
Unraveling Parallelism in Automated Workload
Modeling for Distributed Cyber-Physical Systems

Faezeh Sadat Saadatmand∗, Todor Stefanov∗, Andy D. Pimentel‡,
Benny Akesson§‡, and Ignacio González Alonso†

∗Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands †ASML B.V., The Netherlands
‡Informatics Institute, University of Amsterdam, The Netherlands §TNO-ESI, The Netherlands

Abstract—Designing next generation distributed Cyber-
Physical Systems (dCPS) requires effective Design Space Explo-
ration (DSE) methods to evaluate system design alternatives and
their impact on performance. While existing DSE approaches
focus on hardware optimization and software-to-hardware map-
ping, they often overlook parallel execution opportunities within
software tasks. Current application workload models for complex
dCPS assume fixed execution orders, limiting the ability to explore
and exploit software parallelism. To address this issue, we propose
refined workload models derived from execution traces that
capture both inter- and intra-process dependencies. Building on
these models, we present a method to identify tasks that can
be safely reordered or executed in parallel without modifying
the existing software implementation. We validate our approach
through a case study on the ASML Twinscan lithography
machine, demonstrating measurable performance improvements
without impacting the system functional correctness.

Index Terms—Distributed Cyber-Physical Systems, Application
Workload Model, Parallel Execution, Design Space Exploration

I. INTRODUCTION

Distributed Cyber-Physical Systems (dCPS) are the founda-
tion of modern high-tech industries, integrating computing and
physical processes to enable real-time control, automation, and
intelligent decision-making. These systems are widely used
in various industries, including health, industrial automation,
robotics, avionics, and space, where software and hardware
must work together seamlessly. As dCPS grow in complex-
ity, designing and optimizing their cyber components, which
comprise distributed software processes running on multi-core
or many-core processors and communicating over intricate
networks, has become increasingly challenging [1]. The shift
toward software-intensive dCPS, where more functionality is
implemented in software for flexibility and adaptability, further
amplifies these challenges [2]. Consequently, system designers
must evaluate various system architectures and software exe-
cution strategies to ensure that system requirements are met.

To systematically explore system architectures and software
execution strategies in dCPS, Design Space Exploration (DSE)
provides a structured approach for evaluating different system
configurations [3]. DSE systematically assesses various design
alternatives to optimize non-functional system properties such
as performance, cost, and energy consumption. To achieve
this, it commonly follows the Y-chart approach [4], which
separates the system into three models: the software application
workload, the hardware platform, and the mapping of the

workload to the platform. This separation of concerns ensures
that the software application and the hardware platform are
modeled independently, and both models are explicitly related
via the mapping model, thereby allowing for greater flexibility
in system optimization.

In addition, application workload modeling for large-scale
dCPS requires finding a careful balance between abstraction
and accuracy. This balance is essential to ensure that DSE
remains computationally efficient while still capturing the key
characteristics of the application software workload. How-
ever, due to the complexity and variability inherent in dCPS,
which typically involve hundreds of interacting processes and
their internal computation and communication tasks, manual
derivation of workload models is impractical. Specifically,
process behaviors can differ significantly based on differ-
ent hardware/software configurations, making it impossible
to manually specify workload behaviors for each scenario.
Therefore, it is essential to automatically derive workload
models to accurately represent realistic system behaviors under
diverse software/hardware configurations.

To address the aforementioned application modeling chal-
lenges, the authors of [5] have proposed techniques for auto-
mated workload model derivation in dCPS, achieving a good
trade-off between model abstraction and accuracy. The derived
models leverage system-level traces to capture accurately inter-
process dependencies and to represent only a valid sequential
execution order of computation and communication tasks
within each process. However, the derived models do not
capture dependencies among the tasks within the processes,
thus preventing exploration and exploitation of potential intra-
process parallelism during DSE. To address this limitation,
an enhanced modeling approach enables the identification and
exploration of different sequential and parallel execution orders
of processes and tasks within processes.

In this paper, we propose significant refinements to the
application workload model presented in [5], enabling it to
capture both inter-process and intra-process dependencies.
Building on this model, we present a method to identify tasks
within each process that can be safely reordered or executed
in parallel, without violating the system behavior or requiring
modifications to the existing software implementation.

More specifically, the key novel contributions are as follows:
1) Our refined application workload model incorporates de-



tailed execution traces, enabling automated analysis and
identification of parallel execution opportunities between
software processes and tasks within individual processes
in large-scale dCPS.

2) We propose a method that identifies eligible tasks within
each process that can be safely reordered or executed
in parallel with other tasks. The method requires no
application-specific knowledge and is compatible with the
event-driven execution model commonly used in indus-
trial dCPS.

3) We validate our refined workload model and the proposed
method by automatically deriving models from execution
traces collected from a complex industrial dCPS, the
ASML Twinscan lithography machine. Our evaluation
demonstrates that incorporating intra-process parallelism,
in addition to inter-process execution, leads to measurable
performance gains.

The remainder of this paper is structured as follows: Sec-
tion II reviews related work on workload modeling in dCPS.
Section III provides background information relevant to our
approach. Section IV describes the refinement of the appli-
cation workload model and its automated derivation process.
Section V presents the method for identifying parallel exe-
cution opportunities. Section VI reports on the experimental
evaluation, and Section VII concludes the paper.

II. RELATED WORK

Workload modeling has been widely studied in cyber-
physical and embedded systems. In embedded systems, models
such as Kahn Process Networks (KPN), Roofline models, and
automatic parallelization tools are commonly used to support
performance analysis and optimization. These methods typi-
cally rely on static execution graphs and presume predictable
task dependencies, which make them suitable for small-scale
environments with limited resources. However, large-scale in-
dustrial dCPS introduce significantly greater complexity, scala-
bility challenges, and dynamic execution behavior [6]. In these
systems, workloads involve hundreds of interacting processes,
where execution order, both within and across processes, can
vary depending on the hardware/software configuration. As
a result, static workload models are insufficient, prompting
the need for automated, configuration-specific system-level
workload models [5].

Workload modeling approaches in CPS can be broadly
grouped into two categories: 1) models that do not exploit
parallelism and rely on abstract models for system-level op-
timization, and 2) models that incorporate parallelism by
modeling concurrent behavior or optimizing execution order
through scheduling, profiling, or simulation.

