
A Run-time Self-Adaptive Resource Allocation
Framework for MPSoC Systems

Wei Quan†,‡

†Informatics Institute
University of Amsterdam

The Netherlands
{w.quan,a.d.pimentel}@uva.nl

Andy D. Pimentel†

‡School of Computer Science
National University of Defense Technology

Hunan, China
quanwei02@gmail.com

Abstract—Self-adaptivity is becoming a key feature of modern embed-
ded systems to meet performance and power constraints in increasingly
common situations where embedded application workloads show highly
dynamic behavior. This paper presents a scalable framework for adap-
tive MultiProcessor System-on-Chip (MPSoC) systems that allows for
adaptivity throttling.

I. INTRODUCTION

Due to the ever-increasing performance demands of modern em-
bedded applications, MultiProcessor System-on-Chip (MPSoC) sys-
tems have gained considerable popularity in the field of embedded
systems. These MPSoCs usually are heterogeneous systems, contain-
ing programmable processor cores for flexible application support
as well as dedicated processing elements for achieving performance
and/or power goals. Today’s MPSoC systems often require to sup-
porting an increasing number of applications and standards, where
multiple applications can run simultaneously and therefore contend
for system resources. In addition, each separate application may also
consist of different execution modes with different requirements. For
example, in Software Defined Radio appliances a radio may change
its behavior according to resource availability, such as the Long
Term Evolution (LTE) standard that uses adaptive modulation and
coding to dynamically adjust modulation schemes and transport block
sizes based on channel conditions. As a consequence, the behavior
of application workloads executing on the embedded system can
change dramatically over time. Such dynamic application behavior
can be captured using the concept of workload scenarios, specifying
the different applications (at the level of communicating tasks) that
are concurrently executing and the mode of each application over
time. This is illustrated in Figure 1. Clearly, the number of workload
scenarios scales exponentially with the number of applications and
modes within each application.

For each workload scenario, the mapping of application tasks onto
the underlying MPSoC resources plays a crucial role in achieving
high performance and low power consumption, especially in the
case of heterogeneous MPSoC systems. The performance of each
workload scenario may vary greatly among different task mappings.
To allow MPSoC systems to cope with application dynamism, state-
of-the-art solutions therefore try to improve system efficiency by
providing a light-weight resource scheduler that is capable of dynam-
ically re-mapping application tasks based on the detected workload
scenario [2], [12], [9], [6], [10]. Generally, this kind of methods
can be divided into two stages. First, a design-time preparation
stage prepares one or multiple pre-optimized task mappings for each
possible scenario that might appear on the target system. These task

Mode-mnMode-m1Mode-m0

Mode-1
Mode-0Mode-1

Mode-0

Mode-1
Mode-0

t0

t1

t3

t2

t4

APP-0

t0
t1

t3

t2

APP-n

t0 t2
t1

APP-1

……
… … …

……Active Mode-0 Non-Active Active Mode-mk

Workload Scenario s

t0

t1

t3

t2

t4

APP-0 (Mode-0)

…… t0 t3

t2

APP-n (Mode-mk)

Figure 1: Definition of a workload scenario.

mappings could optimize the system for different objectives, such as
performance and energy consumption. The second stage then involves
a run-time resource scheduler that dynamically selects a task mapping
from the pre-optimized task mappings, given the workload scenario
at hand.

However, these state-of-the-art run-time mapping solutions typi-
cally still lack scalability and adaptivity throttling. Regarding scal-
ability, future MPSoC systems may need to support a vast number
of workload scenarios. This could result in a design-time mapping
optimization stage that is computationally intractable and requires an
unacceptable amount of memory to store the pre-optimized mappings
on the system. The lack of adaptivity throttling in current run-time
mapping solutions relates to the problem that workload scenarios in
MPSoC systems can be fine-grained. That is, when the duration of a
certain workload scenario is not long enough (i.e., different workload
scenarios appear after each other with a relatively high frequency),
the overhead that is involved in re-mapping application tasks may
easily eliminate the benefits of adapting the system. In these cases,
the system should actually decide not to adapt.

II. THE SARA RESOURCE ALLOCATION FRAMEWORK

To address the above scalability and adaptivity throttling issues in
self-adaptive MPSoC systems, a Scenario-based run-time Adaptive
Resource Allocation (SARA) framework is proposed. This framework
consists of three components: a Run-time System Monitor (RSM), a
Run-time Mapping Generator (RMG) and a self-Adaptive Resource
Scheduler (ARS). The RSM is in charge of detecting the active
workload scenario on the target MPSoC system and dynamically
collects system statistics. The RMG and ARS are responsible for the
system adaptation and address the scalability and adaptivity throttling
issues as explained above. Figure 2 shows the high-level system978-1-4799-9877-7/15/$31.00 c©2015 IEEE

SARA FRAMEWORK

new workload
scenario ?

Workload Scenario
Detection

Generate New Mapping

Reconfigure System
Resources

Y

N

Derive Reconfiguration
Decision

reconfiguration ? YN

Run-time
Mapping

Generator
(RMG)

self-Adaptive
Resource
Scheduler

(ARS)

Run-time
System
Monitor
(RSM)

Figure 2: The high-level system workflow of the SARA framework.

workflow of the SARA framework. When the RSM detects a new
workload scenario, the RMG will generate a new mapping for the
detected (active) scenario. Hereafter, the ARS makes an adaptation
decision by predicting the benefit of changing the current mapping
into the newly proposed one (by the RMG). According to this
decision, the ARS will then either reconfigure the system based on
the new mapping or continue the system’s execution under the current
mapping.

