
Methodologies for Design Space Exploration

Andy D. Pimentel

Abstract In this chapter, we present an overview of techniques and methods for the
design space exploration (DSE) of embedded systems. DSE is the critical design
process in which system designs are modeled, evaluated and, eventually, optimized
for the various extra-functional system behaviors, such as performance, power or
energy consumption and cost. We organize our discussion along the lines of the two
primary elements of DSE, namely the evaluation of single design points and the
search strategy for covering the design space.

Key words: Design Space Exploration, Multi-objective Optimization, Performance
Modeling, Genetic Algorithms

1 Introduction

Designers of modern embedded computer systems face several daunting challenges
since these systems typically have to meet a range of stringent, and often conflict-
ing, design requirements. As many embedded systems target mass production and
battery-based devices or devices that cannot use active cooling, they should be cheap
and power efficient. Mission- and safety-critical embedded computer systems, like
those in the avionics and space domains, usually also demand high levels of depend-
ability, which is becoming even more important as the levels of system autonomy
rise. Moreover, a great deal of these systems must, increasingly, support multiple
applications and standards for which they often need to provide real-time perfor-
mance. For example, mobile devices must support a variety of different standards for
communication and coding of digital contents. In addition, many of these systems
also need to provide a high degree of flexibility, allowing them to be easily updated

Andy D. Pimentel
Parallel Computing Systems group, University of Amsterdam, Science Park 904, 1098 XH, Ams-
terdam, The Netherlands, e-mail: a.d.pimentel@uva.nl

1

2 Andy D. Pimentel

and extended with future applications and standards. This calls for a high degree of
programmability of these systems, whereas performance, power-consumption and
cost constraints require implementing substantial parts of these systems in dedicated
hardware blocks. As a result, modern embedded systems often have a heteroge-
neous multi-processor system architecture. They consist of processors that range
from fully programmable cores to fully dedicated hardware blocks for time-critical
application tasks. Increasingly, the components in such systems are integrated onto
a single chip, yielding heterogeneous Multi-Processor System-on-Chip (MPSoC)
architectures [76].

To cope with the design complexity of such systems, we have witnessed the
emergence of a new design methodology in the past 15 to 20 years, called system-
level design (see Chapter on Electronic system-level design). It aims at raising the
level of abstraction of the design process to improve the design productivity. Key
enablers to this end are the use of MPSoC platform architectures to facilitate re-
use of IP components and the concept of high-level system modeling and simulation
[28, 57]. The latter allows for capturing the behavior of platformcomponents and their
interactions at a high level of abstraction. As such, these high-level models minimize
the modeling effort and are optimized for execution speed, and can therefore be
applied during the very early design stages to perform Design Space Exploration
(DSE) [24, 45]. During such DSE, a large variety of different design alternatives
can be explored, such as the number and type of processors deployed in the platform
architecture, the type of interconnection network used to connect system components,
or the spatial binding and temporal binding (i.e., scheduling) of application tasks to
processor cores. It is of paramount importance to start performing such DSE as early
as possible in the design process because the considered design choices may heavily
influence the success or failure of the final product. However, the process of DSE
also is highly challenging since the design space that needs to be explored typically
is vast, especially during the early stages of design. For instance, the design space
for exploring different mappings of application tasks to processing resources – and
trying to optimize the mapping for, e.g., system performance or power consumption
– exponentially grows with the number of application tasks and processors in the
system, and is known to be an NP-hard problem [60]. Therefore, the development
of efficient and effective DSE methods has received significant research attention
in recent years. In this chapter, we will provide an overview of the various aspects
involved in embedded systems DSE.

2 Design Space Exploration: the basic concepts

During the DSE of embedded systems, multiple optimization objectives – such as
performance, power/energy consumption, and cost – should be considered simulta-
neously. This is called multi-objective DSE [45]. Since the objectives are often in
conflict, there cannot be a single optimal solution that simultaneously optimizes all

To be published in the Handbook of Computer Architecture, Springer 3

objectives. Therefore, optimal decisions need to be taken in the presence of trade-offs
between design criteria.

Given a set of m decision variables, which are the degrees of freedom (e.g., MP-
SoC system parameters like the number and type of processors, applicationmapping,
etc.) that are explored during DSE, a so-called fitness function must optimize the n
objective values. The fitness function is defined as:

f i : Rm → R1 (1)

A potential solution x ∈ Rm is an assignment of the m decision variables. The
fitness function f i translates a point in the solution space X into the i-th objective
value (where 1 ≤ i ≤ n). For example, a particular fitness function f i could assess
the performance or energy efficiency of a certain solution x (representing a specific
design instance). As illustrated in Figure 1, the combined fitness function f (x)
subsequently translates a point in the solution space into the objective space Y .
Formally, a multi-objective optimization problem (MOP) that tries to identify a
solution x for the m decision variables that minimizes the n objective values using
objective functions f i with 1 ≤ i ≤ n :

Minimize y = f (x) = (f1(x), f2(x), ..., fn(x))
Where x = (x1, x2, ..., xm) ∈ X

y = (y1, y2, ..., yn) ∈ Y

Here, the decision variables xi (with 1 ≤ i ≤ m) usually are constrained. These
constraints make sure that the decision variables refer to valid system configurations
(e.g., using not more than the available number of processors, using a valid mapping
of application tasks to processing resources, etc.), i.e., xi are part of the so-called
feasible set. In the remainder of this discussion, we assume aminimization procedure,
but without loss of generality, this minimization procedure can be converted into a
maximization problem by multiplying the fitness values yi with −1.

With an optimization of a single objective, the comparison of solutions is trivial.
A better fitness (i.e., objective value) means a better solution. With multiple objec-

Decision variable 1
e.g. number of processors

Decision variable 2
e.g. type of processors

Decision variable 3
e.g. task mapping

Decision variable m

Objective 1
e.g. performance

Objective 2
e.g. power consumption

Objective 3
e.g. cost

Objective n

Fitness
evaluation

Fig. 1 The design space broken down in solution and objective space.

4 Andy D. Pimentel

G

H

C
D

L

B
I

E

O

M

F

K

f1

f2

J

A

Pareto Front

N

Dominates H

Dominated by HIncomparable to H

Fig. 2 A Pareto front and an example of the dominance relation.

tives, however, the comparison becomes non-trivial. Take, for example, two different
MPSoC designs: a high-performance MPSoC and a slower but much cheaper one. In
case there is no preference defined with respect to the objectives and there are also
no restrictions for the objectives, one cannot say if the high-performance MPSoC
is better or the low-cost MPSoC. A MOP can have even more different objectives,
like the performance, energy consumption, cost and reliability of an MPSoC-based
embedded system. To compare different solutions in the case of multiple objectives,
the Pareto dominance relation is generally used. Here, a solution xa ∈ X is said to
dominate solution xb ∈ X if and only if xa < xb:

xa < xb ⇐⇒ ∀i ∈ {1, 2, ..., n} : f i (xa) ≤ f i (xb) ∧
∃i ∈ {1, 2, ..., n} : f i (xa) < f i (xb)

Hence, a solution xa dominates xb if its objective values are superior to the
objective values of xb . For all of the objectives, xa must not have a worse objective
value than solution xb . Additionally, there must be at least one objective in which
solution xa is better (otherwise they are equal).

An example of the dominance relation is given in Figure 2, which illustrates a two
dimensional MOP. For solution H the dominance relations are shown. Solution H
is dominated by solutions B, C and D as all of them have a lower value for both f1
and f2. On the other hand, solution H is superior to solutions M , N and O. Finally,
some of the solutions are not comparable to H . These solutions are better for one
objective but worse for another.

The Pareto dominance relation only provides a partial ordering. For example, the
solutions A to F of the example in Figure 2 cannot be ordered using the ordering
relation. Since not all solutions x ∈ X can be ordered, the result of a MOP is not a
single solution, but a front of non-dominated solutions, called the Pareto front. A set
X ′ is defined to be a Pareto front of the set of solutions X as follows:

{x ∈ X ′ | @xa ∈ X : xa < x}

To be published in the Handbook of Computer Architecture, Springer 5

The Pareto front of Figure 2 contains six solutions: A−F. Each of these solutions
does not dominate the other. An improvement on objective f1 is matched by a worse
value for f2. Generally, it is up to the designer to decide which of the solutions
provides the best trade-off.

2.1 Two basic ingredients of DSE

The search for Pareto optimal design points with respect to multiple design criteria
as targeted by DSE entails two distinct elements [24, 45]:

1. The evaluation of a single design point using the fitness function(s) regarding all
the objectives in question like system performance, power/energy consumption
and so on.

2. The search strategy for covering and navigating through the design space, spanned
by the decision variables xi (with 1 ≤ i ≤ m), during the DSE process.

Figure 3 shows a simple taxonomy for DSE approaches, recognizing the above two
DSE elements as well as different properties of these DSE elements. We note that
these properties typically cannot be considered in pure isolation as they can be
interdependent and even conflicting with each other. As will be discussed in more
detail later on, there usually exists a trade-off between the accuracy and speed with
which the fitness of single design points can be evaluated. In addition to this, the
various fitness evaluation techniques also differ with respect to the implementation
effort and the capability of evaluating the fitness for awide range of systems, involving
issues such as modularity, reusability of models, etc.