Workload Modeling Without Parallelism: Several approaches
focus on abstract workload modeling for system-level opti-
mization without considering parallelism. One study proposes
a formal modeling framework based on stochastic processes
and fractal methods to probabilistically capture task execution
and communication patterns [7]. While this study offers analyt-
ical insight into resource utilization and scheduling, it requires

manual mathematical definitions and relies on fixed statistical
structures, limiting scalability and adaptability needed for
complex industrial dCPS.

Another study presents a power-aware workload model
that integrates computational delays and energy constraints
into scheduling decisions [8]. It captures complex workload
behaviors, such as irregular patterns and long-term dependen-
cies, using advanced mathematical formulations. However, the
model is not automatically derived and depends on predefined
analytical profiles, making it inflexible across different dCPS
configurations.

Another approach combines stochastic Petri nets, fault trees,
and Markov models to assess performance, reliability, and
resource utilization [9]. Though effective in analyzing system-
level trade-offs, it relies on manually constructed workload
scenarios and predefined interaction patterns, which limits its
adaptability.

While all these approaches support system-wide analysis,
they share two key limitations: they depend on manually
defined workloads, which are impractical for large-scale indus-
trial dCPS, and they assume fixed execution orders, preventing
the exploration and exploitation of potential parallelism.

Workload Modeling Incorporating Parallelism: Several stud-
ies focus on parallelism detection and modeling within CPS
workloads. One study explores parallelism in transaction-level
modeling (TLM) by analyzing how communication and syn-
chronization mechanisms impact simulation speed in Parallel
Discrete Event Simulation (PDES) environments [10]. The
authors propose techniques to enhance model-level parallelism
in SystemC TLM and evaluate various buffering and commu-
nication schemes using a deep neural network case. While
effective for simulation optimization, the approach does not
model execution dependencies or generate application work-
load models.

Another approach addresses software inefficiencies by de-
tecting performance antipatterns using queuing network mod-
els derived from UML specifications [11]. While the approach
effectively quantifies the performance impact of antipatterns
and helps identify software architectural bottlenecks, it relies
on manually created design artifacts and performance scenar-
ios, which limits its scalability for large-scale industrial dCPS.
Additionally, the method focuses on identifying performance
antipatterns at the architectural level through resource and
deployment modeling, rather than capturing software execution
dependencies.

In another study, an AI-driven scheduler, called MCDS,
combines Monte Carlo Tree Search with deep surrogate models
to optimize workflow execution in edge-cloud systems [12].
It models workflows as Directed Acyclic Graphs (DAGs)
and predicts long-term Quality of Service (QoS). However,
it assumes that the workflow structure is known in advance
and remains fixed, and it also incurs significant computational
overhead, making it unsuitable for large-scale dCPS with
different configurations.

A more scalable direction is proposed in [5], where ap-
plication workload models are automatically derived from



runtime system traces. While this method supports DSE of
hardware platforms and software-to-hardware mapping in com-
plex dCPS, it assumes fixed task execution orders and does not
explore intra-process parallelism.

The aforementioned workload modeling approaches either
lack necessary automation and adaptability or do not support
parallelism exploration across both inter- and intra-process
levels. Specifically, many existing methods rely on manual
workload specifications or predefined task execution orders,
limiting their use in evolving industrial dCPS configurations.

In contrast, our approach automatically derives refined work-
load models for each hardware/software configuration using
execution traces. These refined models capture both inter- and
intra-process dependencies and support the identification of
tasks that can be safely reordered or executed in parallel,
without modifying the existing software implementation.

III. BACKGROUND

This section outlines the modeling foundations and trace col-
lection methodology used in our work. We begin by describing
the event-driven execution model common in distributed sys-
tems, followed by a brief overview of the models, the required
traces, and how these models are automatically derived for use
in discrete-event simulation.

A. Event-Driven Execution in Distributed Systems

High-performance distributed systems, including industrial
dCPS, commonly use an event-driven execution model, where
software processes respond to incoming events rather than
executing in a fixed sequence. At the core of this model is
the event loop, which continuously listens for system events,
such as messages, timer expirations, or scheduling triggers,
and asynchronously invokes the appropriate procedures.

When an event occurs, the corresponding process fires,
executes a well-defined set of tasks in response, and then
exits. These tasks depend on the triggering event and typically
include computation or communication operations, such as
sending a message or triggering another event. This reactive
approach enables efficient handling of multiple requests by en-
suring that processes are activated only in response to relevant
events, thereby avoiding unnecessary or periodic execution.

Depending on the system’s workload characteristics and
available resources, event-driven execution may follow a
single-threaded strategy where events are handled sequentially,
or a multi-threaded approach where events are processed in
parallel by worker threads.

B. Models and Trace-Based Derivation Method

To enable our analysis, we build upon an existing modeling
approach that derives abstract application workload models
for large-scale dCPS from runtime traces [5]. This approach
captures the behavior of software processes through a workload
model and accounts for environmental timing effects using an
ENV model, which reflects delays introduced by embedded
hosts interacting with the physical environment. All models

are automatically derived and transformed into executable
representations for discrete-event simulation.

Since our contribution focuses on refining this workload
model to support parallelism analysis, we briefly describe the
original modeling approach by outlining the types of traces
it uses, the structure of the workload and ENV models, and
how these models are derived automatically from traces. Full
modeling details are available in [5] and are not repeated here.

Traces: Model derivation relies on runtime data collected
once per hardware/software configuration during correct sys-
tem operation. Two types of traces are used:

1) Execution Traces (User Space): These traces are collected
via a few trace points strategically placed in the software
application code to capture the execution flow, function calls,
and inter-process communication. They record data such as
timestamps, process identifiers, function types, and any at-
tributes specific to each function. For example, traces for
send/receive functions include message identifiers and message
sizes. In Linux-based systems, LTTng [13] is used to collect
this information with minimal overhead.

2) System Status Traces (Kernel Space): These traces pro-
vide system-level information such as CPU usage, process
states, and clock frequency changes. A key parameter in the
proposed model is the OnCPU interval, which indicates when a
process is actively running and is derived using context switch
events. In Linux-based systems, Trace Compass [14] is used to
analyze these kernel traces and extract precise OnCPU intervals
using predefined event models.

