Thermal Management for S-NUCA Many-Cores via
Synchronous Thread Rotations

Yixian Shen, Sobhan Niknam, Anuj Pathania, and Andy D. Pimentel
University of Amsterdam, Amsterdam, The Netherlands
y.shen/@uva.nl, [s.niknam@uva.nl, a.pathania@uva.nl, a.d.pimentel@uva.nl

Abstract—On-chip thermal management is quintessential to a
thermally safe operation of a many-core processor. The presence of
a physically distributed logically shared Last-Level Cache (LLC)
significantly reduces the performance penalty of migrating threads
within the cores of an S-NUCA many-core. This cost reduc-
tion allows novel thermal management of these many-cores via
synchronous thread migration. Synchronous thread migration
provides a viable alternative to Dynamic Voltage and Frequency
Scaling (DVFS) and asynchronous thread migration used tradi-
tionally to manage thermals of S-NUCA many-cores.

We present a theoretical method to compute the peak tem-
perature in many-cores with synchronous thread migrations. We
use the method to create a thermal management heuristic called
HotPotato that maximizes the performance of S-NUCA many-cores
under a peak temperature constraint. We implement HotPotato
within the state-of-the-art HotSniper simulator. Detailed interval
thermal simulations with HotSniper show an average 10.72%
improvement in response time of S-NUCA many-cores when
scheduling with HotPotato compared to a state-of-the-art thermal-
aware S-NUCA scheduler.

I. INTRODUCTION

Many-core processors house tens of cores on a single die
and excel in executing multi-threaded applications with signifi-
cant inter-thread communication [1f]. In shared memory many-
cores, the cores (overlying threads) communicate indirectly
using a logically shared memory address space. The cores can
always communicate with each other using the off-chip main
memory. However, to minimize the communication cost (la-
tency), many-cores come with a low-latency on-chip Last-
Level Cache (LLC). LLC itself is often physically distributed
between the cores as cache banks to distribute the on-chip cache
coherency traffic. The banks are connected using a Network-
on-Chip (NoC) to allow for a bottleneck-free flow of traffic [2].

Static Non-Uniform Cache Architecture (S-NUCA) is a
memory architecture that statically maps the LLC to the main
memory [3]], [4]. S-NUCA allows for a quick search for a
cache line (page), given the static mapping with minimal cache
coherence. During a thread migration on an S-NUCA many-
core, only the cache lines stored in private caches on the
core from where the thread migrates need flush to the LLC.
The shared LLC then refills the cache lines on another core
where the migrated thread restarts its execution. Consequently,
the physically distributed logically shared LLC and an NoC
significantly reduces the cost of thread migrations on many-
cores with S-NUCA caches.

S-NUCA many-cores, similar to other many-cores, suf-
fer from thermal issues [5]]. Thermal-aware schedulers pri-
marily depend upon Dynamic Voltage and Frequency Scal-

Core
LID[LI
LLC Bank

Fig. 1: Synchronous thread rotation on a S-NUCA many-core.

ing (DVFS) technology to manage the thermals for S-NUCA
many-cores [6]]. DVFES reduces a core’s frequency (and voltage)
to reduce its power consumption and lower its temperature [7]],
[8]. However, DVES also results in a significant drop in the
performance of the overlying applications [9]. Thermal-aware
schedulers also incorporate thread migrations as an additional
knob to prevent hotspots from forming on-chip on S-NUCA
many-cores [10]. However, schedulers perform these migra-
tions asynchronously on-need basis and often as a measure of
last resort. These on-demand asynchronous thread migrations
combined with DVFS represent the state-of-the-art strategy for
thermal-aware schedulers for S-NUCA many-cores.

The task migration penalty for S-NUCA is not particularly
severe because the LLC cache in S-NUCA is logically shared
and physically distributed. Therefore, only the private L1 and
L2 caches require a refresh on migrations. In this work, we
make an observation that the average performance penalty
from thread migrations is significantly lower than DVFS on
S-NUCA many-cores. Based on this observation, we propose
a novel method for thermal management for S-NUCA many-
cores that involves synchronously rotating (migrating) threads
on S-NUCA many-cores such that no core has a chance to
heat up beyond the given thermal threshold. Synchronous task
rotations average the temperatures between hot and cold cores,
allowing us to investigate the periodic solution for thermal
management of S-NUCA many-cores.

