYSIS
The main obstacle to overcome is the prohibitively large

number of input variations. The input space is simply too
large to naively derive an execution time measurement for
each element in the input space. Our first goal is thus to
remove superfluous input values and to cluster input ranges
for which we can guarantee that the execution time values will
be the same. The questions we need to ask here are:
• Which input parameters influence the execution times?

• How do they influence the execution times?
Static program analysis is the natural way to provide safe
and complete answers to these question. The input analysis is
implemented as a backwards program analysis that derives the
set of variables that influence the execution time either directly
or indirectly. With directly, we mean that the variables appear
in the expression within an if -statement or loop-statement
(or within a float or pointer operation, in case of variable
instruction times) and with indirectly, we refer to variables
that only influence variables from the first set.

3.1 Program Analysis
In the following, we describe the basic program analysis,

which derives the set of all variables that influence the control-
flow of the program. All other program analyses are derived
from this basic analysis using minor modifications.

The domain of the analysis is the powerset of the set of
variables V: D = 2V with ∅ being the bottom and V the top
element. Since we are interested in a safe analysis, we use
set-union

⋃
as the combine-operator to be invoked in case of

control-flow merges. The auxiliary function varUsed: Expr →
2V derives the set of variables used within an expression. The
transfer function tf : Instr → (2V → 2V) selects all variables
used within an expression in an if or loop statement, and also
all variables used within an expression if the result of the ex-
pression is assigned to an execution time influencing variable.
It is defined as follows:

tf(I)(V) = match I with

if (exp) → V
⋃

varUsed(exp)
while (exp) → V

⋃
varUsed(exp)

v = exp → if(v ∈ V) then
V
⋃

varUsed(exp) else V
→ V

(1)

where I is an instruction and V is the set of input-influencing
variables. We assume for the sake of simplicity a simplified
instruction set where all loops have been transformed to while
loops, as within the CIL framework [14], in which we have
implemented the program analysis.

The analysis can be modified to cover instructions with
variable execution times. The analysis iterates over all ex-
pressions within a program, whenever the analysis encounters
an expression of type float, or an expression used to index
a memory address, respectively, all variables used within the
expression are added to the current data-flow value.

The presented analysis derives all directly and indirectly
influencing variables. To derive directly influencing variables
only, we simply have to omit the case distinction v = exp and
directly forward the data flow value V without any additions.

We acknowledge that further program analyses, such as a
value- or a pointer -analysis can be integrated to further reduce
the input-space. These analyses, however, exceed the scope
of the paper. The main purpose of the presented program
analysis is to correctly classify all input variables and to en-
sure completeness, i.e., to ensure that each input-influencing
variable is correctly identified. Bounds on the minimal or
maximal values of variables, or additional information about
the input variables can be provided by the user.

3.2 Classification
The result of these program analyses is a classification of

the input variables along two orthogonal lines: directly or in-
directly influencing, and through loops, conditionals or vari-
able instruction times. This classification is a prerequisite
to divide the input space in a meaningful manner. We note
that this classification is not exclusive, i.e., a variable may
influence the execution times in more than only one single
category. Furthermore, as an implicit result of this classifica-
tion, we can validate whether the user has specified an input
distribution for all relevant variables, and we can omit irrel-
evant variables from further examination. We denote the set
of execution time influencing variables with VI .

3.3 Handling Multiple Variables
In case of multiple variables, we project the multi-dimensional

input space to the natural numbers N using Ê : V1 × V2 ×
. . .Vn → N with

Ê(v1, v2, . . . , vl) =

l∑
i=1

∏
j<i

Emax
Vj

 ∗ ETi
(vi)

 (2)

where ETi is the enumeration function for Type Ti and Emax
Vj

denotes the size of the domain of variable Vj .
Similarly, we compute the input probability for the tuple of

input variables (v1, v2, . . . , vl) assuming that all variables are
independent as follows:

IVD′(v1, v2, . . . , vl) =
∏
j<i

IVD(vi) (3)

Dependent variables have to be handled and defined explicitly,
see [7] for further details.

3.4 Input Range Division
The measurements will be distributed to different processes

so that we can exploit the parallelism of modern architectures.
To this end, we evenly distribute the entire input space to all
spawned processes used by the anytime algorithm.

4. ANYTIME ALGORITHM
The elimination of non-relevant input values is unlikely to

reduce the input space sufficiently for an exhaustive evalua-
tion. In most cases, approximation is inevitable.