Application Workload Model: is defined as a process
graph consisting of software processes and the communication
channels between them. It captures each process execution be-
havior, including both computation and communication tasks.
Each process is modeled as a set of operation modes, allowing
different workload scenarios that correspond to specific soft-
ware/hardware configurations. Within each mode, execution
is expressed as a sequence of abstract events, categorized as
follows:

• Computation Event: Represents computation tasks with
an abstract workload signature that approximates the
computational demand of the task. As an approximation,
this signature is calculated by multiplying the OnCPU

duration by the operating frequency of the core on which
the process was running.

• Communication Event: Models message exchanges, cat-
egorized as Write (sending a message) or Read (receiv-
ing a message). Each event specifies the communication
channel between the source and destination processes,
the message size, and a workload signature that reflects
the computational cost associated with either sending or
receiving the message, depending on the event type.

• Timer Event: Represents internal triggers within a process
that activate computation or communication events after
a specified delay. Each timer event is either a timer setter,
which sets a timer with an absolute time value, or a timer
handler, which is triggered once that time elapses. Timer
events include a unique identifier and duration.



Environment Influence (ENV) Model: In dCPS, embedded
hosts interact directly with the physical environment through
sensors and actuators. These hosts may not be fully traceable
due to system constraints, such as limited instrumentation
support or the overhead that tracing would impose on resource-
constrained platforms. Although these hosts are untraced, their
interactions with traced processes can introduce significant
timing variations that affect overall system behavior.

To address this, the ENV model estimates the timing influ-
ence of untraced hosts on the traced system using a delay-
based approach. Specifically, it introduces a parameter ∆ to
account for unknown delays in message delivery. For each
traced process (tp), a ∆ value is assigned to every Read
event originating from an untraced process (utp). This delay
is estimated as the time difference between the timestamp of
the Read event (from utp to tp) and the most recent Write
previously sent by tp to utp.

Automated Derivation and Model Transformation: To
derive the application workload model, matching message
identifiers in the send and receive functions are tracked from
execution traces. This enables the identification of Write and
Read communication events for each process. The trace also
enables the identification of individual software processes,
and based on observed message exchanges, communication
channels are derived between process pairs. Similarly, Timer
events are derived from traces of timer-related functions using
their unique timer identifiers. Between every communication or
timer event, a Computation event is inserted, and its workload
signature is estimated based on the amount of OnCPU time and
the core clock frequency during its interval, as derived from
system status traces. Although the traces are collected across
multiple cores, the transformation focuses on communication
and computation events per process, without modeling detailed
core-level migrations.

IV. WORKLOAD MODEL REFINEMENT

In this section, we introduce our refined workload mod-
eling approach that enhances the representation of software
execution behavior in dCPS. We begin with the motivation
for the refinement, then describe our structural changes to the
model introduced in Section III-B, outline the additional trace
requirements, and explain our automated derivation process
used to generate the refined model from these traces.

A. Motivation

In large-scale industrial dCPS, such as the ASML Twinscan
machine, performance optimization through parallel execution
is essential but challenging. These systems typically rely
on mature software that has been incrementally developed
over many years and involves complex interactions among
hundreds of processes. As a result, even minor changes can
disrupt the execution flow and lead to unforeseen downtime
or system failures. This raises an important question: How
can opportunities for parallel execution be systematically and
safely uncovered without modifying the source code?

Process

Workload model

Channel

Operation mode Execution block

Event

Timer Computation Communication

Timer handler Timer setter

Read RequestWrite RequestRead ResponseWrite Response

[1..*] processes

[1..*] modes

[1..*] execBlocks

[1..*] events

[0..*] channels

[0..*] channels

[1..1] source

[1..1] destination

[1..1] channel

Fig. 1: Workload model class diagram

To address this question, a more detailed and analyzable
representation of software execution is needed, beyond what is
provided by existing workload models that capture only inter-
process dependencies. Such a model must support reasoning
about dependencies and opportunities for parallelism. Our
refined application workload model, introduced in this paper,
addresses this need.

B. Refined Application Workload Model

Our refined workload model, illustrated in Fig. 1, enhances
the representation of execution behavior in dCPS. The blue
elements in the diagram highlight the key extensions, we
introduce, compared to the original model introduced by the
authors of [5]. The workload is structured as a graph of
processes and communication channels. Each channel has a
source and destination process, and each process may operate
in multiple modes to reflect different software/hardware con-
figurations. Our refinement focuses on the internal structure of
each operation mode to support intra-process parallelism.

The most significant change in the refined model is the in-
troduction of the Execution block. Instead of representing each
operation mode as a flat sequence of events, we group related
events into semantically meaningful segments. Each Execution
block encapsulates a cohesive sequence of communication,
computation, or timer events that occur in response to a
specific incoming event, such as a received request or response
from another process, or the expiration of an internal timer.
For example, when a process receives a blocking request, all
tasks required to generate the corresponding response – from
receiving the request to producing the final reply, including any
intermediate computation or further message exchanges – are
grouped into a single Execution block. This level of granularity
is chosen not only because it reflects the structure of event-
driven execution in such systems, but also because it captures
a contextually consistent unit of execution, which is essential
for safely identifying dependencies and analyzing parallelism.

Building on the definition of execution blocks, the refined
workload model also introduces a more detailed classification
of communication events. While the original model in [5] has
only two types, Read and Write, the refined model distin-
guishes between four types of communication events: Read



Communication events
of process B in Mode m0

1- Read A
2- Write C
3- Read C
4- Write A
5- Read D
6- Write D

Original Model

Refinement

Execution Blocks and their communication
events of process B in Mode m0

1- ReadRequest A get_state blocking
2- WriteRequest C new_state blocking
3- ReadResponse C new_state blocking
4- WriteResponse A get_state blocking
1- ReadRequest D getParam_x blocking
2- WriteResponse D getParam_x blocking

Execution Block

Execution Block

New Model

Fig. 2: Refinement of workload model

Request, Read Response, Write Request, and Write Response.
Each communication event also includes a service name,
identifying the requested functionality or data, and also a
flag indicating whether the interaction is blocking or non-
blocking. A blocking request suspends the process until a
corresponding response is received, while a non-blocking one
allows the process to proceed with other tasks. The other event
types, Computation and Timer, remain unchanged. Events are
assigned to Execution blocks based on their timestamps and are
ordered chronologically within each block. This event order is
always preserved.