Motivational Example. Figure [l| shows an abstraction of
a 16-core S-NUCA many-cores. In this example, we primarily
focus on the center-most cores of the many-core, namely Cores
5, 6, 9, and 10. We simulate the many-core using detailed
interval thermal simulations using the HotSniper [|12] toolchain.
We set the thermal threshold at 70 °C.

Figure 2(a) shows the thermal trace when a two-threaded
blackscholes benchmark from PARSEC [13]] benchmark suite
executes on Cores 5 and 10 of the many-core running at
their peak frequency of 4 GHz. This execution results in a

mailto:y.shen@uva.nl
mailto:s.niknam@uva.nl
mailto:a.pathania@uva.nl
mailto:a.d.pimentel@uva.nl

—— Core5 Core6 Core9 --- Corel0 ‘
O 80F \ P e e e \ B
E‘ 70 = (N
2 B \ 1
5 60| : 5
o = B
g 50]
= | | | | | | | | | | | | | |
15 30 45 60 75
Time [ms]
(a) Fixed Peak Frequency
U 80 [f f f T T i T T T T T]
s, B @ @
R = P S M O VO S SR 0 SO POP PO SO A R
B I . ‘]
= 60| f .
g, I 8 i
g 50 -~
ﬁ = | | | | | | | | | | | | | —
30 45 60 75 90
Time [ms]
(b) Thermally Safe Frequency provided by 7SP [11]
8 80 F T T T T T T]
'g 70 - N
2 I 1
=
5 601 .
o = B
g 50| 5
H | |
0 15 30 45 60 75 90
Time [ms]

(c) Synchronous Thread Rotation at Peak Frequency

Fig. 2: Thermal trace with different thermal management tech-
niques on the central cores of a 16-core many-core running a
two-threaded instance of blackscholes.

fast response time of 68 ms. However, the execution is not
thermally sustainable as the temperature during the execution
at 80 °C goes significantly beyond the thermal threshold.

Figure 2b) shows the thermal trace of the above execu-
tion under a state-of-the-art power budgeting algorithm called
TSP [14]]. TSP limits (budgets) the power consumption of the
cores of the many-cores using DVFES such that the execution
temperature does not cross the thermal threshold. However, this
comes at a slower response time of 84 ms.

The blackscholes benchmark has a master-slave structure
wherein primary execution constantly switches between the
master and slave thread. In Figure (b), only the master thread
works for data preparation in the initial Phase @ on Core 5,
and the slave thread is idle on Core 10. Subsequently, slave
threads start to work in Phase @, and the master thread becomes
idle. Finally, in Phase ®, the slave thread becomes idle again,
and the master thread wraps up the execution. Figure [[c)
shows the thermal trace when two threads (master and slave) of
blackscholes are synchronously rotated between the four centers

cores of the many-core at a rotation interval of 0.5 ms in every
phase, as abstracted in Figure E} In such an execution, the heat
from the execution of the master and slave threads averages
out. The temperature of any core does not exceed the threshold,
and the response time stands at 74 ms. The response time with
synchronous thread rotation incurs a performance penalty of
8.1% due to overheads originating from task migration, but still
is 11.9% faster than DVFS-based power budgeting. Therefore,
within the thermal threshold, the performance of task rotation
synchronously outperforms the DVES-based TSP approach.

Our Novel Contributions. Based on the above discussion,
we make the following novel contributions via this work.

o We are the first to propose thermal management for S-
NUCA many-cores using synchronous thread migrations.

e« We propose (based on the underlying many-core RC
thermal model [15]) an analytical method for calculating
the peak temperature of a synchronously rotating sequence
of threads on a set of cores at a certain rotation frequency.

o We integrate the method into a run-time scheduler
called HotPotato that selects a performance-maximizing
thermally-safe rotation on S-NUCA many-cores.

« We implement HotPotato in the state-of-the-art HotSniper
simulator. We show the superiority of HotPotato over
a state-of-the-art thermal-aware scheduler for S-NUCA
many-core using detailed interval thermal simulations.