Regarding the search strategy aspect of DSE, the confidence property denotes
how certain we are that the design points returned by the DSE include the true
optimum, or alternatively, how close they are to the true optimum. In many search
algorithms, confidence is obtained by avoiding local optima and ensuring sufficient
design space coverage. Clearly, an exhaustive search in which every single point

Evaluating a single design point

Accuracy
capturing relevant
system properties

Effort
model creation, flexibility and scope

Speed
evaluation execution time

Confidence
reliability of result quality

Effort
DSE specification and setup

Convergence
towards optimum results

Searching the design space

inter-
dependence

Fig. 3 A taxonomy for DSE approaches (taken from [68]).

6 Andy D. Pimentel

in the design space is evaluated and compared would provide a 100% confidence.
However, such exhaustive search is usually prohibited due to the sheer size of the
design space. In those cases, as will be discussed later on, search techniques based
on metaheuristics can be used to search the design space for optimal solutions using
only a finite number of design point evaluations. The convergence property denotes
the speed of evaluating a range of design points, and, more specifically, the rate
at which the DSE search algorithm manages to converge to an optimum. Finally,
analogous with the effort property in the case of evaluating a single design point,
the effort for searching the design space refers to the implementation of the search
method and setting its parameters, as well as setting up, running and evaluating the
results of the exploration experiment.

2.2 Y-chart based DSE

Many system-level fitness evaluation and DSE methods and tools in the embedded
systems domain are based on the Y-chart methodology [30, 1], which is illustrated
in Figure 4. This implies that these DSE methods separate application models (or
workload models) and architecture models while also recognizing an explicit map-
ping step to map application tasks onto architecture resources (i.e., bind tasks to
processing elements in space and time). In this approach, an application model –
derived from a specific application domain – describes the functional behavior of an
application workload in a timing and architecture independent manner. An MPSoC
(platform) architecture model – which usually has been defined with the application
domain in mind – defines architecture resources and captures their extra-funtional
behavior, i.e. behavior in terms performance, power consumption, cost, etc. To per-
form quantitative analysis of the fitness of a design point, application models are
mapped onto the architecture model under investigation, after which the fitness of

Application domain

models

Numbers

Fitness
Analysis

Fitness

Mapping
Application(Platform)

model
Architecture

Fig. 4 Y-chart based design space exploration [30, 1].

To be published in the Handbook of Computer Architecture, Springer 7

each application-architecture combination can be evaluated. Subsequently, the re-
sulting fitness numbers may be used by the search algorithm of a DSE process to
change the architecture, restructure/adapt the application(s) or modify the mapping
of the application(s). These actions are illustrated by the light bulbs in Figure 4.

Essential in this methodology is that an application model is independent from
architectural specifics, assumptions on hardware/software partitioning, and timing
characteristics. As a result, application models can be re-used in the exploration
cycle. For example, a single application model can be used to exercise different
hardware/software partitionings or can be mapped onto a range of architecture mod-
els, possibly representing different MPSoC architecture designs or modeling the
same architecture design at various levels of abstraction. With the latter, we refer to
the gradual refinement of architecture models (e.g., [46, 72]). As design decisions
are made, a designer typically wants to descend in abstraction level by disclosing
more and more implementation details in an architecture model. Eventually, such
refinement can bring an initially abstract architecture model closer to the level of
detail where it is possible to synthesize an implementation [40, 69, 61].

In the next two sections, we will provide a more detailed overview of the different
techniques, and their properties, applied in each of the two aforementioned elements
of DSE, i.e., fitness evaluation of a single design point and searching the design
space.

3 Evaluation of a single design point

Methods for evaluating the fitness of a single design point in the design space roughly
fall into one of three categories: 1) measurements on a (prototype) implementation,
2) simulation-based evaluations and 3) estimations based on an analytical model.
Each of these methods has different properties with regard to evaluation time and
accuracy. Evaluation of prototype implementations provides the highest accuracy,
but long development times prohibit evaluation of many design options. Analytical
estimations are considered the fastest, but accuracy is limited since they are typically
unable to sufficiently capture particular intricate system behavior. Simulation-based
evaluation fills up the range in between these two extremes: both highly accurate
(but slower) and fast (but less accurate) simulation techniques are available (see
also Chapter on Processor Simulation and Characterisation). This trade-off between
accuracy and speed is very important, since successful DSE depends both on the
ability to evaluate a single design point as well as being able to efficiently search
the entire design space. As current DSE efforts in the domain of embedded systems
design usually use simulation or analytical models to evaluate single design points,
the remainder of this section will focus on these methods.

8 Andy D. Pimentel

Processor simulation

Higher accuracy Higher speed

Cycle-accurate
ISS

Binary
 translation

Host-compiled
simulationRTL

Communication simulation

Higher accuracy Higher speed

Cycle-accurate Bus-cycle
accurate

Transaction-level
modeling (TLM)RTL

(a)

(b)

Fig. 5 Different levels of abstraction for (a) simulating processors and (b) simulating communica-
tion.

3.1 Simulative fitness evaluation

Simulating system components can be performed at different levels of abstraction.
The higher the abstraction level, the less intricately the system components are mod-
eled and, therefore, the higher the simulation speed is. Evidently, such efficiency
improvements come at the cost of a less accurate fitness estimation because of the
fact that particular system details are not taken into account. This simulation speed-
accuracy trade-off is shown in Figure 5. This figure depicts several widely-used
simulation abstraction levels, and it does so for both the simulation of processor
components as well as the simulation of communication between system compo-
nents.

For both the simulation of processor and communication components, the low-
est level of abstraction for simulating a digital system is the register-transfer level
(RTL). At this level of abstraction, the flow of digital signals between registers and
combinational logic is explicitly simulated. This yields a highly accurate but also
very slow simulation. As a result, the use of RTL simulation in the process of DSE
is confined to only relatively small and narrow design spaces focusing on, for exam-
ple, the design of one specific system component. Performing system-level DSE is
infeasible using RTL simulation.

Raising the level of abstraction, one can simulate system components at the
cycle accurate level. This means that the system components are simulated on a
cycle-by-cycle basis and, as such, that the simulated system state conforms to the
cycle-by-cycle behavior of the target design. This results in more efficient simulation
as compared to RTL simulation at the cost of a somewhat reduced accuracy since
the system state in between cycles is not accounted for. Cycle-accurate simulation is
a popular technique for simulating microprocessors (see also Chapter on Processor
Simulation andCharacterisation): so-called cycle-accurate instruction set simulation

To be published in the Handbook of Computer Architecture, Springer 9

(ISS). These ISS simulators try to capture the cycle-by-cycle behavior of the micro-
architectural components of amicroprocessor, such as the pipeline logic, out-of-order
processing, branch predictors, caches, and so on. To account for power consumption
behavior, ISS simulators often use activity-based power models that accumulate the
power consumption of the relevant micro-architecture components based on their
activity ratio. A good example is the widely-used cycle-accurate Gem5 ISS [4],
which can be extended to also support area and power predictions using activity-
based modeling frameworks such as CACTI [73] and McPAT [31]. Although these
ISS simulators can be deployed to perform micro-architectural DSE for processor
components, they are generally still too slow for performing full system-scale DSE
of multi-core based embedded systems.

In cycle-accurate ISS simulators, the fetching, decoding and execution of instruc-
tions are explicitly simulated. To further optimize the speed of such simulators, one
could translate the instructions from the target binary to be simulated to an equiva-
lent sequence of instructions (using static or dynamic just-in-time translation) that
can be executed on the simulation host computer. This so-called binary transla-
tion technique, which is for example deployed in the widely-used QEMU simulator
[3], aims at reducing the overhead of explicitly simulating the instruction fetch and
decode stages. The translated instruction sequences are often instrumented with
additional code to keep track of the extra-functional behavior such as timing and
power consumption, of the original code as it would have been executed on the target
processor. In some cases, however, ISS simulators and especially binary-translation
based simulators only focus onmimicking the functional behavior and do not capture
the extra-functional behavior of the target processor. In these cases, they are usually
referred to as emulators rather than simulators.

For simulating communication between system components, one could use so-
called bus-cycle accurate simulation [7] to speed up the simulation process. In this
type of simulation, all signals of the communication bus are modeled explicitly in
a cycle accurate fashion, but this accuracy is only maintained for the signals on the
communication bus and not for the logic around it. The surrounding components
can thus use more abstract timing models.

Raising the abstraction level even further for processor simulation yields so-
called host-compiled simulation [10, 5]. In this technique, the source code of the
target program is directly compiled into a binary program that can run on the host
computer. In addition, and similar to the binary translation technique, the source code
can be instrumented with a timing and power consumption model based on the target
architecture. Since this type of simulation is efficient as it directly executes target
programs on the host computer, it is very suitable for system-level DSE. However, at
this level of abstraction it is difficult to accurately capture intricatemicro-architectural
behavior, like pipeline and cacheing behavior. Another drawback of this simulation
approach is that one needs to have access to the source code of a target program.

For simulating communications, transaction-level modeling (TLM) [7] provides
the highest level of abstraction. In TLM, communication details at the level of signals
and protocols are abstracted away by means of encapsulation into entire transactions
between system components. At this level, the emphasis is more on the functionality

10 Andy D. Pimentel

of the data transfers, i.e., what data are transferred to and from what locations, rather
than on their actual implementation. Evidently, the extra-functional behavior in TLM
simulation models is also captured at the level of entire transactions.