In this section, we detail the anytime algorithm. In particu-
lar, we describe how the input ranges assigned to each proces-
sor are traversed to achieve an even coverage, and we describe
how the resulting measurements are weighted by their corre-
sponding input value distribution.

The anytime algorithm works by spawning various worker
processes to perform the measurements, and an additional
process which continuously accumulates and processes the ex-
ecution times produced by the worker processes. This pro-
vides immediate availability of the latest results and thereby
allows for the execution time distribution to be derived on the
fly.

To derive a meaningful approximation of the execution time
distribution early on, we divide the input space over several
processes, and employ a specific traversal function. Our as-
sumption is that the execution time distribution can be ap-
proximated quickly by evaluating the input space evenly.

4.1 Range Traversal
We have to ensure that we traverse the input space, or to

be specific, the range of the input space assigned to a worker
process, in a meaningful way. When we start to traverse the
range from one corner and move to the other step by step, we
achieve a full coverage of a part of the range, whereas the other
side remains unvisited until the entire range has been visited.
We refer to this type of state traversal as linear traversal.

To cover the entire input space evenly already early on we
propose an alternative traversal function tr. The rational be-
hind this function is to always hit the middle of the unvisited
space. Assume an input range given by [0 : 127]. The traversal
function starts in the middle of the range, tr(1) = 63, followed
by the middle of the left sub-range [0 : 63], tr(2) = 32, and of
the right subrange [63 : 127], tr(3) = 96, and so on. We refer
to this traversal function as logarithmic traversal. We first
define an auxiliary function tr′ : N → (0 : 1) which computes
the range pointer within the range (0 : 1), e.g., tr′(1) = 0.5,
tr′(2) = 0.25, tr′(3) = 0.75, irrespective of the size of the
range of tr. It is defined as follows:

tr′(x) =

(
1

2blog2(x)c+1
+

x− 2blog2(x)c

2blog2(x)c

)
, (4)

Since the function tr′ always cuts the unvisited ranges in half,
it works best for range-size of a power of 2. Next, we have to
map the range of tr′ to an arbitrary range [lmin : lmax]. Let s
be the size of the range, i.e., s = lmax − lmin + 1. We define
tr : N→ N ∪ {⊥}, the corrected version of tr′ as follows:

tr(x) =

{
lmin + tr′(x) ∗ 2dlog2(s)e if tr′(x) ∗ 2dlog2(s)e ≤ s

⊥ otherwise
(5)

The value ⊥ indicates that the result will be omitted and we
directly proceed with the next range index. This is necessary
to ensure that each value occurs exactly once, and to avoid
performing measurements with the same input values twice.

The logarithmic traversal function tr is applied to each
worker process, and hence, to each subrange individually. A
weakness of tr is that it visits lmin and lmax very late, resp.
at the very last. The values lmin and lmax tend to result in

the lowest and highest execution time values and hence, de-
termine the overall shape of the distribution more than values
from the middle range. To overcome this drawback, lmin and
lmax will be visited first within each process and only after
these two measurements, the traversal using tr starts.

4.2 Derivation of execution time distribution
The measured execution times are stored in a relative fre-

quency table. This table contains an entry for each observed
execution time with a value indicating its relative occurrence
in relation to all others: rf : N→ R with

∑
∀t∈N rf(t) = 1.

As we assume the availability of the value probability dis-
tributions for each of the input variables, we have to include
these in the derivation of the execution time distribution. We
do this by utilising the probability functions as weight func-
tions for the frequency table. The relative frequency of a
measured execution time t is determined by the following up-
date function: rf(t) := rf(t) +

∏n
i=1 P (Ii = vi). This ensures

that an execution time resulting from a high probability in-
put contributes more to the distribution than one with a low
probability input. Note that we assume the probabilities of
the individual input variables to be statistically independent
(i.e., that the joint probability is given by the product of the
individual probabilities).

The final step in deriving the execution time probability
distribution is to normalise the data by dividing each value
by the sum of all values. This last step ensures that all the
combined probabilities add up to 1.

5. EVALUATION AND RESULTS
In this section, we exemplify the EDiFy framework on a

selection of benchmarks from the TACLeBench [10] and the
EEMBC [1] benchmark suites. TACLeBench is an open source
benchmark suite particularly designed for the evaluation of
timing analysis tools, whereas EEMBC is a commercial bench-
mark suite based on realistic automotive use cases. Despite
the high number of available benchmarks, only a subset ex-
hibits non-trivial timing behaviour, or an input-dependent ex-
ecution time. Furthermore, in nearly all cases, a single vari-
able per task influences the execution time behaviour. We
have selected three non-trivial benchmarks to highlight dif-
ferent aspects of the EDiFy Framework: bubble-sort (from
TACLeBench) has been selected to illustrate the progress of
the anytime algorithm over time, and bitmnp and pntrch (both
EEMBC) to show specific execution time distributions and
their dependency on the input value distributions. Due to
space constraints, further results are only available online [2].