Fig. 2 illustrates an example comparison between the orig-
inal and refined workload models for process B in mode m0.
In this example, process B receives two blocking requests, one
from process A (requesting the service get_state) and another
from process D (requesting getParam_x). To respond to the
request from process A, process B must send a new request
(with service name new_state) to process C and wait for a
response. As shown, in the original model (left), events form a
flat sequence that must be processed in strict order. This struc-
ture prevents early handling of new requests, even if they are
independent, because they are blocked by preceding events. In
contrast, our refined model (right) segments the sequence into
distinct execution blocks based on request/response boundaries
and service names.

C. Collected Traces

As mentioned in Section III-B, two types of traces are used
to derive the models in [5]: execution traces and system status
traces. While system status traces remain unchanged from the
original approach, execution traces require additional detail
to support the derivation of our refined workload model. As
discussed in Section III-A, the processes rely on an event loop
to handle both internal and external events. To observe the
flow of event processing, we instrument the handle event loop
function with trace points at both its start and end. These
points record the timestamp, process name, trace point location
(start or end), and function type, classified as either a message
handler or an internal timer handler.

In addition to the event loop, we instrument the core
message-processing functions. For incoming messages, the
event loop receives the message from the appropriate interface
(e.g., a file descriptor or socket) and dispatches it to either the
receive request or receive response function, based on header
analysis. Similarly, for outgoing messages, the send request
and send response functions are used. All four functions
are instrumented at both entry and exit points, capturing
the timestamp, process name, function type, trace location,

ts proc func loc id size command
0.5 D send request end getParam_x
0.55 D send end i0 40
0.67 D message handler end
0.9 B message handler start
1.9 B recieve start i0 40
1.95 B recieve request start getParam_x
2.03 B recieve request end getParam_x
2.08 B recieve end
5.5 B send start i1 60
5.55 B send response start getParam_x
5.78 B send response end getParam_x
5.83 B send end i1 60
6.18 B message handler end
7.2 D message handler start
7.32 D recieve start i1 60
7.37 D recieve response start getParam_x
7.53 D recieve response end getParam_x
7.58 D recieve end i1 60
7.94 D message handler end

Write Request

Execution Block bDn

Execution Block bBm

Read Request Write Response

Execution Block bDn+1

Read Response

Fig. 3: Automated derivation of refined workload model

and command name (representing the requested or responded
functionality). Since these functions reside in a shared library,
the trace points are automatically inherited by all processes.

D. Automated Derivation of Refined Workload Model

To derive our refined workload model, we process the
aforementioned enhanced execution traces and transform them
into the corresponding model components shown in Fig. 1.
This section focuses specifically on the refinement-related
aspects, i.e., the blue components in Fig. 1. The remaining
model components follow the original derivation procedure
described in [5]. Fig. 3 illustrates a snippet of collected
trace data (left) and its corresponding model components in
the refined workload model (right). The trace data includes
the timestamp (ts), process name, function type, trace point
location, message identifier, message size, and command name.
In this example, process D sends a request to process B using
the command getParam_x. After receiving and processing the
request, process B sends a response back, which is later
received by process D. This trace segment highlights the key
data required for constructing the refined workload model. The
derivation process includes three steps: identifying execution
blocks, mapping communication events, and determining their
blocking behavior. Each step is explained below:

Step 1- Identify Execution Blocks: Each invocation of the
message handler or internal timer handler function in the trace
defines the boundaries of an execution block. The start and end
trace points determine the temporal scope of each execution
block. As shown in Fig. 3, the gray-highlighted rows indicate
the full boundaries of execution blocks bBm (for process B) and
bDn+1 (for process D). For the earlier block bDn , only its end
point is visible in the trace snippet.

Step 2- Map Communication Events: Traces from the
four message-passing functions – receive request, receive
response, send request, and send response – are mapped to
the corresponding refined communication event types: Read
Request, Read Response, Write Request, and Write Response.
Each event is assigned to the execution block whose temporal
boundaries contain its timestamp. Every communication event
also includes a service name, extracted from the trace (as
the command name), indicating the requested functionality. In
Fig. 3, process B execution block bBm includes two communi-
cation events: Read Request and Write Response. For process
D, the earlier block bDn may contain multiple communication



Algorithm 1: Check Eligibility for Running in Parallel
Input: blockp,m1 , blockp,m2

Output: areEligible
1 dep← checkDependency(blockp,m1 ,blockp,m2 );
2 res← checkSharedReadResponse(blockp,m1 ,blockp,m2 );
3 if dep = false and res = false then
4 return true;

5 return false;

A

B

C

D

ENV
A2

e2 e7

B7
e3

B8
e2

C4
e4

D5 D6

Fig. 4: Dependency check of execution blocks

events, but based on the visible portion of the trace, the last
identifiable one is a Write Request. The following block, bDn+1,
contains only a Read Response communication event.

Step 3- Determine Blocking Behavior: Each communica-
tion event is classified as blocking or non-blocking based on
whether its corresponding counterpart appears within the same
execution block. If the paired event (e.g., a Write Response for
a Read Request) is present in the same block and has the same
service name with reversed source and destination processes,
the event is considered blocking; otherwise, it is non-blocking.
For instance, in Fig. 3, the Read Request in bBm is blocking
because its paired Write Response occurs in the same block.
In contrast, the Read Response in bDn+1 is non-blocking, as its
corresponding Write Request occurred earlier in bDn .

V. FEASIBILITY OF PARALLEL EXECUTION

After constructing the refined workload model, we analyze,
for each process, which execution blocks can be safely re-
ordered or executed in parallel. This section describes our
analysis approach and is divided into two parts: the first part
focuses on determining eligibility for parallel execution of
blocks, and the second describes how this information is used
during a simulation of the modeled dCPS.