The above processor simulation techniques are all execution-driven simulation
methods as they are directly driven by the execution of a program.Alternatively, there
are also trace-driven simulation techniques in which the simulation is driven by event
traces that have been collected through the execution of a program (e.g., [6, 9]). These
trace events can focus on the evaluation of specific system elements such as memory
access address traces for cache simulation [74]. However, an event trace may also
consist of the full sequence of executed instructions, thereby allowing full, trace-
driven microprocessor simulation for the purpose of performance and/or power
estimation. To optimize for simulation speed, the trace events may also represent
computations (and, if needed, communications) at a higher level of abstraction than
the level of machine instructions, like at the level of the execution of basic blocks or
even entire functions. Another advantage of trace-driven simulation is the fact that
the event traces often only need to be generated once (i.e., executing the program
to collect the traces once), after which they can be re-used in the DSE process.
Drawbacks of trace-driven simulation evidently are the need for storing the event
traces which can become extremely large in size, and the fact that trace-driven
simulation does not allow for simulating all intricate system behavior, such as the
effects of speculative instruction execution in microprocessors.

An example of a high-level, trace-driven MPSoC simulation environment is the
Sesame system-level modeling and simulation framework [46, 15]. Sesame is based
on the aforementioned Y-chart methodology [30], and accordingly, it recognizes
separate application and architecture models. The application models are explicitly
mapped onto the architecture models bymeans of trace-driven simulation. The work-
load of an application is captured by instrumenting the applicationmodel – which is a
parallel specification of the application – with annotations that describe the applica-
tion’s computational and communication actions at a coarse-grained level (typically
at the level of the execution of entire functions). By executing this instrumented
application model, these annotations cause the generation of traces of application
events that subsequently drive the underlying architecture model. This architecture
model – capturing the system resources and their constraints – then simulates the
consequences of the consumed computation and communication events in terms of
extra-functional system behavior (performance, power consumption, etc.). Figure 6
depicts Sesame’s layered organization, illustrating the mapping of two multimedia
applications (an MP3 encoder and video decoder) onto a bus-based MPSoC plat-
form. A special mapping layer in Sesame, which can be seen as an abstract (real-time)
operating system (RTOS) model, provides the scheduling of application events in the
case multiple application processes are mapped onto a single processing resource.

Orthogonal to most of the (processor) simulation methods described above, there
are additional techniques to further improve the simulation speed [13]. In sampled
simulation, for example, the simulation does not cover the execution of an entire
program but only simulates relatively small samples of the program’s execution.
Here, the challenge is to select the samples in such a manner that they sufficiently

To be published in the Handbook of Computer Architecture, Springer 11

Decode

Processor

Memory

Mapping layer: abstract RTOS
(scheduling of events)

Processor Processor

Event traces

Ap
pl

ica
tio

n
m

od
el

Ar
ch

ite
ct

ur
e

m
od

el

Scheduled events

EncodeSample

Quality
Control Display

 Video decoderMP3 encoder

Fig. 6 The Sesame system-level MPSoC simulation infrastructure.

represent the behavior as if the entire program was simulated. Another technique for
speeding up simulation is statistical simulation. Rather than using real (benchmark)
programs for simulation, it uses a statistical program profile. This profile captures
the distributions of important program characteristics, and is used for generating a
synthetic instruction trace that drives a simple trace-driven simulator.As the synthetic
trace is randomly generated from a statistical profile, this type of simulation can
converge to a set of performance predictions fairly quickly.

3.2 Analytical fitness evaluation

In comparison to simulation, analytical models allow for much more efficient pre-
diction of the extra-functional system behavior at the expense of a reduced accuracy.
This makes analytical models very suitable for exploring large design spaces and
to rapidly identify regions of interest that can be later explored in more detail us-
ing simulation. Another advantage of analytical models is that they can provide
direct insight into the relationship between model parameters (representing design
choices) and the predicted extra-functional behavior. For simulative methods, such
understanding would require a large number of simulation runs.

Analytical models can roughly be divided into three classes [13]: 1) mechanistic
(or whitebox) models, 2) empirical (or blackbox) models, and 3) a hybrid combi-
nation of mechanistic and empirical modeling. Mechanistic models are based on

12 Andy D. Pimentel

first principles, which implies that they are built in a bottom-up fashion starting
from a basic understanding of the mechanics of the modeled system. For example,
in a mechanistic microprocessor performance model, penalties due to cache misses,
branch mispredictions, the execution of instructions with different latencies, etc., are
explicitly captured in the model.

In empirical models, statistical inference and machine learning techniques, like
regression models or neural networks, are used to automatically synthesize a model
through the process of learning from training data. For example, using a set of
micro-architectural parameters such as pipeline depth, issue width, caches sizes,
etc., one could train a model that predicts the Instructions Per Cycle (IPC) or Cycles
Per Instruction (CPI) of a microprocessor. Inferring a model by means of automatic
training typically is easier than developing a mechanistic model because it does not
require intimate understanding of the mechanics of the modeled system. Evidently,
the latter is also an immediate drawback as empirical models also tend to provide
less insight than mechanistic models.

In hybrid mechanistic-empirical modeling, which is sometimes referred to as
greybox modeling, extra-functional system aspects are captured using a formula that
has been derived from insights in the underlying system. However, this formula
includes a number of unknown parameters, which are then inferred through fitting
(e.g., using regression), similarly to empirical modeling. Such hybrid mechanistic-
empirical modeling is motivated by the fact that it provides insight (like mechanistic
modeling) while easing the construction of the model (like empirical modeling).

4 Searching the design space

As explained before, searching a design space is a multi-objective optimization
process. This process will evidently benefit from a good trade-off between speed,
accuracy and effort of the method for evaluating the fitness of a single design point,
as discussed in the previous section. But, even if this trade-off is ideal, we still have
to make sure that each evaluation of a design point contributes as much as possible
to an effective and efficient search of the design space. A crucial component towards
this goal is the search algorithm that navigates through the design space towards
areas of interest by proposing which design points to evaluate next. Regardless of
the specific type of search method that is used for such a design space traversal, its
success depends on three major concerns, as was shown in Figure 3: confidence,
convergence and effort. As was already mentioned earlier, these concerns typically
cannot be considered in isolation, as they are highly interdependent, contradictory
and sometimes overlapping. The state-of-the-art in DSE can be summarized as
finding a good trade-off between these concerns.

DSE search algorithms can be divided into exact and non-exact methods. In ex-
act DSE methods, like those implemented using integer linear programming (ILP)
solutions (e.g., [39, 34]) or branch & bound algorithms (e.g., [41]), the optimum is
guaranteed to be found. As such methods generally are compute intensive, they typi-

To be published in the Handbook of Computer Architecture, Springer 13

cally use design space pruning (i.e., discarding unsuitable design points) to optimize
the efficiency of the search, thereby allowing them to handle larger design spaces.
However, for realistic design problems with design spaces that are vast, these meth-
ods may still not scale and thus be less suited. Alternatively, in non-exact methods,
metaheuristics are typically used to find a design point in the known design space that
meets the design requirements as best as possible. To this end, these methods search
the design space for optimal solutions using only a finite number of design point
evaluations, and can thus handle larger design spaces. However, there is no guarantee
that the global optimum will be found using metaheuristics, and therefore the result
can be a local optimum within the design space. Examples of metaheuristics are hill
climbing, tabu search, simulated annealing, ant colony optimization, particle swarm
optimization, and genetic algorithms [43]. In this chapter, we will focus on methods
to navigate the design space that are based on genetic algorithms (GA). GA-based
DSE has been widely studied in the domain of system-level embedded design (e.g.,
[42, 35, 14, 50, 21]) and has demonstrated to yield good results. Moreover, GAs can
be used in their basic (domain-independent) form or, as will also be explained later
on, with custom extensions that incorporate domain-dependent knowledge in order
to improve search performance even further.

4.1 GA-based DSE

GAs operate by searching through the solution space (spanned by the design vari-
ables/decisions being explored) where each possible solution is encoded as a string-
like representation, often referred to as the chromosome [2]. A (randomly initialized)
population of these chromosomes is then iteratively modified by performing a fixed
sequence of actions that are inspired by their counterparts from biology: fitness eval-
uation and selection, crossover and mutation. A fundamental design choice of a GA
is the genetic representation of the solution space, because each of the crossover and
mutation steps depends on it. To illustrate how such a genetic representation could
look like, let us use a widely-studied DSE problem in the domain of system-level
embedded system design as an example: optimizing the mapping of a (set of) concur-
rent application(s) onto an underlying (heterogeneous)MPSoC platform architecture
[60]. As a convenient mapping description for an application with n tasks, we use a
vector of size n with processor identifiers pi , where pi indicates the mapping target
of task i:

[p0, . . . , pi, . . . , pn−1]

This commonly-used description is very suitable to serve as the chromosome repre-
sentation for a GA. A valid mapping specification is a feasible partitioning of all n
tasks. With feasible, we mean that tasks are mapped onto processing elements that
can execute those tasks (i.e., there are no functional restrictions of the processing
element in question, like an ASIC component that only allows the execution of one
particular piece of functionality), and that communicating tasks are mapped onto
processing elements that can actually communicate with each other (i.e., there are no

14 Andy D. Pimentel

0 2 2 1 3 0

1 0 0 2 1 3
Fitness evaluation

+ Selection

A
B

D

C
FE

P0 P1 P2 P3

Mem

Population

Parents for
producing
offspring

C
rossover

New
offspringMutation

New offspring
with new
genetic
material

U
pd

at
e

po
pu

la
tio

n

Mutation

Two-point

One-point

Uniform
Crossover

Parents Children

Parent Child

(a) (b)

Fig. 7 GA-based mapping DSE: (a) general overview of the GA steps, and (b) crossover and
mutation operators.

topological communication restrictions). In case an infeasible mapping is created by
the genetic operators of a GA (crossover and mutation), a mechanism is required that
either discards or repairs such a chromosome. Repairing a chromosome implies that
it is transformed into a valid chromosome (mapping) that is ’as close as possible’ to
the original, invalid one. Moreover, note that task partitions specifying a mapping
may also be empty (i.e., particular processor(s) not in use) or contain all n tasks (i.e.,
a single processor system). A processor that is not assigned any tasks (having an
empty task partition) can be considered idle or non-existent.