Open-Source Contributions. The source code for the Hot-
Potato scheduler as a HotSniper plugin is available for down-
load at https://github.com/yixianuva/hotpotato.

II. RELATED WORK

The authors of [16] were the first to propose thread (task)
rotation to mitigate the peak temperature of single-core pro-
cessors. They heuristically calculated the sequence of single-
threaded kernels that run to completion sequentially such that
the peak temperature of a single-core processor minimizes.
The heuristic relies on chaining hot and cold threads in the
execution sequence to minimize peak temperature. However,
the complexity of the involved optimization problem increases
significantly from a single-core to many-core, executing multi-
ple multi-threaded tasks in parallel.

Authors of [3] were the ones to introduce S-NUCA memory
architecture. Subsequently, several S-NUCA many-cores made
it to the market [[17]]. However, like other many-cores, S-NUCA
many-cores also suffer thermal issues [5], [18]]. Therefore, their
thermal management remains an active research subject. Au-
thors of the [[19] were the first to characterize the performance
heterogeneity in cores of an S-NUCA many-core due to the
presence of physically distributed LLC and NoC. Authors of [6]]
were the first to combine the performance heterogeneity and
thermal heterogeneity in cores of S-NUCA many-cores for their
thermal management.

In [6]], [20], the authors present a DVFS-based thermal-
aware scheduler called PCGov that uses TSP-based [14] power-
budgeting for mapping tasks on S-NUCA many-cores. Authors
of [10]], [21] present a thermal-aware scheduler called PCMig
that extends PCGov with neural network-driven asynchronous

on-demand thread migrations. PCMig, to the best of our knowl-
edge, remains the state-of-the-art thermal-aware scheduler for
S-NUCA many-cores. In this work, on S-NUCA many-cores,
we show HotPotato, with its synchronous thread migration
(without DVES), is superior in performance to PCMig with
its DVFS and asynchronous on-demand thread migrations.

III. SYSTEM MODELS

A. Architecture Model

Figure [I] contains the abstraction of the architectural model
used in this work. The target architecture is an S-NUCA many-
core with n micro-architecturally homogeneous cores. A grid-
based NoC employing XY-routing connects the cores. Each
core holds a bank of the physically distributed logically shared
L2 LLC. Each core also has a private L1-Instruction and Data
cache and an NoC-router. The performance (or thermals) of
cores is positively (or negatively correlated) to their Average
Manhattan Distance (AMD) from other cores [19]. The topog-
raphy of the many-core dictates that the AMD of the cores
increase as we traverse away from the many-core’s center.

B. Thermal Model

We employ a well-known RC thermal model based on the
duality between thermal behavior and electrical circuits [[15].
RC thermal model has N thermal nodes wherein the first
n nodes represent the n cores of the many-core, and the
remaining N — n nodes correspond to the cooling system. As
per the model, we can compute the temperature of each thermal
node (a function of its power consumption, the temperature of
neighboring thermal nodes, and the ambient temperature) by a
set of N first-order differential equations.

AT + BT =P + 71,,,,,G (1)

where A = [a; ;|nxn contains the thermal capacitance
values of each thermal node, B = [b; ;Jnxn represents
the thermal conductivity values between neighboring nodes,
T = [T;(t)]nx1 denotes the temperature on every node at
time instant t, T' = [T}(t)]nx1 accounts for the first order
derivative of the temperature on each node concerning time,
P = [p;]nx1 contains the power consumption on each node,
and G = [g;]nx1 contains the thermal conductivity between
each node and ambient temperature. By defining matrix C =
—A~'B, we can rewrite Equation (T as following.

T =CT+A"'P+T,A™'G ®))

As the temperature of cores approaches the steady state, we
can rewrite Equation as follows.

Tsteady = B~'P +B717,,,,,G 3)

where Tsteady = [Tsteady: | Nx1 contains the steady-state tem-
perature of per node and B™! is the inverse of the matrix B.

IV. PEAK TEMPERATURE CALCULATION

Thread rotation involves executing threads rotating periodi-
cally on thermally-coupled cores of a many-core. We present
a computationally-efficient analytical solution to calculate the
peak temperature for a given thread rotation on a set of cores.
Let P be the power consumption vector of the rotating threads.
Due to performance heterogeneity, the same thread can have
different power consumption on different cores, and our proof
accounts for these differences.