A. Determining Parallel Execution Eligibility

To enable parallel execution during simulation, we first
determine which execution blocks can safely run in parallel.
Algorithm 1 outlines the procedure. It takes two execution
blocks from the same process p in operation mode m, and
returns a boolean indicating whether they are eligible for
parallel execution. The algorithm checks two conditions: 1)
whether the blocks are independent (Line 1), and 2) whether
they do not share a Read Response event (Line 2). The blocks
are considered eligible for parallel execution only if both
conditions are met (Lines 3-4). These checks are described
in detail below.

Algorithm 2: checkDependency
Input: blockp,m1 , blockp,m2

Output: dependent
1 h1 ← getHstry(blockp,m1 ); h2 ← getHstry(blockp,m2 );
2 for xi ∈ h1, yj ∈ h2 do
3 if xi = END or yj = END then
4 return true;

5 if xi.block = yj .block then
6 return isBlocking(xi.event);

7 return false;/* no shared execution block */

Check 1: Independence of Execution Blocks: Algorithm 2
formalizes the procedure for determining whether two execu-
tion blocks are independent. It receives two blocks of process p
in the same operation mode m, where blockp,m1 occurs before
blockp,m2 , and returns a boolean indicating whether they are
dependent. The algorithm begins by retrieving the call history
of each block (Line 1). The call history of a given block is
defined as the sequence of execution blocks – along with their
triggering events – that recursively led to the block’s activation.

To illustrate this concept, Fig. 4 shows four processes
(A, B, C, and D) in mode m0, each containing several
execution blocks (e.g., A2, B7, B8, etc.). Each execution
block includes a sequence of events, represented as vertical
slices within the block. Events highlighted in orange indi-
cate write operations (Write Request or Write Response) that
trigger execution in other processes. Blue arrows represent
inter-process communication. Suppose we want to determine
whether execution blocks D5 and D6 are dependent. The
call history of D5 is obtained by tracing communication
backward: from B7 (triggered by event e3), to A2 (triggered
by e2), and finally to the environment (ENV), resulting in:

B7:e3 → A2:e2 → END
If an execution block is triggered by a timer event

or ENV communication, we mark the end of its call
history with END because there is no preceding trigger-
ing block to trace further. A similar procedure is fol-
lowed for block D6, resulting in the following call history:

C4:e4 → B8:e2 → A2:e7 → END
Once the call histories are obtained, Algorithm 2 compares

them to identify the first shared ancestor block (Lines 2-
6). If either of the histories reaches END without finding a
common ancestor, the blocks are conservatively marked as
dependent (Lines 3-4), since the causal relationship cannot be
fully established. This conservative assumption ensures safe
reordering in the absence of traceable triggering dependencies.
If both histories terminate at different root blocks without
any shared ancestor, the blocks are considered independent
(Line 7). However, if a shared ancestor is found (Line 5), the
triggering events within that block are compared. If the earlier
event is blocking, its execution may impose a constraint on
the ordering of the resulting execution blocks. In this case,
the algorithm conservatively concludes that the blocks are



dependent to preserve the original execution order and prevent
unintended behavior (Lines 5-6).

In the example in Fig. 4, the first shared block is A2,
which contains two triggering events: e2 and e7. To assess
the dependency between D5 and D6, we examine the blocking
status of e2. If e2 is a blocking Write Request, the process
must wait for a response before executing e7. Similarly, if e2
is a blocking Write Response, it means the associated request
occurred earlier in the same block and must be completed
first. In both cases, the strict ordering of events implies that
not only the events themselves, but also the execution blocks
they trigger, must preserve the original sequence and cannot be
reordered. In contrast, if e2 is a non-blocking Write Request,
the response will be handled in a future execution block,
so execution of e7 is not dependent on it. Likewise, if e2
is a non-blocking Write Response, the corresponding request
was received in a previous block, and this response simply
completes that interaction without constraining subsequent
events. In such cases, the execution blocks are considered
independent.

Check 2: Shared Read Response event Detection: After
determining the independence of two execution blocks, we
further check whether they share a Read Response event. This
step ensures that the blocks are not competing to receive the
same response, which could otherwise lead to deadlocks or
violations of causal message ordering. To perform this check,
we inspect all events in both blocks to identify a shared
Read Response originating from the same source process and
associated with the same service name. If such an event is
found, the blocks are not eligible for parallel execution.

It is important to note that it is not necessary to compare
every pair of blocks within the same mode of a process.
Instead, the analysis is limited to a bounded-size window of
neighboring blocks that are likely candidates for reordering. In
our implementation, we examine the 30 closest successors of
each block. However, runtime profiling shows that, in practice,
fewer than 10 neighboring blocks typically run in parallel. This
window size is configurable and can be adapted to systems
with different workload characteristics or higher potential for
parallel execution.

B. Simulation Strategy for Parallel Execution

Once the set of eligible blocks for parallel execution is
identified using Algorithm 1, this information is utilized to
enable safe concurrent execution during simulations of the
modeled dCPS. The refined workload model is transformed
into a format compatible with discrete-event simulators. For
our experiments, we use the OMNeT++ [15] simulator. To
support parallel execution, we extend the runtime behavior of
each process compared to the original model in [5], and we
introduce a shared parallel eligibility file. This file defines, for
each process and operation mode, which execution blocks are
eligible to run in parallel with one another.

The runtime behavior of each process is illustrated in
Listing 1, which presents the pseudocode for how execution
blocks are managed during simulation. At the start of the

1 void Initialization() {
2 blockList =load_ordered_executionBlocks();
3 readyList = empty; runningList = empty;
4 firstBlk = blockList.front();
5 readyList.add(firstBlk);
6 seqPtr = firstBlk.id;
7 if (allowExecution(firstBlk.initEv)) {
8 runningList.add(firstBlk);
9 readyList.remove(firstBlk);}}

10 void onMessageReceived(Message msg) {
11 msgBlk = findRelatedBlock(msg, blockList);
12 eligible = true;
13 foreach (Block bl: runningList) {
14 if (!checkEligibility(msgBlk, bl)) {
15 eligible = false; break; }}
16 if (eligible)
17 runningList.add(msgBlk);}
18 void onExecutionFinished(Block* doneBlock) {
19 runningList.remove(doneBlock);
20 if (doneBlock.id == seqPtr) {
21 nextBlock = blockList.front();
22 seqPtr = nextBlock.id;
23 eligible = true;
24 foreach (Block bl: runningList) {
25 if (!checkEligibility(nextBlock, bl)){
26 eligible = false; break;}}
27 if (eligible) {
28 readyList.add(nextBlock);
29 if (allowExecution(nextBlock.initEv)){
30 runningList.add(nextBlock);
31 readyList.remove(nextBlock);}}}