In Figure 7(a), the different steps of a GA are shown. This figure also illustrates
the mapping representation of a chromosome for an application with 6 tasks and
a 4-processor bus-based MPSoC platform. Starting from a (randomly initialized)
population of chromosomes, representing the different mapping design instances,
the fitness of the mapping solutions in the population are first evaluated. To this
end, any of the analytical or simulative techniques discussed in Section 3 can be
used. Subsequently, based on the fitness evaluation, a selection of chromosomes is
made that will be used to create offspring. This offspring is created by combining
genetic material from two parents using a crossover operation, as illustrated in the
top part of in Figure 7(b). There exist various forms of this crossover operator, of
which the uniform, one-point, and two-point crossovers are the most popular. Next,
new genetic material is introduced in the offspring by means of a mutation operator
as illustrated at the bottom of Figure 7(b). Such a mutation randomly changes one
or more genes within chromosomes. Finally, the newly created offspring is used to
update the population by either replacing it or by deploying so-called elitism. Such

To be published in the Handbook of Computer Architecture, Springer 15

elitism involves the combination of the new offspring with a small number of the
best solutions from the original population to avoid loosing strong solutions.

To provide a small example of the results a GA-based DSE could obtain, we
present some results of a small-scale case study where the design space consists of
an application with 11 tasks that is to be mapped onto a 4-core MPSoC architecture
with a crossbar interconnect [68]. The mapping design space contains more than 4
million design points. Of these design points, 175K are unique ones since the target
platform is a homogeneous, symmetric MPSoC, and as a consequence, exhibits
mapping symmetries. Because of the relatively small design space, in this particular
case, we were also able to perform an exhaustive search, allowing us to evaluate
the quality of the GA-based search results. To account for the stochastic behavior of
GAs, all results are averages over 300 GA runs. The fitness of mapping solutions
has been evaluated using the Sesame MPSoC simulation framework [46, 15] (see
also Section 3.1). Figure 8 shows the results of the GA-based DSE with different
population sizes (10, 15, 40 or 80 chromosomes), a constant mutation rate (0.1) and
crossover probability (0.9), and a uniform crossover in a so-called P-Q (Probability-
Quality) plot. Regarding the top part of this plot, the horizontal axis (top x-axis)
represents the quality of the result as a percentile towards the true optimum (a
lower percentile indicates a result closer to the optimum) and the vertical axis
represents the probability of achieving a result with that quality. The straight lines
in the graph represent the theoretically derived probabilities of finding results using
a simple, uniform random search. We have also computed the 80-95% confidence
intervals of the mean fitness value (execution time in cycles, in this case) of mapping
solutions found by the GA, averaged over the 300 runs of each GA search. These

130 CHAPTER 7. SUPPORT FOR AUTOMATIC DSE

 0.8
 0.85
 0.9

 0.95

 950 960 970 980 990 1000 1010
(x 1000 processor cycles)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
 0 0.02 0.04 0.06 0.08 0.1

40

10

80

15

Figure 7.7: P-Q plot for different population sizes

ulation size (80 chromosomes) has a better chance to find results of certain quality. Note that
the figure shows multiple random-search baselines for fair comparison with each of the GAs,
allowing random-search the same number of evaluations (as indicated by the last number in
the plot legend). From the results we conclude that although population size 80 obtains the
best result, a population of 40 is a reasonable performance-execution time trade-off. We take
population size 40 as a basis for comparison in the remainder of this section.

Next we look at the influence of the mutation parameter, the left side of Figure 7.8a
shows the result for population size 40. In both figures we see a trend that a very small
mutation rate does not yield a good performance (mutation 0.01, 0.02), nor does a very high
mutation rate (0.3). The most effective mutation rate seems to be between 0.05 and 0.2. The
existence of an optimal mutation range can be explained by the fact that mutation enables
diversification in the population. This can result in new optimal solutions to be found and
to avoid sticking to local optima in the design space. However, when there’s too much
mutation, the GA becomes more and more like a random search and is unable to converge
towards any optima (local or global). It seems that the mutation rate has an even greater
influence on a GA with a smaller population (compare e.g. the difference between mutation
0.05 and 0.20 in both figures). A reasonable explanation seems that the larger population
has more randomness from its initial population, whereas a smaller population does not. For
now we select mutation rate 0.10 as the basis for our future experiments.

In Figure 7.9 we see performance for different crossover probabilities. A higher crossover
probability indicates that two genes exchange more genetic material once they have been se-
lected to create offspring. We can see that the results are close together for significantly
different crossover rates, suggesting that the crossover rate has little influence on the GA.
Indeed, in the wider GA research field it is a hot topic of debate how important actually is
the crossover step in a GA. There is no general consensus on this topic, but including some
form of crossover seems to be generally beneficial. In the following, we will continue to use

Fig. 8 P-Q plot for GA-based DSE with different population sizes.

16 Andy D. Pimentel

confidence intervals, shown at the bottom of the graph in Figure 8, indicate how
certain (as specified by the confidence level) we are that the real mean lies within the
confidence interval. The more the confidence intervals for different experiments are
non-overlapping, the more significant the difference of the mean behavior (which is
clearly the case in the example of Figure 8). The results from this particular case
study show that the GA-based DSEwith the largest population size can find mapping
solutions that are always very close to the real optimum: within the 0.1 percentile,
implying that they belong to the best 175K

1000 = 175 solutions. A larger population size,
however, comes with a higher number of fitness evaluations during the search and
thus requires a longer search time (assuming the number of search iterations remains
constant). According to Figure 8, a population size of 40 may therefore provide a
good compromise.

4.2 Optimizing GA-based DSE

There are various methods for making the search process of a GA-based DSE
more efficient. This allows the DSE process to either find the design candidates
quicker (i.e., improve the convergence behavior of the DSE) or to spend the same
amount of time to evaluate more design points. The latter can be used to enable
the search of larger design spaces or to improve the chance of finding better design
candidates (i.e., improve the confidence property of the DSE). One approach for
optimizing the GA-based search is to enrich the genetic operators of the GA with
domain knowledge such that they produce more diverse offspring or offspring with
a higher probability of being closer to the optimum. For example, in [71], new GA-
operators have been proposed that optimize the search performance by 1) reducing
the redundancy present in chromosome representations (e.g., mapping symmetries
[22] in the case of homogeneous, symmetrical MPSoC platforms), or 2) using a
new crossover operator that is based on a mapping distance metric that provides a
measure of similarity between mappings. Using this mapping distance information,
the new crossover operator aims at retaining the strong chromosome parts of both of
the parents. In [50], a new mutation operator has been proposed that considers the
affinity of tasks with respect to processors, the communication cost between tasks,
and the differences of processor workloads to steer the mutation in such a way that
offspring is produced with a higher probability of being (near-)optimal.

Another approach for optimizing GA-based DSE concerns the reduction of the
time taken to evaluate the fitness of solutions during the GA’s execution. As men-
tioned before, DSE approaches typically use either simulation or an analytical model
to evaluate the fitness of design points, where simulative approaches prohibit the
evaluation of many design options due to the higher evaluation performance costs
and analytical approaches suffer from accuracy issues. Therefore, in [48], a hybrid
form of mapping DSE has been proposed that combines simulation with analytical
estimations to prune the design space in terms of application mappings that need
to be evaluated using simulation. To this end, the DSE technique uses an analytical

To be published in the Handbook of Computer Architecture, Springer 17

model that estimates the expected throughput of an application given a certain ar-
chitectural configuration and application-to-architecture mapping. In the majority of
the search iterations of the DSE process, this analytical throughput estimation avoids
the use of simulation to evaluate the design points. However, since the analytical
estimations may in some cases be less accurate, the analytical estimations still need
to be interleaved with simulative evaluations in order to ensure that the DSE process
is steered into the right direction [49]. A similar approach is taken in [36], where
an iterative DSE methodology is proposed exploiting the statistical properties of the
design space to infer, by means of an empirical analytic model, the design points to
be analyzed with low-level simulation. The knowledge of a few design points is used
to predict the expected improvement of unknown configurations.

Alternatively, in hierarchical DSE (e.g., [38, 26, 27]), DSE is first performed
using analytical or symbolic models to quickly find the interesting parts in the
design space. Hereafter, simulation-based DSE is performed on the selected sweet
spots in the design space to more accurately search for the optimal design points.

5 Multi-application workload models

The DSE techniques discussed so far focus on the evaluation and exploration of
MPSoC architectures under static, single-application workloads. Today’s MPSoC
systems, however, often require supporting an increasing number of applications
and standards, where multiple applications can run simultaneously and concurrently
contend for system resources [70, 8]. For each single application, there may also
be different execution modes (or program phases) with different computational and
communication requirements. For example, in Software Defined Radio appliances,
a radio may change its behavior according to resource availability, such as the
Long Term Evolution (LTE) standard which uses adaptive modulation and coding to
dynamically adjust modulation schemes and transport block sizes based on channel
conditions. Or a video application could dynamically lower its resolution to decrease
its computational demands in order to save battery life. As a consequence, the
behavior of application workloads executing on the embedded system can change
dramatically over time.