Let the threads execute for a fixed epoch 7 on each core dur-
ing the rotation. Let Tinit = [Tinit,|nx1 be the matrix storing
the initial temperature of nodes at time ¢ = 0. Initial conditions
are mandatory for solving the involved differential equations.
We use MatEx [22] to solve for the transient temperature via
the matrix exponential method. We can obtain the temperature
at time 7 as a function of Tjp; using the following equation.

T, = Tsteady + eCT (Tinit - Tsteady) (4)

Let 6 be the periodicity of the thread rotation. By design,
a thread will migrate back to its original starting core after
time 07. Let Ty, be the ambient temperature. We assume
Tinit = [Tums]Nx1 to simplify the proof (without affecting the
outcome) by shifting the origin to the ambient temperature.
Subsequently, Tinie and T,,,, remove themselves from further
calculations. Furthermore, by substituting Tgeaqy from Equa-
tion (B) into Equation @), we obtain the temperature after the
first rotation epoch.

T, = 1 —-e)B7 P, ©)

where P, denotes the average power consumption of the
rotating threads over the epoch 7, and I is an identity matrix of
size N. Let T, be the temperature at the end of ¢ epochs. The
temperature Ts. is the initial temperature for epoch (6 + 1)7.
We define w = (I — ¢“")B™! as the rotational factor. The
subsequent temperature traces evolves based on Equation (4).
Therefore, the temperature T, after the first rotation period &
(or after 67 epochs) is as follows.

Ts, = WPs, +eCTWP(5_1), + - + e DCTwp, ©)

The temperature T, is a combination of power history
over the rotation period § and rotation factor w. Let d be
rotation periods where after the transient temperature pattern
in a rotation approaches a steady state and then repeats itself.
The first temperature component T(45.1), after dd durations is
as follows.

d d
T(d6+1)7’ — (I + Z 6i6CT)wPT + Z e(ié*l)CTWPQT 4t
i=1 i=1

d
3 el CTyps ()

i=1
T(4541)-> therefore, is a combination of power history
and the accumulated rotation component. As per the ther-
modynamic Equation), matrix A is an invertible ma-
trix and B is symmetrical. Therefore, we can factorize ma-
trix C. Consequently, we can analytically solve e®”

[eCTm-]NxN as a matrix exponential using €7 = VDV,
where V = [v; j]nxn are the eigenvectors of matrix C. Let
D = diag(e*17,e*27 ... e*NT) be the diagonal matrix where
A1, A2, - -+, Ay represent the eigenvalues of matrix C. The
following equation gives the matrix addition after the matrix
exponential decomposition for rotational components.

d d d d
Z eiCT —V. dlag(z ez\li‘r" Z e/\g'i‘r" e Z e)\N'LT) . V71 8)
i=1 i=1 i=1 i=1

Since A~' B is congruent to identity matrix I [22], then it
is also a positive definite matrix, so C= ~A'Bisa negative
definite matrix. As a result, eigenvalues are all negative. There-
fore, as d — +o0 in the steady state, the sum of each element
in eigenvalues of the diagonal matrix in Equation is given
by the following equation.

AT

. €
lim e)\l'r + 6)\127 N 6)\11161' _ = (9)
d—+o0 1—eM7

Therefore, each element in the diagonal element is upper
bounded by a fixed value in the steady state and is independent
of d. Due to the linear nature of the matrix transformation, we
get a safe upper bound of the peak temperature. We can use
Equations (§) and (@) to rewrite Equation (7) as the following.

1 1

_ ; -1
T(d5+1)7 =V - diag(1 — M7’ 1,65>\2T"” ’ 1,66ANT)'V wPr
e(—1D)A17 (6—1)A27 e(S—DANT L
+v: dlag(5)\17’1_ea>\27""’1_e¢sANT)'V WPar + -
>\1‘r e/\QT e>\N7' 1
HVdiag(—— s T T)Y Wher
(10)

The subsequent temperature components after d periods
{T(as+2)r> T(as+3)r -+ » T(as4s)- } consist of a similar format
but with different linear combinations of the rotation compo-
nents. We can derive the peak temperature of a rotation by
traversing the temperature components T(454)r and maxing
them. We also readjust the origin by factoring in Tgyp.