Listing 1: Runtime behaviour of a process in the simulation

simulation (Line 1), each process loads its list of execution
blocks (blockList) while preserving their original order
(Line 2). This ordering is particularly important for blocks
triggered by the ENV or by internal timer expirations, as
they are not eligible to run in parallel with any other blocks
and must therefore be executed sequentially, following the
original execution order. To track this order, a dedicated pointer
called seqPtr is maintained. It always points to the head
block of blockList, even after that block has been moved
to readyList or runningList. The pointer is updated only
after the block it references has completed execution.

In addition to the blockList, the simulation maintains two
other structures: A runningList, which stores information
about currently executing blocks, such as their event counters
and status flags (e.g., whether they are waiting for a message
or for platform-side execution). And, secondly, a readyList,
which holds blocks that are eligible to execute as soon as
their triggering conditions are satisfied. Both lists are initialized
as empty at the beginning of the simulation (Listing 1, Line
3). The simulation begins by moving the first block from
the blockList to the readyList and updating the seqPtr

accordingly (Lines 4-6). Each execution block includes an
initial communication or timer handler event, depending on
what triggered the block, denoted as initEv. This event
defines the condition under which the block becomes eligible
for execution. If initEv is a timer handler, the block must
wait until the corresponding timer goes off before it becomes
eligible for execution. If it is a Read Request or Read Re-
sponse, the block must wait until the corresponding message
is received. If it is a Write Request, the block can be moved
directly from the readyList to the runningList and begin
execution (Lines 7-9).



During simulation, when a process receives a message (on
MessageReceived procedure, Line 10), it searches for the
first execution block in its blockList whose initEv matches
the received message (Line 11). The simulator then checks
whether this block can be added to runningList, which is
determined by verifying that it is eligible to run in parallel with
all currently executing blocks (Lines 12-15). If so, it is added
to the runningList and begins execution (Lines 16-17).

Once a block completes its execution (onExecution
Finished procedure, Line 18), it is removed from the
runningList (Line 19). If it was the block currently pointed
to by seqPtr, the simulator advances seqPtr and retrieves
the next head block in the original sequence (Lines 20-22). If
the new block is eligible to run in parallel with all currently
executing blocks, it is added to the readyList (Lines 23-28).
If its initEv allows immediate execution – either because it
is a Write Request; or a Read Request or Read Response for
which the corresponding message has already been received; or
a timer event whose time has already passed – it is transferred
directly to the runningList (Lines 29-31). If the block is
not yet eligible to be added to the readyList, it must wait
until one or more active blocks complete before it can proceed.
This mechanism ensures that execution blocks are scheduled as
early as possible to maximize parallelism, while still preserving
the original block order when blocks are not eligible to run in
parallel.

Fig. 5 illustrates a scenario involving parallel execution. The
table on the left-hand side indicates, for each execution block,
which subsequent blocks are eligible to run in parallel. As
noted earlier, only blocks that appear later in the blockList

are considered for reordering, as earlier blocks are assumed
to have already completed. The simulation begins at time t1
with the execution of block b1, assuming its initEv is a
Write Request, and seqPtr is initialized to point to b1. At
t2, the message associated with b3’s initEv arrives. Since
b1 and b3 are eligible to run in parallel based on the table,
b3 is immediately scheduled for execution. At t3, the message
corresponding to b2’s initEv is also received, making it a can-
didate for execution. However, due to dependency constraints,
b2 cannot run concurrently with the currently executing blocks
(b1 and b3), and is therefore not scheduled at this point. Once
b3 completes, the simulator retrieves the next block at the head
of the blockList and updates seqPtr to b2. Because the
message for b2 has already been received, it is immediately
moved to the runningList and begins execution.

At t5, the message corresponding to the initEv of b4 is
received, making it ready for potential execution. However,
b4 cannot run concurrently with the currently executing block
b2 based on the left table, so the message remains in the
queue. Once b2 completes, the next block at the head of the
blockList is retrieved, and seqPtr is updated to point to
b4. At t7 and t8, the messages for b5 and b6 are received.
Since both blocks are eligible to run in parallel with the
currently executing block b4, they are scheduled and executed
concurrently. At t9, the message related to initEv of b7 is
received. However, b7 cannot start yet because it is not eligible

Block Parallel
b1 b3, b4
b2 -
b3 b5, b6
b4 b5, b6
b5 b6, b7
b6 b9
b7 -

Time
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

b1

b3

b2 b4

b5

b6

b7

Fig. 5: Example of Parallel Execution of Blocks

to run in parallel with either b5 or b6. Finally, at t10, after both
b5 and b6 complete execution, b7 becomes the next block at
the head of the blockList and is scheduled for execution.

VI. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our refined application work-
load model and the automated parallelism detection method,
we conducted an experimental study using trace data col-
lected from the ASML Twinscan lithography machine, a large-
scale industrial dCPS. This type of machine is at the core
of modern semiconductor manufacturing, utilizing advanced
optics and precision mechanics to transfer circuit patterns
onto silicon wafers. The machine comprises numerous het-
erogeneous subsystems, each hosting many distributed soft-
ware processes. These processes interact through thousands of
message exchanges per second, forming a highly complex and
performance-critical software infrastructure.

A. Experimental Setup

Our evaluation focused on the server subsystem of the Twin-
scan machine, which runs on a Linux-based platform and com-
municates with multiple embedded real-time systems. From
the collected traces of a wafer batch operation involving five
wafers, we derived an application workload model containing
309 software processes and 1521 inter-process communication
channels. The workload model includes 489459 execution
blocks and 597210 messages, representing communications in
which the traced host acted as sender, receiver, or both.