As illustrated in Figure 9, there are several approaches for dealing with multi-
application workloads in the context of DSE. A commonly-used approach is to
consider the applications in isolation, as illustrated in Figure 9(a). This implies
that each of the applications in the multi-application workload will be mapped to a
different, isolated part of the system. As a consequence, the DSE for each of these
applications can also be performed in isolation. However, this approach typically
leads to over-designed systems since there is no or limited resource sharing between
applications. Another approach, illustrated in Figure 9(b), makes the pessimistic
assumption that all applications that can be executed on the system will always
be active (and will thus be contending for system resources). Again, performing
DSE with such an assumption may lead to highly over-designed systems, as in

18 Andy D. Pimentel

DSE

Ex
ec

. t
im

e

Power

Select mapping

App 0

P1 P2

Mem App 1

P3

Mem

DSE

Ex
ec

. t
im

e

Power

Select mapping

P1 P2 P3

Mem Mem

DSE

Ex
ec

. t
im

e

Power

Select mapping

App 0
P1 P2 P3

Mem Mem
App 1

P1 P2 P3

Mem Mem

DSE

Ex
ec

. t
im

e

Power

Select mapping

P1 P2 P3

Mem Mem

P1 P2 P3

Mem Mem

Scenario
Database

(a) (b) (c)

Fig. 9 DSE for multi-application workloads on a 3-core, bus-based MPSoC: (a) DSE with appli-
cation isolation, (b) pessimistic DSE, and (c) scenario-based DSE.

reality the concurrent activation of all possible applications may be unlikely. To
address the problem of over-designing systems and to capture the dynamism in
application workload behavior during the design process, the DSE could employ the
concept of application scenarios [17], leading to scenario-based DSE [63, 66, 47, 8].
This is illustrated in Figure 9(c). The remainder of this section will discuss the
concepts of application scenarios and scenario-based DSE, again using the example
of application mapping exploration for illustration purposes.

5.1 Scenario-based DSE

Application scenarios are able to describe the dynamism of embedded applications
and the interaction between the different applications on the embedded system.
An application scenario consists of two parts: an inter- and an intra-application
scenario. An inter-application scenario describes the interaction between multiple
applications, i.e., which applications are concurrently executing at a certain moment
in time. Inter-application scenarios can be used to prevent the over-design of a system.
If some of the applications cannot run concurrently, then there is no need of reserving
resources for the situation where these applications are running together. Intra-
application scenarios, on the other hand, describe the different execution modes for
each individual application. The concept of application scenarios, inter-application
scenarios and intra-application scenarios is illustrated in Figure 10 for three multi-

To be published in the Handbook of Computer Architecture, Springer 19

Inter-Application Scenario

video:

Active

mp3:

Active

Intra-Application Scenario

mp3:
Mono
sound

Stereo
sound

video:

Simple
profile

Advanced
Simple
Profile

gsm:

Send Receive

Application Scenario

video:

Simple Profile

mp3:

Mono Sound

+ =

gsm:

Inactive

Fig. 10 Application scenarios, inter-application scenarios and intra-application scenarios.

media applications (mp3 player, video decoder, and gsm application) with each two
application modes.

The number of different application scenarios grows exponentially with the num-
ber of applications involved. So, to perform DSE with these application scenarios,
scenario-based DSE needs to solve the problem that the total number of possible
application scenarios is too large to exhaustively evaluate the fitness of design points
with all of these scenarios. Therefore, a small but representative subset of appli-
cation scenarios must be selected for the evaluation of MPSoC design points. This
representative subset must be used for comparing mappings and should lead to the
same performance ordering as would have been produced when the complete set
of the application scenarios would have been used. That is, if mapping m1 is better
than mapping m2, the representative subset should be able to give a better predicted
fitness to mapping m1 than it assigns to mapping m2. However, the selection of such
a representative subset is not trivial [47]. This is because the representative subset is
dependent on the current set of mappings that are being explored. Depending on the
set of mappings, a different subset of application scenarios may reflect the relative
mapping qualities of the majority of the application scenarios.

As a result, the representative subset cannot be statically selected. For a static
selection one would need to have a large fraction of the mappings that are going
to be explored during the MPSoC DSE. However, since these mappings are only
available duringDSE, a dynamic selectionmethodmust be used. Thus, both the set of
optimal mappings and the representative subset of scenarios need to be co-explored
simultaneously such that the representative subset is able to adapt to the set of
mappings that are currently being explored [63, 66, 47]. Figure 11 shows the scenario-
based DSE framework. The left part of the picture provides a general overview of the
exploration flow, whereas the right part illustrates the scenario-based DSE in more
detail. As input, the scenario-based DSE requires a database of application scenarios,
application models and an MPSoC platform architecture model. The description of
the application workload is split into two parts: 1) the structure and 2) the behavior.
The structure of applications is described using application models (as described

20 Andy D. Pimentel

 Design Explorer

Application
Model

Application
Model

Application
Model

Architectural
ModelScenario

Database

Scenario-Based
Design Space

Exploration

Candidate
Designs

Parameters

Trainer

Selector

Updater
Sample
Designs

Best
Subset

Sesame

mp3 video

0 0 1 1 1 2 0 2 2 2 2 2 0

Processes

0: CPU-A
1: CPU-C
2: CPU-E

0: INTERN
1: MEM - 2
2: MEM - 3

Subset selector

Channels

Fig. 11 The exploration framework for scenario-based DSE.

before), whereas a scenario database [64] explicitly stores all the possible multi-
application workload behaviors in terms of application scenarios (i.e., intra- and
inter-application scenarios). In the scenario-based DSE framework, two separate
components are recognized that simultaneously perform the co-exploration tasks:
the design explorer searches for the set of optimal mappings while the subset selector
tries to select a representative subset of scenarios. To this end, they exchange data in
an asynchronous fashion after every search iteration. Here, the design explorer sends
a sample of the current mapping population to the subset selector, whereas the subset
selector makes the most representative subset available for the fitness prediction in
the design explorer.

The design explorer performs a traditional mappingDSE using a GA, as discussed
in Section 4. As explained above, it uses a representative subset of scenarios to
evaluate the fitness of mapping solutions. At every iteration of the GA, the design
explorer reads in the most recent representative scenario subset from the subset
selector and submits the current population of mapping solutions to the subset
selector in order to allow the latter to select the appropriate representative subset.
This subset selection is not trivial as there are many scenarios to pick from, leading
to a huge number of possible scenario subsets. Therefore, the subset selector uses the
set of mappings it regularly receives from the design explorer to train the scenario
subset such that it is representative for the current population in the design explorer.
As the population of the design explorer slowly changes over time, the representative
subset will change accordingly. In [66], three different techniques for selecting a
representative scenario subset are presented and evaluated: a GA-based scenario
space search (which means that two GAs are running concurrently, one for the
design explorer and one for the subset selector), a feature selection (FS) based
search algorithm, and a hybrid combination (HYB) of these two. The latter aims at
combining the strengths of both the GA-based and feature selection based searches.
That is, a GA is capable of quickly exploring the space of potential scenario subsets,
but due to its stochastic nature it is susceptible tomissing the optimal scenario subsets.
This is not the case with the feature selection algorithm as it more systematically
explores the local neighborhood of a scenario subset.

To be published in the Handbook of Computer Architecture, Springer 21

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

1% 4% 8%

N
or

m
al

iz
ed

 D
is

ta
nc

e
to

 O
pt

im
al

 F
ro

nt

Subset Size

Quality of the DSE

HYB
GA
FS

Fig. 12 Quality of the scenario-basedDSE for the different subset selection approaches. The quality
is determined based on the distance between the estimated Pareto front and the optimal front.

To give a feeling of the performance of the three different fitness prediction
techniques, Figure 12 shows the results of a scenario-based DSE experiment in
which the three techniques are compared for three different scenario subset sizes:
1%, 4%, and 8% of the total number of application scenarios. In this experiment, the
mapping of ten applications with a total of 58 tasks and 75 communication channels
is explored. The multi-application workload consists of 4607 different application
scenarios in total. The target platform is a heterogeneous MPSoC with four general-
purpose processors, two ASIPs and two ASICs, all connected using a crossbar
network. In this experiment, a DSEwith a fixed duration of 100minutes is performed
for all three subset selector approaches. The results have been averaged over nine
runs. To evaluate the fitness ofmapping solutions,we have again deployed the Sesame
MPSoC simulation framework (see Section 3.1). To determine the efficiency of the
multi-objective DSE, we obtain the distance of the estimated Pareto front (execution
time versus energy consumption of mapping solutions) to the optimal Pareto front.
For this purpose, we normalized the execution time and energy consumption to a
range from 0 to 1. As the optimal Pareto front is not exactly known since the design
space is too large to exhaustively search it, we have used the combined Pareto front
of all our experiments for this.

The size of the scenario subset provides a trade-off between accuracy and con-
vergence of the search. That is, a larger scenario subset will lead to a more accurate
fitness prediction of mappings in the design explorer at the cost of a larger computa-
tional overhead to obtain the fitness of a singlemapping causing a slower convergence
of the search. This can be seen in Figure 12. The GA and the FS subset selection
methods have worse results when the subset becomes larger (remember that we use
a fixed DSE duration of 100 minutes). For a subset size of 4%, the hybrid selector
is, however, still able to benefit from a subset with a higher accuracy. The slower
convergence only starts to effect the efficiency for the 8% subset. Comparing the
different methods, the hybrid method shows the best results. The only exception is

22 Andy D. Pimentel

for the 1% subset. In this case, the GA is still able to search the smaller design space
of possible subsets. Still, the result of the hybrid method at 4% is better than the
result of the GA at 1%. With the larger subset sizes, the hybrid method can exploit
both the benefits of the feature selection and the GA.