The EDiFy framework was run on a system featuring a
quad-core Intel Core i7-4700MQ processor clocked at 3.4GHz
with 16GB of DDR3 RAM. The benchmarks were executed in
the gem5 cycle-accurate simulator and cross-compiled using
GCC 5.3.0. The simulator itself targeted the 64-bit ARMv8-A
architecture, a clock speed of 500Mhz and a cache featuring
128kB of L2 cache, 64kB of L1 data cache and 16kB of L1
instruction cache.

5.1 Anytime Algorithm
For the evaluation of the anytime algorithm, we have chosen

the bubble-sort benchmark, as it exhibits non-trivial timing
behaviour and is easily scalable. Due to the specific purpose
as a benchmark, there is only one parameter which has been
correctly identified by the input space analysis. We have as-
sumed equal probability of each permutation, and use the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

0.5
1 1.5

2 2.5
3

Li
ke

lih
o
o
d

Execution Time (ns)

exact ETD
1 proc., lin. traversal
1 proc., log. traversal
8 proc., lin. traversal
8 proc., log. traversal

Figure 3: Approximation on the execution time dis-
tribution for benchmark bubble sort (TACLeBench)
after 10 minutes of runtime.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

0 50 100
150

200
250

300
350

400

M
e
a
n
 d

iff
e
re

n
ce

Time (minutes)

1 proc., lin. traversal
1 proc., log. traversal
8 proc., lin. traversal
8 proc., log. traversal

Figure 4: Progression of the weighted mean (with re-
spect to the result obtained by exhaustive evalua-
tion) of the execution time distributions for bench-
mark bubble sort (TACLeBench).

lexicographic order as bijective enumeration function, i.e., to
assign each value from [0 : n!− 1] a unique permutation. Fig-
ure 3 depicts the execution time distributions derived after 10
minutes using 4 different configurations: linear and logarith-
mic traversal executed on 1 (with one spawned process only)
or on 4 processors (with 8 spawned processes). The anytime
algorithm completes around 1000 measurements per proces-
sor within 10 minutes. In addition, we have added a line that
shows the final, and hence exact execution time distribution
after exhaustive evaluation. The measured execution times
have been rounded to the closest 0.1ns to smooth the graph.

The logarithmic traversal function leads to a precise approx-
imation after already 10 minutes, irrespective of the number of
processors used, whereas, the linear traversal function shows
an heavily skewed approximation on the execution time distri-
bution, which is only slightly alleviated by using 4 processors.
We have also evaluated the mean difference with respect to
the exact distribution (see Figure 4). Exhaustive evaluation is
achieved after around 120, resp. 360 minutes when executed
on 4, resp. 1 processor. The graph shows the advantage of
combining logarithmic traversal with distributed processing.
The logarithmic traversal function ensures a tight approxi-
mation early on, irrespective of the number of processors,
and the distributed processing reduces the overall runtime
resulting in faster convergence. Interestingly, the mean dif-
ferences are not monotonically decreasing for bubble-sort as
some costly permutations are only examined towards the end
of the evaluation. We note that for cases with purely integer
input variables, we observe monotonic mean differences.

5.2 IVD-Dependency
The other two benchmarks, bitmnp and pntrch have been

selected as they depict rather peculiar execution time distri-
butions. Both of these benchmarks stem from the EEMBC
automotive benchmark suite [1]. We use these benchmarks to

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

52 54 56 58 60 62 64 66 68

Li
ke

lih
o
o
d

Execution Time (μs)

Normal IVD
Uniform IVD

Figure 5: Execution time distribution for benchmark
bitmnp (EEMBC)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

85 90 95 100
105

110
115

Li
ke

lih
o
o
d

Execution Time (μs)

Normal IVD
Uniform IVD

Figure 6: Execution time distribution for benchmark
pntrch (EEMBC)

illustrate the impact of the input value distribution, instead
of illustrating the progress of the anytime algorithm: for these
benchmarks, the anytime algorithm has produced very precise
estimates already after less than 10 minutes.