To evaluate the wafer processing time, we identified ser-
vice calls in the traces that correspond to wafer-handling
events. These calls, observed in specific request and response
messages, were used to mark the start and end points of
each wafers operation. The processing duration per wafer
(PDW) was then computed as the time difference between
the corresponding start and end events.

To model the effects of the environment on timing behavior,
we applied the ENV model with associated delay parameters,
denoted as ∆, as introduced in Section III-B. The refinement
of the workload model, particularly through the introduction
of more detailed communication event types and the inclusion
of service names, enables a more fine-grained estimation of
these delays. Fig. 6 illustrates the three scenarios considered
in our ENV delay modeling approach. In most cases, since
each communication event includes a service name (SN), we
directly measure the delay by calculating the time difference
between a servers Write Request to an ENV process and the
corresponding Read Response from that ENV process using
the same service name, as shown in Fig. 6(a).



Tr
ac

ed
Se

rv
er

E
N

V

Request SN

Response SN

Time

∆t

(a) Matched Request-Response

Tr
ac

ed
Se

rv
er

E
N

V

Prior Write of
ENV Request

ENV Request

Time

∆t

(b) Inferred from Prior Write

Tr
ac

ed
Se

rv
er

E
N

V

Remaining
Request/Response

Time

First Write Request

∆t

t = 0

(c) Considering the Simulation Start

Fig. 6: Three ENV delay modeling scenarios

TABLE I: Comparison of PDW between real system execution
and simulation considering inter-process parallelism only

Wafer Reality (s) Simulation (s)
1 47.6383 47.6513
2 56.7641 56.7827
3 50.7661 50.7829
4 47.7157 47.7357
5 47.7700 47.7880

Average 50.1309 50.1481

For situations where the ENV initiates a request toward the
server (ENV Request), we estimated the delay based on the
most recent Write Request or Write Response previously sent
by the same server process to that ENV process. We assume
that the ENV request occurs shortly after this preceding write
event, as illustrated in Fig. 6(b).

Finally, in cases where no matching service name is avail-
able or no prior write event can be found, we conservatively
assign the delay based on the time difference from the first
root-level Write Request in the model. This event marks the
simulations starting point and represents the earliest available
interaction, as shown in Fig. 6(c).

B. Results

First, we validated the accuracy of our simulation model
by comparing the simulated PDW with real execution data
from the ASML Twinscan machine. This comparison was per-
formed under a baseline configuration that includes only inter-
process communication and does not leverage intra-process
parallelism. This setup ensures that the simulation reflects the
actual system behavior and provides a reliable baseline for
further performance evaluation.

Table I shows the PDW for five wafers from both real and
simulated executions. The average PDW in the real system is
50.1309 s, compared to 50.1481 s in simulation, a negligible
difference of 17.2ms, corresponding to an error of only
0.034%. This confirms that the simulation model provides
sufficient accuracy for performance analysis.

Next, we examined the impact of enabling intra-process
parallelism alongside inter-process parallelism. This evaluation
varied two key parameters: the number of CPU cores in the
platform model, and the value of ∆ in the ENV delay model,
which controls how quickly new execution blocks triggered
by environment interactions become eligible for execution and
thus increases the opportunity for parallelism. Five levels of
ENV delay reduction were tested: 0% (baseline), 25%, 50%,
75%, and 100% (representing immediate ENV response upon
sending a request from the traced server). As a reminder, exe-
cution blocks triggered by ENV interactions must be executed

1 2 4 8 16
45

47

49

51

53

55

57

59

61

6
1
.0

8
7

5
1
.9

6
0

5
0
.1

4
9

5
0
.1

4
8

5
0
.1

4
8

5
4
.5

9
9

5
0
.1

3
4

4
9
.9

4
6

4
9
.9

4
2

4
9
.9

4
2

5
3
.4

5
2

4
9
.2

9
7

4
9
.0

8
4

4
9
.0

7
8

4
9
.0

7
8

5
3
.0

1
7

4
8
.7

8
9

4
8
.1

8
3

4
8
.1

6
5

4
8
.1

6
5

5
2
.8

6
9

4
8
.7

0
6

4
7
.9

1
2

4
7
.8

7
9

4
7
.8

7
8

Number of Cores

A
vg

er
ag

e
PD

W
(s

)

0% -25% -50% -75% -100%

1 2 4 8 16
45

47

49

51

53

55

57

59

61

6
1
.1

2
1

5
1
.9

0
3

5
0
.1

4
1

5
0
.1

4
0

5
0
.1

4
0

5
4
.7

1
6

5
0
.1

4
5

4
9
.9

2
4

4
9
.9

2
0

4
9
.9

2
0

5
3
.4

7
4

4
9
.2

6
1

4
9
.0

4
0

4
9
.0

3
3

4
9
.0

3
3

5
2
.9

9
5

4
8
.7

7
3

4
8
.0

9
6

4
8
.0

7
9

4
8
.0

7
9

5
2
.8

5
5

4
8
.6

7
9

4
7
.7

3
1

4
7
.6

5
9

4
7
.6

5
8

Number of Cores

A
vg

er
ag

e
PD

W
(s

)

0% -25% -50% -75% -100%

Fig. 7: Effect of ENV delay reduction and number of cores on
PDW. Top: inter-process only. Bottom: inter- and intra-process

sequentially in their original order and are not eligible for
parallel execution.

Fig. 7 shows the effect of these parameters on the average
PDW. The top chart reflects inter-process parallelism only,
while the bottom chart includes both inter- and intra-process
parallelism. Each bar corresponds to a specific ENV delay
level. The horizontal axis indicates the number of CPU cores
(the default server configuration has 16 cores), and the vertical
axis shows the average PDW in seconds. As shown in both
charts, decreasing ENV delays and increasing the number
of cores consistently reduce the average PDW. The results
demonstrate that intra-process parallelism yields additional
performance gains, particularly when ENV delays are reduced.
At the baseline level (0% delay reduction), the improvement
on the default 16-core platform is marginal, at around 8ms,
indicating that environment latency remains the dominant
bottleneck. Although intra-process execution is accelerated, the
system must still wait for ENV interactions, especially those
modeled with conservative assumptions anchored to the root-
level Write Request, as previously shown in Fig. 6(c), which
limits the overall benefit. In contrast, when ENV delays are
fully eliminated (100%), the gain increases to approximately
220ms, highlighting that the effectiveness of intra-process
parallelism depends heavily on environment responsiveness.