6 Application exploration

As described in Section 2.2, the Y-chart methodology is a popular approach for
system-level DSE in the domain of embedded systems. This means that exploration
can take place to investigate (the fitness of) different MPSoC architectures, differ-
ent mappings of application tasks to the underlying architecture, but also different
application implementations. With respect to the latter, one could, for example, ex-
plore the use of different algorithms for implementing a certain piece of application
functionality or vary the degree of concurrency in an application (e.g., fine-grained
versus more coarse-grained concurrency) that can be exploited by an underlying
MPSoC platform. So far, we have focused on the first two types of exploration, i.e.,
exploring different MPSoC architectures and task-to-architecture mappings. In this
section, we will describe an example of application exploration, and do this for the
popular application domain of deep learning. More specifically, we will outline an
approach for so-called Neural Architecture Search (NAS) [58, 59], which automates
the discovery of an efficient neural network for a given task, such as image/video
recognition, classification, natural language processing, etc.

6.1 NAS by means of Evolutionary Piecemeal Training

The NAS approach that we will describe, searches for an efficient Convolutional
Neural Network (CNN) architecture. To this end, it leverages a genetic algorithm
(GA), which allows a group of candidate CNNs in the GA’s population to train
in parallel. In most NAS techniques, training of a neural network is considered a
separate task or a performance estimation strategy to perform the neural network
architecture search. However, the approach described here considers NAS from a
different perspective as it aims at finding optimal CNN architectures during the
training process itself as opposed to accuracy prediction or training as a separate
performance estimation strategy. The NAS approach is called Evolutionary Piece-
meal Training (EPT) [58, 59], where piecemeal-training refers to training a neural
network with a small ‘data-piece’ of size δk . In this technique, a traditional contin-
uous training is interceded by an evolutionary operator at regular intervals and the
interval of intervention is dictated by the value of δk . The evolutionary operators
applied to CNNs in the GA population lead to CNN architecture modifications and
hence exploration of the search space. A new CNN architecture derived like this is
always partially trained already as it was modified from another CNN undergoing

To be published in the Handbook of Computer Architecture, Springer 23

training. In subsequent iterations, derived CNN architectures continue to train. Those
CNN candidates that are not able to achieve high accuracy during training will be
dropped from the population. This can also be seen as early training termination of
candidates that are performing poorly. Towards the end of this algorithm, the best
candidates are selected from the population, which can then be post processed or
trained further, if needed.

The search space for the algorithm is focused on plain CNNs, which consist of
convolutional, fully-connected (FC) and pooling layers without residual connections,
branching etc. Batch normalization and non-linear activations are configurable and
can be added to the network. CNN architectures are defined by a group of blocks,
where each block is of a specific layer type and is bounded byminimumandmaximum
number of layers it can have. Additionally, each layer has upper and lower bounds on
each of its parameters. For example, a convolutional layer will have bounds on the
number of units, kernel sizes and stride sizes possible. These constraints are in place
to make sure that CNN architectures do not become too big and limits the resource
consumption of the final neural network. This is an important factor to consider
when mapping the CNNs to resource-constrained embedded systems. The search
space specifications along with its bounds are encoded as a collection of genes, also
called a genotype. All possible combinations of parameters together form the gene
pool from which individual neural networks are created and trained.

A population based training process is used where an initial population of neural
networks is randomly created from the defined gene pool. In each iteration, all
candidates of the population are piecemeal-trained and then evaluated using the
validation set. Depending upon the available resources, all candidates can be trained
in any combination of parallel and sequential manner. The size of the population
is kept constant throughout the algorithm, though the candidates of the population
keep changing as they are altered through the evolutionary operators applied in each
iteration. The number of candidates in the population needs to be large enough
to maintain enough diversity of CNN architectures in the population, while still
satisfying the constraints applied to it.

6.1.1 Evolutionary operators

The crossover operator in the EPT-based NAS works with two neural networks and
swaps all layers in a gene-block of the same type. In this replacement, the layers
being swapped are roughly in the same phase of feature extraction. The input and
output feature map sizes of the layer block being swapped are also identical in both
of the selected networks. Figure 13 illustrates the crossover operator for swapping
convolutional layers from two networks. Crossover is not a function preserving
operator, but in experiments they were found to be important to introduce diversity
in the population by changing the total number of layers in a candidate through
swapping. To reduce the negative effect of training loss incurred due to the crossover,
a cooling-down approach is used to the crossover rate. In earlier GA iterations, where

24 Andy D. Pimentel

Conv

Input

Conv

Pool

Conv

Pool

FC

FC

Softmax

Conv

Input

Conv

Pool

Conv

Pool

FC

FC

Softmax

Conv

FC

Conv

Input

Conv

Pool

Conv

Pool

FC

FC

Softmax

Conv

Conv

Input

Conv

Pool

Pool

FC

FC

Softmax

Conv

FC

Parent CNN-1 Parent CNN-2 Child CNN-1 Child CNN-2

Fig. 13 Crossover operator on two CNNs swapping convolution layers.

the training loss is already high, there are more swaps happening than in the later
ones, where training loss is very low.

The mutation operator changes a layer’s parameters such as the number of kernels
or kernel size and is designed to be function preserving. Every mutation disrupts
the ongoing training of the mutated candidates and some additional loss is incurred
in the training-in-process. However, due to the function preserving nature of the
mutation operator, the loss incurred from this operator is as small as possible and
recoverable in later piecemeal-training.

6.1.2 NAS Results

To illustrate the competence and versatility of the EPT-based NAS concept, a range
of experiments were performed with datasets from two different domains: CIFAR-10
for image classification [12] and PAMAP2 for human activity recognition [56]. For
CIFAR-10, the search took 2-GPU days and the best prediction accuracy was found
to be 92.5% on the test set. Table 1 shows comparisons with other evolutionary
NAS approaches, where EPT refers to Evolutionary Piecemeal Training. We know
that 92.5% is relatively low compared to other published works, but this is on a
very simple and plain CNN without any architectural enhancements or advance data
augmentation. Other approaches use a hybrid search space where different architec-
ture blocks or cell modules as well as arbitrary skip connections are used. Instead
of stacking conventional layers, these stack different blocks. The best model found
in the EPT experiments has 13 convolutional layers followed by 2 fully connected
layers. For the PAMAP2 dataset, the EPT search took only 10 GPU-hours and the

To be published in the Handbook of Computer Architecture, Springer 25

Table 1 CIFAR-10 Accuracy Comparisons with Evolutionary Approaches

Model Search Space GPU-days Accuracy(%)

CoDeepNeat [37] hybrid - 92.7
GeneticCNN [77] hybrid 17 92.9
EANN-Net [11] hybrid - 92.95
AmoebaNet [54] cell 3150 96.6
NSGANet [33] hybrid 8 96.15
Evolution [55] hybrid 1000+ 94.6
EPT plain CNN 2 92.5

best prediction accuracy was 94.36%. Compared to state of the art neural network
solutions for this particular dataset, EPT outperforms all other efforts of which we are
aware. The best performance was found on a neural network that has 7 convolutional
layers followed by 3 fully connected layers. The interested reader is referred to [58]
for a more detailed analysis of EPT’s experimental results.

7 Conclusion and outlook

In this chapter, we presented an overview of techniques and methods for DSE of
embedded systems. We organized our discussion along the lines of the two primary
elements of DSE: the evaluation of single design points and the search strategy
for covering the design space. The overview is certainly not meant to be exhaustive.
For example, we focused on popular GA-based DSE, optimizing system performance
and, to some extent, power/energy consumption. The optimization of other important
design objectives, such as system reliability (e.g., addressed in [25, 19, 18, 65]), has
not been covered.

There are still many open research challenges for this domain. For example, em-
bedded systems more and more need to become adaptive systems due to increasingly
dynamic application workload behavior (as was previously discussed), the need for
Quality-of-Service management to dynamically trade off different system qualities
such as performance, precision and power consumption, and the fact that we have
reached a technology level where our circuits are no longer fully reliable, increasing
the chances of transient and permanent faults. This calls for research to take system
adaptivity, in which a system can continuously reconfigure and customize itself at
run time according to the application workload at hand and the state of the system
(e.g., [60, 51, 53, 52, 20, 29]), into account in the process of DSE. In the case of adap-
tive systems, a DSE process cannot easily compare different design choices by, e.g.,
simply evaluating the performance or power/energy consumption of an application
workload executing on a specific platform architecture. That is, the reconfiguration
behavior (i.e., when and how the system reacts to ’disruptive events’ that trigger
system reconfigurations) of the system and the performance / power consumption

26 Andy D. Pimentel

consequences of such system adaptivity actions, must be taken into account when
comparing different design instances. This calls for efficient and effective methods
that allow for evaluating and optimizing adaptive embedded system designs such
that the way the system instances and their extra-functional behavior evolve over
time are also captured.