Tpear, = maz{maz{B~

"TambG + T(as42)r} + -

1’Ta.mb(; + T(d6+1)7}+

maz{B~ + maz{B™ TambG + T(as1s)r }}
an

V. THREAD ROTATION SCHEDULING

We present a heuristic that provides a thread rotation sched-
ule for S-NUCA many-cores. We call our scheduler HotPotato,
and the scheduling it performs HotPotato scheduling. The name
takes inspiration from analogous HotPotato routing [23] in
computer networks. An S-NUCA many-core comprises topo-
logical rings of AMDs, as shown in Figure [3} The cores within
the same ring are performance- and thermal-wise homogeneous.
The rings become performance-wise constrained and thermal-
wise unconstrained as the AMD value increases. HotPotato
exploits these concentric rings of AMDs to develop a schedule
of synchronously rotating threads. Threads assigned to one ring
always rotate within that ring at a given rotational interval.
The goal is to develop a schedule that keeps the many-core’s
peak temperature 7),cqx lower than the thermal threshold Tp7 s
while maximizing its performance. Tprys is the temperature

o (o> o
8/ % b O\
o o o o 4.5 Ring 3
(\¢ ¢ i ¢;) é 4.25 (DRingZ
) -

L

(¥

Fig. 3: Abstraction for concentric AMD-based rotation rings.

Algorithm 1 Efficient Peak Temperature Calculation

Input: Floorplan, Phistory.I D701 s7-N.0,Tamb
Output: Tpeqk
/* One-Time Design-time phase */

. Tpeak 0 Tlmt = [B TambG}le > Initialize Tpeak and Tinit
P a=[a;; =0lnxnN,B=[8i; =0lnxN
: foreachi=1,2,--- /N do

,N do

@ij = Yopmr Vick X Gy
Bij = Ynoq(1— e T) xiy ; xBy ;
: /* Run-time phase */
: for eache=1,2,---,6 do
10: 92[91"]‘ ZO]NXN,@Z

1:

2

3

4

5: f h;=1,2,---
> or each j = 1,2,

7

8

9

> Calculate temperature component
[@i =0l x1

11: for each f = 1,2,--- ,6 do > Based on Equation
12: for each i =1,2,--- | N do

13: foreach]_l 2,---,N do

14: ;5 Zk 1065 X el6=F+1)%SIN; T X B,

15: ‘I:‘ =]+@1j><P[(f+e 1)%8]j

16 Tyspe =@

170 Tpear = maz{Tpeak, maz{Tinit + Taste}} > Equation

return T)cqk

at which many-core triggers the hardware-controlled Dynamic
Thermal Management (DTM) that crashes the many-core’s
operating frequency to save it from damage.

Let there be R AMD-based rings on an n-core S-NUCA
many-core. Let ngeive be the number of cores required by
the ngerive threads executing with a one-thread-per-core model.
The total design space for assigning ngcive threads to R AMD
rings is ﬁ We can use Algorithm [l| based on
Equation (IT) to efficiently determine the peak femperature
(thermal safety) of any given schedule (design point) in the
design space. Algorithm [I] consists of a design-time phase that
pre-calculates the floorplan-based constants (auxiliary matrices
a and (3) for instant use at run-time. The algorithm uses
the power history of a thread from the last 10ms in its
calculation. However, determining a thermally-safe schedule
that also maximizes many-core performance is an NP-hard
problem. Therefore, we propose a heuristic for HotPotato to
find a near-optimal solution to the problem.