Despite this improvement, the overall gain remains modest,
which can be attributed to two main factors. First, the software



−5
0
−4
0
−3
0
−2
0
−1
0 0 10 20 30 40 50

47.2
47.4
47.6
47.8
48

48.2
48.4
48.6
48.8
49

49.2
49.4
49.6
49.8

Frequency change as percentage

A
vg

er
ag

e
PD

W
(s

)
Inter-process only

Inter- and intra-process

Fig. 8: Effect of frequency scaling on PDW for 8-core platform
with 100% ENV delay reduction

under study was not originally designed with parallel execution
in mind, likely to avoid unintended side effects such as race
conditions or inconsistent execution behavior. As a result, the
structure of the system may inherently limit the amount of par-
allelism that can be safely exploited. Second, our method for
identifying parallelizable blocks is deliberately conservative.
As discussed in Check 1 (Section V), conservative assump-
tions are necessary when trace information is insufficient to
guarantee safe block independence. These assumptions prevent
potential deadlocks but may also restrict opportunities for
concurrent execution.

Finally, we evaluated the impact of CPU frequency scaling
using a fixed configuration of 8 cores under 100% ENV delay
reduction. This choice is made because, as shown in Fig. 7,
the difference between using 8 and 16 cores is not significant
and falls within the simulation error margin.

Fig. 8 shows the effect of frequency scaling on PDW under
both inter-process-only and combined inter- and intra-process
parallelism exploitation cases. As CPU frequency increases,
performance improves in both cases due to shorter execution
times. However, the performance difference between the two
cases gradually decreases, because frequency scaling acceler-
ates all execution blocks, including those that must run sequen-
tially. As sequential execution becomes less time-consuming,
the relative advantage of parallelism exploitation diminishes.
Consequently, the two cases converge in performance at higher
frequencies.

All our results above indicate that multi-threaded execution
of code blocks within event-driven processes (i.e., exploiting
the available intra-process parallelism) can yield measurable
performance improvements, particularly when the responsive-
ness of other embedded hosts (ENV) increases. However,
they also reveal a saturation point, beyond which such multi-
threaded execution no longer leads to performance gains unless
changes are made to the software structure of dCPS in order to
create (more) blocks and processes that can really execute in
parallel. This underscores the value of our refined application
workload model, not only in enabling realistic performance

evaluation of an existing software structure of dCPS but also
in supporting exploratory what-if analyses with respect to
potential changes in the software structure.

VII. CONCLUSIONS

This paper presented a refined application workload model
that captures both inter-process and intra-process execution
dependencies in complex distributed Cyber-Physical Systems
(dCPS). The model is derived from execution traces and
supports a method for identifying tasks (code blocks) within
software processes that can be safely reordered or executed
in parallel without modifying the existing software structure.
We validate our approach on an ASML Twinscan lithography
machine and the results reveal measurable performance gains
in wafer processing time. The results also highlight the impact
of environmental responsiveness and hardware capacity on the
effectiveness of parallel execution. These findings underscore
the value of our refined workload model not only for realistic
performance evaluation, but also for enabling what-if analyses
of application workloads that complement platform and map-
ping exploration in large-scale industrial dCPS.

ACKNOWLEDGMENT

The authors would like to thank Kostas Triantafyllidis and
Ivo ter Horst from ASML for their valuable support and
constructive input throughout the development of this work.

REFERENCES

[1] R. Alur, Principles of Cyber-Physical Systems. The MIT Press, 2015.
[2] S. Acur et al., “Vision and outlook for systems architecting and systems

engineering in the high-tech equipment industry,” TNO, Tech. Rep.
R10542, 2024.

[3] B. Meier et al., “Htsm systems engineering roadmap,” Tech. rep, 2020.
[4] B. Kienhuis et al., “A methodology to design programmable embedded

systems: the y-chart approach,” SAMOS, pp. 18–37, 2002.
[5] F. S. Saadatmand et al., “Automated derivation of application workload

models for design space exploration of industrial distributed cyber-
physical systems,” ICPS, May 2024.

[6] M. Herget et al., “Design space exploration for distributed cyber-physical
systems: State-of-the-art, challenges, and directions,” in DSD, 2022, pp.
632–640.

[7] R. Marculescu et al., “Cyberphysical systems: Workload modeling and
design optimization,” IEEE Design Test of Computers, vol. 28, no. 4,
pp. 78–87, 2011.

[8] H.-C. An et al., “A formal approach to power optimization in cpss
with delay-workload dependence awareness,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 5, pp. 750–763, 2016.

[9] M. Modaber et al., “A method for building trustworthy hybrid perfor-
mance models for cyber-physical systems of systems,” IEEE Access,
2024.

[10] E. M. Arasteh et al., “Improving parallelism in system level models by
assessing pdes performance,” in FDL, 2021, pp. 01–07.

[11] R. Pinciroli et al., “Modeling more software performance antipatterns in
cyber-physical systems,” Software and Systems Modeling, vol. 23, no. 4,
pp. 1003–1023, 2024.

[12] S. Tuli et al., “Mcds: Ai augmented workflow scheduling in mobile
edge cloud computing systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 11, pp. 2794–2807, 2021.

[13] M. Desnoyers et al., “The lttng tracer: A low impact performance and
behavior monitor for gnu/linux,” in OLS, vol. 2006, 2006, pp. 209–224.

[14] Trace Compass Developers, “Trace Compass [Software],” https://
tracecompass.org/, 2024.

[15] A. Varga et al., “An overview of the omnet++ simulation environment,”
in SIMUTools, 2010.

https://tracecompass.org/
https://tracecompass.org/

	Introduction
	Related Work
	Background
	Event-Driven Execution in Distributed Systems
	Models and Trace-Based Derivation Method

	Workload Model Refinement
	Motivation
	Refined Application Workload Model
	Collected Traces
	Automated Derivation of Refined Workload Model 

	Feasibility of Parallel Execution
	Determining Parallel Execution Eligibility
	Simulation Strategy for Parallel Execution

	Experimental Evaluation
	Experimental Setup
	Results

	Conclusions
	References