Another research direction we would like to mention involves the introduction of
new design objectives in the process of (early) DSE, in addition to the traditional
objectives such as system performance, power/energy consumption, system cost,
and reliability. Arguably, a good example is the need for taking system security
into account as an optimization objective [44]. As embedded systems are becoming
increasingly ubiquitous and interconnected, they attract a world-wide attention of
attackers, which makes the security aspect more important than ever during the
design of those systems. Currently, system security is still mostly considered as an
afterthought and is typically not taken into account during the very early design
stages. However, any security measure that may eventually be taken later in the
design process does affect the already established trade-offs with respect to the other
system objectives such as performance, power/energy consumption, cost, etc. Thus,
covering the security aspect in the earliest phases of design is necessary to design
systems that are, in the end, optimal with regard to all system objectives. However,
this poses great difficulties because unlike the earlier mentioned conventional system
objectives like performance and power consumption, security is hard to quantify. This
necessitates research on techniques that make it possible to incorporate security as
an objective in early DSE.

At this moment, the integration of security aspects in the process of system-level
DSE of embedded systems is still a largely uncharted research ground. Only a few
efforts exist that address this problem but they typically provide only partial solutions
or solutions to very specific security problems (e.g., [32, 75, 62, 67]). Moreover, in
most of these works, security is modelled as a requirement in the DSE process,
which does not allow for studying actual trade-offs between performance, power
consumption or cost in relationship to secureness of a design. Only a handful of
research efforts, such as [16, 23], seem to have been aiming at incorporating security
as an objective that can be traded off with other objectives during early DSE.

References

1. Balarin, F., Sentovich, E., Chiodo,M., Giusto, P., Hsieh, H., Tabbara, B., Jurecska, A., Lavagno,
L., Passerone, C., Suzuki, K., Sangiovanni-Vincentelli, A.: Hardware-Software Co-design of
Embedded Systems – The POLIS approach. Kluwer Academic Publishers (1997)

2. Beasley, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: Part I-fundamentals.
University Computing 15(2), 58–69 (1993)

3. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proc. of the USENIX Annual
Technical Conference, pp. 41–46 (2005)

4. Binkert, N., et al.: The gem5 simulator. SIGARCH Computer Architecture News 39(2), 1–7
(2011)

To be published in the Handbook of Computer Architecture, Springer 27

5. Bringmann, O., Ecker, W., Gerstlauer, A., Goyal, A., Mueller-Gritschneder, D., Sasidharan,
P., Singh, S.: The next generation of virtual prototyping: Ultra-fast yet accurate simulation of
hw/sw systems. In: Proc. of the Int. Conference on Design, Automation & Test in Europe
(DATE), pp. 1698–1707 (2015)

6. Butko, A., Garibotti, R., Ost, L., Lapotre, V., Gamatie, A., Sassatelli, G., Adeniyi-Jones, C.: A
trace-driven approach for fast and accurate simulation of manycore architectures. In: Proc. of
the Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 707–712 (2015)

7. Cai, L., Gajski, D.: Transaction level modeling: An overview. In: Proc. of the Int. Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 19–24 (2003)

8. Castrillon, J., Leupers, R., Ascheid, G.: MAPS: Mapping concurrent dataflow applications to
heterogeneous MPSoCs. IEEE Transactions on Industrial Informatics 9(1), 527–545 (2013)

9. Castrillon, J., Velasquez, R., Stulova, A., Sheng, W., Ceng, J., Leupers, R., Ascheid, G., Meyr,
H.: Trace-basedKPN composability analysis formapping simultaneous applications toMPSoC
platforms. In: Proc. of the Conference on Design, Automation Test in Europe (DATE), pp.
753–758 (2010)

10. Ceng, J., Sheng,W., Castrillon, J., Stulova, A., Leupers, R., Ascheid, G., Meyr, H.: A high-level
virtual platform for early MPSoC software development. In: Proc. of the 7th IEEE/ACM inter-
national conference on Hardware/software Codesign and System Synthesis (CODES+ISSS)
(2009)

11. Chen, Z., Zhou, Y., Huang, Z.: Auto-creation of effective neural network architecture by evolu-
tionary algorithm and resnet for image classification. In: 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC), pp. 3895–3900. IEEE (2019)

12. Deng, J., Dong,W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical
image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp.
248–255. Ieee (2009)

13. Eeckhout, L.: Computer Architecture Performance Evaluation Methods. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers (2010)

14. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolutionary
algorithms for the application mapping problem in multiprocessor system-on-chip design.
IEEE Trans. on Evolutionary Computation 10(3), 358–374 (2006)

15. Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-level modeling
and simulation of embedded systems architectures. EURASIP Journal on Embedded Systems
(2007)

16. Ferrante, A., Milosevic, J., Janjšević, M.: A security-enhanced design methodology for em-
bedded systems. In: Proc. of the International Conference on Security and Cryptography
(SECRYPT), pp. 1–12 (2013)

17. Gheorghita, S.V., et al.: System-scenario-based design of dynamic embedded systems. ACM
Trans. on Design Automation of Electronic Systems 14(1), 1–45 (2009)

18. Glaß, M., Lukasiewycz, M., Reimann, F., Haubelt, C., Teich, J.: Symbolic reliability analysis
and optimization of ecu networks. In: Proc. of the Conference on Design, Automation and Test
in Europe, pp. 158–163 (2008)

19. Glaß, M., Lukasiewycz, M., Streichert, T., Haubelt, C., Teich, J.: Reliability-aware system
synthesis. In: Proc. of the Conference on Design, Automation Test in Europe, pp. 1–6 (2007)

20. Goens, A., Khasanov, R., Castrillon, J., Hähnel, M., Smejkal, T., Härtig, H.: Tetris: A multi-
application run-time system for predictable execution of static mappings. In: Proc. of the 20th
International Workshop on Software and Compilers for Embedded Systems (SCOPES), pp.
11–20 (2017)

21. Goens, A., Khasanov, R., Castrillon, J., Polstra, S., Pimentel, A.D.: Why comparing system-
level MPSoC mapping approaches is difficult: a case study. In: Proc. of the IEEE 10th Int.
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC) (2016)

22. Goens, A., Siccha, S., Castrillon, J.: Symmetry in software synthesis. ACM Trans. on Archi-
tecture and Code Optimimization 14(2) (2017)

23. Gressl, L., Steger, C., Neffe, U.: Security driven design space exploration for embedded
systems. In: Forum for Specification and Design Languages (FDL), pp. 1–8 (2019)

28 Andy D. Pimentel

24. Gries, M.: Methods for evaluating and covering the design space during early design develop-
ment. Integration, the VLSI Journal 38(2), 131–183 (2004)

25. Jhumka, A., Klaus, S., Huss, S.A.: A dependability-driven system-level design approach for
embedded systems. In: Proc. of the Conference on Design, Automation and Test in Europe,
pp. 372–377 (2005)

26. Jia, Z.J., Bautista, T., Núñez, A., Thompson, M., Pimentel, A.D.: A system-level infrastruc-
ture for multi-dimensional MP-SoC design space co-exploration. ACM Trans. on Embedded
Computing Systems 13(1s) (2013)

27. Jia, Z.J., Núñez, A., Bautista, T., Pimentel, A.D.: A two-phase design space exploration strategy
for system-level real-time application mapping onto MPSoC. Microprocessors and Microsys-
tems 38(1), 9–21 (2014)

28. Keutzer, K., Newton, A., Rabaey, J., Sangiovanni-Vincentelli, A.: System-level design: orthog-
onalization of concerns and platform-based design. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems 19(12), 1523–1543 (2000)

29. Khasanov, R., Castrillon, J.: Energy-efficient runtime resource management for adaptable
multi-application mapping. In: Proc. of the Design, Automation and Test in Europe Conference
(DATE) (2020)

30. Kienhuis, B., Deprettere, F.E., van der Wolf, P., Vissers, K.: A methodology to design pro-
grammble embedded systems: the y-chart approach. Lecture Notes in Computer Science -
Embedded Processor Design Challenges 2268, 18–37 (2002)

31. Li, S., et al.: The mcpat framework for multicore and manycore architectures: Simultaneously
modeling power, area, and timing. ACM Trans. on Architecture and Code Optimization 10(1),
5 (2013)

32. Lin, C.W., Zheng, B., Zhu, Q., Sangiovanni-Vincentelli, A.: Security-aware design methodol-
ogy and optimization for automotive systems. ACM Transactions on Design Automation of
Electronic Systems 21(1) (2015)

33. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W.: Nsga-
net: a multi-objective genetic algorithm for neural architecture search. arXiv preprint
arXiv:1810.03522 (2018)

34. Lukasiewycz, M., Glass, M., Haubelt, C., Teich, J.: Efficient symbolic multi-objective design
space exploration. In: Proc. of the Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 691–696 (2008)

35. Madsen, J., Stidsen, T.K., Kjaerulf, P.,Mahadevan, S.:Multi-objective design space exploration
of embedded systemplatforms. In: B.Kleinjohann, L.Kleinjohann, R.J.Machado, C.E. Pereira,
P.S. Thiagarajan (eds.) From Model-Driven Design to Resource Management for Distributed
Embedded Systems, pp. 185–194. Springer US, Boston, MA (2006)

36. Mariani, G., Brankovic, A., Palermo, G., Jovic, J., Zaccaria, V., Silvano, C.: A correlation-
based design space exploration methodology for multi-processor systems-on-chip. In: Proc. of
the Design Automation Conference (DAC), pp. 120–125 (2010)

37. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad,
H., Navruzyan, A., Duffy, N., et al.: Evolving deep neural networks. In: Artificial Intelligence
in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier (2019)

38. Mohanty, S., Prasanna, V.K., Neema, S., Davis, J.: Rapid design space exploration of hetero-
geneous embedded systems using symbolic search and multi-granular simulation. In: Proc. of
LCTES+SCOPES, pp. 18–27 (2002)