Algorithm [2] describes the greedy heuristic that describes
HotPotato decisions when a new thread enters the many-core or
when an old thread leaves the many-core. When a new thread
enters the many-core, HotPotato tries to assign the thread to the
lowest AMD ring for the best performance. Since there is only a

Algorithm 2 HotPotato Scheduling

Input: Floorplan, Ph;story.TD7T . AMD,CPLThreads I', 7,AN
Output: Response time

1: /*New threads coming */

2: for each AMD; = AMDy,AMDs,--- ,AMD; do

3 if Tpeak + A < Tpr then

4: coreLoc + select BestCandiate() > Tpeqr by Algorithm
5: Tpeak < updatePeakTemperature() > Update Tpeqk
6: Break

7 else

8 while Tpeak > Tpra do

9 Sort the threads I' based on CPI in decreasing order

10: Migrate the thread with lowest CPI to the higher AMD ring

11: Tpeak < updatePeakTemperature() > Update Tpeqk
12: while T,eqr > Trar do

13: T + update RotationSpeed() > Update 7
14: Tpeak < updatePeakTemperature() > Update Tpeqk

15: /*Threads finished or thermal headroom > A */
16: while TDT]\/I — Tpeak > A do

17: for each AMD; = AMD;,AMD;_1,---,1do

18: Sort the threads I" based on CPI in decreasing order

19: Migrate the threads with the highest CPI to the lower AMD ring
20: Tpeak < updatePeakTemperature() > Update Tpeqk
21: if Tprar — Tpeak < A then

22: Break

23: while Tpryr — Tpeak > A do

24: T < update RotationSpeed()

25: Tpeak < updatePeakTemperature()
26: if TDTIW — Tpeak S A then

27: Break

> Update 7
> Update Tpeqk

limited number of empty slots in a ring, HotPotato evaluates all
possible empty slots in parallel for thermal sustainability, and
chooses the one with the lowest peak temperature using Algo-
rithnT] in Lines 3-6. If it is thermally unsustainable, it assigns
it to the next higher AMD ring that has lower performance
but better thermals. The process continues till it recursively
reaches the ring with the highest AMD shown in Lines 7-11. If
assigning the thread even to the highest AMD ring is thermally
unsustainable, then HotPotato reduces the rotation interval 7 till
enough headroom generates to accommodate the new thread
shown in Lines 12-14. HotPotato does not move the existing
threads from their rings when placing a new thread to avoid
cascading peak temperature calculations that are unsustainable.

When an existing thread leaves the system, new thermal
headroom manifests. HotPotato sorts the thread as per their
Cycle per Instruction (CPI). It then tries to migrate the thread
with the highest CPI (the most memory-bound thread) to
the lowest AMD ring as long as the migration is thermally
sustainable, as shown in Lines 16-22. The highest CPI thread
is the thread that is most likely to benefit from the improved
memory performance of a lower AMD ring. If the highest CPI
thread is already in the lowest thermally sustainable AMD ring,
it similarly tries to migrate the thread with the next higher CPL
If all the threads are in their most thermally sustainable lowest
AMD ring with still thermal headroom, then HotPotato reduces
the rotation interval 7 to the highest thermally sustainable
value. If 7 — 0, then the workload is thermally sustainable
without rotation, and therefore rotations stop to maximize the
performance, as shown in Lines 23-27.

There is a possibility of a sudden increase or decrease in
thermal headroom (given by the user-defined parameter A)

TABLE I: Core parameters for simulated S-NUCA processor.

Core Parameter

Number of Cores 64

Core Model x86, 4.0 GHz, 14 nm, out-of-order
L1 I/D cache 16/16 KB, 8/8-way,64B-block
LLC 128 KB per core, 16-way, 64B-block

NoC Latency
Noc link width

The area of core

1.5ns per hop
256 Bit
0.81 mm

2

with a drastic change in power consumption of existing threads
on many-core. In such cases, HotPotato adjusts the rotation
interval 7 to deal with the new circumstances.

Complexity Analysis: We discuss the complexity of the
design-time phase and run-time phase. In the design-time phase,
we calculate the auxiliary matrices « and 3. The complex-
ity is O(N?). Peak temperature calculation in Algorithm
requires iteratively computing the rotation components that
take O(262N?). In Algorithm [2| in the run-time phase, we
assume that the varying rotation speed range is 7. In the
worst case, it traverses R AMD rings with the complexity
O(2nin(n)RI>N?).