First, we determined the input values using the input space
analysis. From the initial set of 10 (bitmnp), resp. 11 (pntrch)
global input values, 7, resp. 8, have been identified of being ir-
relevant to the timing behaviour by the input-space analysis,
and 2 more have been eliminated as static part of the test har-
ness. In each case, the remaining input-influencing parameter
is of type integer. We have observed this strong reduction in
nearly each benchmark of the EEMBC benchmark suite [1].
Figures 5 and 6 depict the execution time distributions for
the two benchmarks, assuming either a uniform, or a nor-
mal distribution over the entire integer range. Due to space
constraints, we omit the graphical representation of the input
value distribution. The interested reader is referred to [2],
where the complete data is available. In both cases, we can
clearly see the impact of the IVD on the execution time dis-
tribution. Furthermore, we observe non-trivial distributions,
with very peculiar features such as the peak in case of pntrch
with normal distribution, or the high likelihood of the WCET
in case of bitmp. Such information can be of high interest in
the design and evaluation of the timing behaviour of real-time
tasks. Even though these benchmarks are rather small, com-
pared to other domains, they still represent typical examples
from the automotive domain.

6. CONCLUSION
In this paper, we have presented EDiFy, a framework to

derive the execution time distributions of embedded real-time
tasks. EDiFy lifts real-time timing analysis from deriving
bounds on the execution time to deriving complete execution
time distributions.

The main obstacle towards deriving such execution time
distributions is the computational complexity and the sheer
size of the input space. We attack this state-space explo-

sion problem by i) using static analysis to reduce the input
space and ii) using an anytime algorithm which allows to de-
rive meaningful approximation on the execution time distribu-
tion. The static analysis removes irrelevant input parameters,
and hence prunes the state-space. The anytime algorithm –
together with a logarithmic traversal function to achieve a
balanced coverage of the input space – allows to compute a
precise approximation even if exhaustive evaluation is infea-
sible. We have successfully exemplified the EDiFy framework
on TACLeBench and EEMBC control applications.

Our framework is currently task-centric, meaning that we
assume that only the task under examination is running on the
hardware. As future work, we plan to extend the framework
towards complete task sets, where we take the interference of
different tasks on the hardware into account. Furthermore,
we plan to integrate more sophisticated program analyses to
further prune the input-space.

References
[1] EEMBC Autobench. http://www.eembc.org/benchmark/

automotive sl.php. Accessed: 2016-04-29.
[2] Git repository of EDIfY: The execution time distribution

finder. https://github.com/BDWN/etd.
[3] Rapitime. https://www.rapitasystems.com/products/

rapitime. Accessed: 19-05-2016.
[4] G. Bernat, A. Burns, and M. Newby. Probabilistic timing

analysis: An approach using copulas. J. Embedded Comput.,
1(2):179–194, 2005.

[5] G. Bernat, A. Colin, and S. M. Petters. Wcet analysis of
probabilistic hard real-time systems. In RTSS ’02, pages 279–
288.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The gem5 simulator. ACM SIGARCH Computer Ar-
chitecture News, 39(2):1–7, 2011.

[7] B. Braams. Deriving an execution time distribution by exhaus-
tive evaluation. Bachelor’s thesis, University of Amsterdam,
June 2016.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Var-

danega, L. Kosmidis, J. Abella, E. Mezzetti, E. QuiÃśones,
and F. J. Cazorla. Measurement-based probabilistic timing
analysis for multi-path programs. In ECRTS ’12, pages 91–
101.

[9] L. David and I. Puaut. Static determination of probabilistic
execution times. In ECRTS ’04, pages 223–230.

[10] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch,

C. Rochange, M. Schoeberl, R. B. SÃÿrensen, P. WÃd’gemann,
and S. Wegener. Taclebench: A benchmark collection to sup-
port worst-case execution time research. In WCET ’16.

[11] R. Heckmann and C. Ferdinand. Worst-case execution time
prediction by static program analysis. In IPDPS ’04, pages
26–30.

[12] N. Holsti, T. Langbacka, and S. Saarinen. Worst-case execu-
tion time analysis for digital signal processors. In EUSIPCO
’00, pages 1–4.

[13] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan, and D. W. Wat-
son. Determining the execution time distribution for a data
parallel program in a heterogeneous computing environment.
J. Parallel Distrib. Comput., 44(1):35–52, 1997.

[14] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
Intermediate language and tools for analysis and transforma-
tion of c programs. In CC, pages 213–228, 2002.

[15] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström. The worst-case execution-time problem-overview of
methods and survey of tools. ACM TECS, 7(3):36:1–36:53,
May 2008.