39. Niemann, R., Marwedel, P.: An algorithm for hardware/software partitioning using mixed
integer linear programming. Design Automation for Embedded Systems 2(2), 165–193 (1997)

40. Nikolov, H., Thompson, M., Stefanov, T., Pimentel, A.D., Polstra, S., Bose, R., Zissulescu, C.,
Deprettere, E.: Daedalus: toward composable multimedia MP-SoC design. In: Proceedings of
the 45th annual Design Automation Conference, DAC ’08, pp. 574–579 (2008)

41. Padmanabhan, S., Chen, Y., Chamberlain, R.D.: Optimal design-space exploration of stream-
ing applications. In: Proc. of the IEEE Int. Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 227–230 (2011)

42. Palesi, M., Givargis, T.: Multi-objective design space exploration using genetic algorithms. In:
Proc. of the Int. Symposium on Hardware/Software Codesign (CODES), pp. 67–72 (2002)

To be published in the Handbook of Computer Architecture, Springer 29

43. Panerati, J., Sciuto, D., Beltrame, G.: Optimization strategies in design space exploration. In:
S. Ha, J. Teich (eds.) Handbook of Hardware/Software Codesign. Springer, Dordrecht (2017)

44. Pimentel, A.: A case for security-aware design-space exploration of embedded systems. Journal
of Low Power Electronics and Applications 10(3) (2020)

45. Pimentel, A.D.: Exploring exploration: A tutorial introduction to embedded systems design
space exploration. IEEE Design & Test 34(1) (2017)

46. Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans. on Computers 55(2), 99–112 (2006)

47. Pimentel, A.D., van Stralen, P.: Scenario-based design space exploration. In: S. Ha, J. Teich
(eds.) Handbook of Hardware/Software Codesign. Springer, Dordrecht (2017)

48. Piscitelli, R., Pimentel, A.D.: Design space pruning through hybrid analysis in system-level
design space exploration. In: Proc. of the Int. Conference on Design, Automation, and Test in
Europe (DATE), pp. 781–786 (2012)

49. Piscitelli, R., Pimentel, A.D.: Interleaving methods for hybrid system-level MPSoC design
space exploration. In: Proc. of the Int. Conference on Embedded Computer Systems (SAMOS),
pp. 7–14 (2012)

50. Quan,W., Pimentel, A.D.: Towards exploring vastMPSoCmapping design spaces using a bias-
elitist evolutionary approach. In: Proc. of the Euromicro Digital System Design Conference
(DSD), pp. 655–658 (2014)

51. Quan,W., Pimentel, A.D.: A hybrid task mapping algorithm for heterogeneousMPSoCs. ACM
Trans. on Embedded Computing Systems 14(1) (2015)

52. Quan, W., Pimentel, A.D.: A hierarchical run-time adaptive resource allocation framework
for large-scale MPSoC systems. Design Automation for Embedded Systems 20(4), 311–339
(2016)

53. Quan, W., Pimentel, A.D.: Scenario-based run-time adaptive MPSoC systems. Journal of
Systems Architecture 62, 12 – 23 (2016)

54. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier ar-
chitecture search. In: Proc. of the AAAI Conference on Artificial Intelligence, vol. 33, pp.
4780–4789 (2019)

55. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Kurakin, A.:
Large-scale evolution of image classifiers. In: Proc. of the 34th International Conference on
Machine Learning-Volume 70, pp. 2902–2911. JMLR. org (2017)

56. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In:
2012 16th International Symposium on Wearable Computers, pp. 108–109. IEEE (2012)

57. Sangiovanni-Vincentelli, A., Martin, G.: Platform-based design and software design method-
ology for embedded systems. IEEE Design and Test of Computers 18, 23–33 (2001)

58. Sapra, D., Pimentel, A.D.: Constrained evolutionary piecemeal training to design efficient
neural networks. In: Proc. of the 33rd Int. Conference on Industrial, Engineering & Other
Applications of Applied Intelligent Systems (IEA/AIE 2020) (2020)

59. Sapra, D., Pimentel, A.D.: An evolutionary optimization algorithm for gradually saturating ob-
jective functions. In: Proc. of the ACM Int. Genetic and Evolutionary Computation Conference
(GECCO 2020) (2020)

60. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core systems:
survey of current and emerging trends. In: Proc. of the Design Automation Conference (DAC),
pp. 1–10 (2013)

61. Stefanov, T., Pimentel, A.D., Nikolov, H.: Daedalus: System-level design methodology for
streaming multi-processor embedded systems-on-chip. In: S. Ha, J. Teich (eds.) Handbook of
Hardware/Software Codesign. Springer, Dordrecht (2017)

62. Stierand, I., Malipatlolla, S., Fröschle, S., Stühring, A., Henkler, S.: Integrating the security
aspect into design space exploration of embedded systems. In: Proceedings of the IEEE
International Symposium on Software Reliability EngineeringWorkshops, pp. 371–376 (2014)

63. van Stralen, P., Pimentel, A.D.: Scenario-based design space exploration of MPSoCs. In: Proc.
of IEEE Int. Conference on Computer Design (ICCD), pp. 305–312 (2010)

30 Andy D. Pimentel

64. van Stralen, P., Pimentel, A.D.: A trace-based scenario database for high-level simulation of
multimedia MP-SoCs. In: Proc. of the Int. Conference on Embedded Computer Systems:
Architectures, MOdeling and Simulation (SAMOS), pp. 11–19 (2010)

65. van Stralen, P., Pimentel, A.D.: A SAFE approach towards early design space exploration of
fault-tolerant multimediaMPSoCs. In: Proc. of Int. conference onHardware/software codesign
and system synthesis (CODES+ISSS), pp. 393–402 (2012)

66. van Stralen, P., Pimentel, A.D.: Fitness prediction techniques for scenario-based design space
exploration. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 32(8),
1240–1253 (2013)

67. Tan, B., Biglari-Abhari, M., Salcic, Z.: An automated security-aware approach for design of
embedded systems on MPSoC. ACM Transactions on Embedded Computing Systems 16(5s)
(2017)

68. Thompson, M.: Tools and techniques for efficient system-level design space exploration. Ph.D.
thesis, Universiteit van Amsterdam (2012)

69. Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra, S., Deprettere,
E.: A framework for rapid system-level exploration, synthesis and programming of multimedia
MP-SoCs. In: CODES+ISSS ’07: Proceedings of the 5th IEEE/ACM International Conference
on Hardware / Software Codesign and System Synthesis, pp. 9–14 (2007)

70. Thompson, M., Pimentel, A.D.: Towards multi-application workload modeling in Sesame for
system-level design space exploration. In: S. Vassiliadis, M. Bereković, T.D. Hämäläinen
(eds.) Embedded Computer Systems: Architectures, Modeling, and Simulation, pp. 222–232.
Springer Berlin Heidelberg (2007)

71. Thompson, M., Pimentel, A.D.: Exploiting domain knowledge in system-level MPSoC design
space exploration. Journal of Systems Architecture 59(7), 351–360 (2013)

72. Thompson, M., Pimentel, A.D., Polstra, S., Erbas, C.: A mixed-level co-simulation method for
system-level design space exploration. In: Proc. of the IEEE/ACM Workshop on Embedded
Systems for Real-Time Multimedia (ESTIMedia ’06), pp. 27–32 (2006)

73. Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A comprehensive
memory modeling tool and its application to the design and analysis of future memory hi-
erarchies. In: Proc. of the Int. Symposium on Computer Architecture (ISCA), pp. 51–62
(2008)

74. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: A survey. ACM Computing
Surveys 29(2), 128–170 (1997)

75. Weichslgartner, A., Wildermann, S., Götzfried, J., Freiling, F., Glaundefined, M., Teich, J.:
Design-time/run-time mapping of security-critical applications in heterogeneous MPSoCs. In:
Proceedings of the 19th International Workshop on Software and Compilers for Embedded
Systems (SCOPES), pp. 153–162 (2016)

76. Wolf, W., Jerraya, A.A., Martin, G.: Multiprocessor system-on-chip (MPSoC) technology.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 27(10), 1701–
1713 (2008)

77. Xie, L., Yuille, A.: Genetic cnn. In: Proc. of the IEEE International Conference on Computer
Vision, pp. 1379–1388 (2017)

Index

Application exploration, 22
Application model, 6
Application scenarios, 18
Architecture model, 6

Binary translation, 9
Blackbox model, 11

Chromosome, 13
Convolutional Neural Network (CNN), 22
Crossover, 13
Cycle-accurate simulation, 8

Decision variables, 3
Design Space Exploration, 2
DSE, 2

Empirical model, 11
Evolutionary Piecemeal Training (EPT), 22

Fitness function, 3

GA-based DSE, 13
Genetic Algorithm (GA), 13

Hierarchical DSE, 17
Host-compiled simulation, 9

Instruction-Set Simulation (ISS), 9
Inter-application scenario, 18
Intra-application scenario, 18

Mapping symmetries, 16
Mechanistic models, 11
Metaheuristics, 13
MPSoC, 2
Multi-application workload models, 17
Multi-objective optimization, 3
Multi-Processor System-on-Chip, 2
Mutation, 13

Neural Architecture Search (NAS), 22

Objective values, 3

Pareto dominance, 4
Pareto front, 4
Population, 13

RTL simulation, 8

Sampled simulation, 10
Scenario-based DSE, 18
Statistical simulation, 11
System-level design, 2

Trace-driven simulation, 10
Transaction-level modeling, 9

Whitebox models, 11

Y-chart methodology, 6

31