VI. EVALUATION

Experimental Setup. We use the interval thermal simulation
toolchain HotSniper [12] for simulating an S-NUCA many-
core. Table [I| lists the simulated core and network parameters.
We specify The thermal headroom A at 1°C. We set the idle
core power and initial rotation speed at 0.3 W and 0.5ms,
respectively. The ambient and threshold temperatures are set
at 45°C and 70 °C, respectively.

We use PARSEC |[13] benchmark suite to simulate the
workload. In particular, we use the streamcluster, x264, body-
track, canneal, blackscholes, dedup, fluidanimate, and swap-
tions benchmarks with sim-small input. We do not use facesim
and raytrace benchmarks due to the lack of small-size inputs.
We also do not use ferret, freqmine, and vips benchmarks due
to unresolved simulation errors in HotSniper.

Baseline. We compare the HotPotato scheduler with the
PCMig scheduler [6]. PCMig is the state-of-the-art scheduler
for the thermal management of S-NUCA many-cores. It uses
DVFS and asynchronous thread migrations as knobs. While
HotPotato does not use DVFS, we allow PCMig to perform
fine-grained DVFS at a step size of 100 MHz.

Comparative Evaluation with Homogeneous Workload.
We fully load the 64-core S-NUCA many-core with varisized
multi-threaded instances of the same benchmark. We then
simulate a fixed system wherein all instances start execution
together. Fig [[a) reports the normalized makespan of the
execution with HotPotato and PCMig schedulers. Results show
HotPotato, on average, provides a 10.72% speedup for different
benchmarks. Canneal being a memory-intensive benchmark,
produces very little heat. Consequently, we observe the lowest
speedup gains (0.73%) with Canneal.

Comparative Evaluation with Heterogeneous Workload.
We create a random 20-benchmark multi-program multi-
threaded workload. We then simulate an open system wherein

08 HotPotato BB PCMig [10]

£ 115} s
j=%
g
s 1.1p _
=
g
£ 1.05 -
Z
'L B\ D\ El\ D\B 1 D\ D\ -
2 » s g = g £
2 z 5§ 32 § g
5 2 E T Z
g = 2
(a) Homogeneous Workload
| | | |
° -
]
= 1.1p —
2
=
=}
j=%
g 1.05} |
E
=}
z L i
B\ B\ B\ B\ B\
2 4 6 8 10

Average Task Arrival Rate(per 1s)
(b) Heterogeneous Workload

Fig. 4: Comparative evaluation results for HotPotato and
PCMig [10] scheduler on a 64-core many-core.

tasks arrive at different arrival rates following a Poisson dis-
tribution to create a system under a varying load. HotPotato
outperforms PCMig under all load scenarios. The relative
speedup gains with HotPotato are minimal when the system
is under-loaded or over-loaded, as there is a limited scope of
thermal optimizations. In a medium-loaded system, HotPotato
provides up to 12.27% improvement over PCMig.

Run-time Overhead. Across 10000 runs under full load,
HotPotato takes 23.76 us to calculate a synchronous thread
rotation schedule for a 64-core many-core on one of the many-
core’s cores. Therefore, HotPotato projects an overhead of
4.75% for a thread rotation epoch of 0.5 ms.

VII. CONCLUSION & FUTURE WORK

In this work, we present a scheduler called HotPotato for
the thermal management of S-NUCA many-cores. HotPotato
builds upon the observation that the performance penalty of
thread migration is lower than DVFS on S-NUCA many-
cores. It, therefore, uses a heuristic based on synchronous
thread migrations rather than commonly employed DVFS and
asynchronous thread migrations for managing the thermals of
S-NUCA many-cores. The heuristic uses a computationally-
efficient method of our design to analytically calculate the peak
temperature from thread rotations making HotPotato feasible
for run-time use. Thermal interval simulations using the Hoz-
Sniper toolchain show a thermally-sustainable 10.72% average
increase in performance over the state-of-the-art.

Future Work: We plan to unify synchronous task rotation
with DVFS for even more efficient thermal management of S-
NUCA many-cores. Subsequently, we plan to explore the idea
of synchronous task rotation with 3D S-NUCA many-cores [24]
using the state-of-the-art CoMeT [25]|) interval thermal simulator
designed for 3D-stacked processors.

REFERENCES

[1] J. L. Manferdelli, N. K. Govindaraju, and C. Crall, “Challenges and
opportunities in many-core computing,” Proceedings of the IEEE, 2008.

[2] W. Choi, K. Duraisamy, R. G. Kim, and et al., “Hybrid network-on-
chip architectures for accelerating deep learning kernels on heterogeneous
manycore platforms,” in ESWEEK, 2016.

[3] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
nuca substrate for flexible cmp cache sharing,” in ICS, 2005.

[4] J. Merino, V. Puente, P. Prieto, and J. A. Gregorio, “Sp-nuca: a cost
effective dynamic non-uniform cache architecture,” ACM SIGARCH,
2008.

[S] W. Huang, M. R. Stant, K. Sankaranarayanan, and et al., “Many-core
design from a thermal perspective,” in DAC, 2008.

[6] M. Rapp, M. Sagi, A. Pathania, A. Herkersdorf, and J. Henkel, “Power-
and cache-aware task mapping with dynamic power budgeting for many-
cores,” TC, 2019.

[7]1 S. Eyerman and L. Eeckhout, “Fine-grained dvfs using on-chip regula-

tors,” TACO, 2011.

Q. Wang, X. Mei, H. Liu, Y.-W. Leung, Z. Li, and X. Chu, “Energy-aware

non-preemptive task scheduling with deadline constraint in dvfs-enabled

heterogeneous clusters,” TPDS, 2022.

[9] Y. G. Kim, M. Kim, and et al., “An adaptive thermal management
framework for heterogeneous multi-core processors,” TC, 2020.

[10] M. Rapp, A. Pathania, and et al., “Neural network-based performance

prediction for task migration on s-nuca many-cores,” TC, 2020.

S. Pagani, H. Khdr, J.-J. Chen, M. Shafique, M. Li, and J. Henkel,

“Thermal safe power (tsp): Efficient power budgeting for heterogeneous

manycore systems in dark silicon,” TC, 2016.

[12] A. Pathania and J. Henkel, “Hotsniper: Sniper-based toolchain for many-
core thermal simulations in open systems,” ESL, 2018.

[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in PACT, 2008.

S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and

J. Henkel, “Tsp: Thermal safe power: Efficient power budgeting for many-

core systems in dark silicon,” in ESWEEK, 2014.

[15] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “Hotspot: A compact thermal modeling methodology
for early-stage vlsi design,” VLSI, 2006.

[16] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and

voltage scaling,” in ICCAD, 2008.

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,

M. Reif, L. Bao, J. Brown et al., “Tile64-processor: A 64-core soc with

mesh interconnect,” in ISSCC, 2008.

[18] B. Wu, P. Dai, Y. Cheng, Y. Wang, J. Yang, Z. Wang, D. Liu, and W. Zhao,
“A novel high performance and energy efficient nuca architecture for stt-
mram llcs with thermal consideration,” TACD, 2019.

[19] A. Pathania and J. Henkel, “Task scheduling for many-cores with s-nuca
caches,” in DATE, 2018.

[20] M. Rapp, A. Pathania, and J. Henkel, “Pareto-optimal power-and cache-
aware task mapping for many-cores with distributed shared last-level
cache,” in ISLPED, 2018.

[21] M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Prediction-based task

migration on s-nuca many-cores,” in DATE, 2019.

S. Pagani, J.-J. Chen, M. Shafique, and J. Henkel, “Matex: Efficient

transient and peak temperature computation for compact thermal models,”

in DATE, 2015.

[23] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of hot-
potato routing in ip networks,” in SIGMETRICS, 2004.

[24] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and M. Kan-
demir, “Design and management of 3d chip multiprocessors using
network-in-memory,” in ISCA, 2006.

[25] L. Siddhu, R. Kedia, S. Pandey, M. Rapp, A. Pathania, J. Henkel, and
P. R. Panda, “Comet: An integrated interval thermal simulation toolchain
for 2d, 2.5 d, and 3d processor-memory systems,” TACO, 2022.

[8

[

[11]

[14]

(171

[22]

	Introduction
	Related Work
	System Models
	Architecture Model
	Thermal Model

	Peak temperature calculation
	Thread Rotation Scheduling
	Evaluation
	Conclusion & Future Work
	References