The mechanism of detecting workload scenarios is beyond the
scope of this paper. Here, we focus on how to improve the efficiency
of MPSoC systems by using SARA’s run-time mapping framework
in which the RMG solves the scalability problem by using a hybrid
mapping optimization approach and the ARS deploys a history-
based scenario duration prediction mechanism to perform adaptivity
throttling, i.e. deciding whether or not to adjust the task mapping.

III. SCALABLE RUN-TIME TASK MAPPING

The problem of optimally mapping a set of tasks onto a set
of given heterogeneous processors for maximal performance (like
system throughput) has been known, in general, to be NP-complete.
This problem is exacerbated when mapping multiple applications
(i.e., bigger task sets) onto the target platform. Traditionally, the
mapping of applications onto the underlying architectural components
of MPSoC systems has always been done in a static fashion at design
time. These methods typically use computationally intensive search
methods to find the optimal mapping or near optimal mapping for all
applications that may run on the system. Evidently, the drawback
of such static mapping techniques is that they cannot cope with
dynamic application behaviour in which different combinations of
applications are concurrently executing over time and contending
for system resources. As mentioned before, run-time task mapping
techniques have been proposed to overcome this drawback of static
mapping techniques, but these methods typically still suffer from
scalability issues when the number of workload scenarios becomes
very large as they need to find and store one or more optimal task
mappings per scenario at design time (and to be used at run time).
One solution to address this problem is by reducing the number of
workload scenarios by means of clustering [1], [6]. However, these
methods still suffer from an additional problem of searching for
optimal mappings of (clustered) workload scenarios at design time:

RMG (design time stage) RMG (run time stage)

Detected Workload Scenario s

APP-0 (Mode-0)

……
APP-n (Mode-mk)

RSM

Design
Space

Exploration

Pre-optimised
Mappings

+

Mapping
A-0/M-0

Mapping
A-n/M-k……

Further
Optimised
Mapping

Get Mapping for
Detected Applications

Mapping Merge

Re-optimise Mapping
by Heuristics

Each execution mode
 of each application

Figure 3: Mapping generation in the RMG component.

it should already be known at design time which applications can
execute on the target platform. This implies that extending the system
with a new application would require to redo the entire design-time
mapping preparation for all (clustered) workload scenarios.

In the SARA framework, we address the above problems by
using a hybrid task mapping technique which prepares partial task
mappings for workload scenarios at design time and completes
the mappings for the entire scenario at run time using the RMG
component. Figure 3 gives an overview of how the RMG generates
a new mapping for the workload scenario detected by the RSM.
At design time, a performance-optimized task mapping (and, if
needed, also a power-optimized mapping) for each execution mode
of each application in isolation is determined by using state-of-the-
art scenario-aware Design Space Exploration (DSE) techniques [11],
[7]. This significantly reduces the time and memory requirements
needed for, respectively, finding and storing the pre-optimized task
mappings at design time. For example, when considering n target
applications with each m execution modes, the number of mappings
that need to be optimized and stored is m ∗ n in our case. This
number is greatly reduced compared to the (m+1)n−1 mappings that
need to be optimized and stored in the case of performing mapping
preparation for complete workload scenarios. Moreover, if a new
application needs to be supported on the target MPSoC system, this
would only require providing the pre-optimized mappings of this new
application to the RMG without redoing the entire process of design-
time mapping preparation for all possible (new) workload scenarios.

At run time, after the RSM has detected a new workload scenario,
the RMG will first merge the pre-optimized mappings of each
separate, active application in the detected workload scenario to form
a first-order mapping for the entire scenario. Subsequently, the RMG
will then further optimize this first-order mapping by using run-
time mapping optimization heuristics, based on e.g. a load balance
algorithm or a dynamic mapping optimization algorithm such as
proposed in [6], [5]. This run-time mapping optimization focuses
mainly on resolving resource contention problems. This is because
the communication between tasks inside each application has already
been optimized at design time, which saves significant run-time effort
to re-optimize the task communications. As a consequence, in RMG’s
mapping optimization process only slight adjustments to the first-
order mapping will typically lead to a good mapping for the target
workload scenario.

In SARA, the scalability problem is therefore addressed by means
of a divide-and-conquer approach. At design time, we divide the
mapping problem of a workload scenario that may contain several

applications into several smaller application-level mapping problems.
This greatly reduces the complexity of the whole scenario mapping
problem and consequently increases the possibility of finding the
optimal results for each separate application-level mapping problem.
Consequently, the SARA framework is able to handle large numbers
of workload scenarios and also effectively supports the addition of
new applications to the target MPSoC system.

IV. ADAPTIVITY THROTTLING

In current state-of-the-art run-time task mapping approaches for
MPSoCs, the system will typically be reconfigured (i.e., adapting
the task mapping) when a new workload scenario appears on the
system, irrespective of the trade-off between reconfiguration costs and
benefits. However, such system reconfigurations usually involve task
migrations of which the performance overhead cannot be ignored.
This is especially true for heterogeneous MPSoC systems and for
those cases in which the duration of workload scenarios is relatively
short. For example, let us assume that a newly detected workload
scenario needs to finish a certain amount of work that is equally
divided into u units. Under the current/old task mapping, the target
MPSoC system requires t units of time to finish a single unit of
this work. However, if this new scenario would be executing under
the new mapping derived by the run-time task mapping generator
(and optimized for the workload scenario at hand), the execution
time of a single unit work of this scenario would be reduced to
t ′. Consequently, for the target u units of work, the execution time
saved by reallocating the system resources under the new mapping
for executing this scenario is ∆t = (t − t ′) ∗ u. However, this time
reduction comes at the cost of task migration between processors
and the computational overhead of the SARA framework itself (i.e.,
the time needed for determining the new mapping and deriving
the reconfiguration decision). Here, we assume that these costs are
referred to as c. Under these assumptions, it is evident that only if ∆t
is larger than c – implying that the system actually benefits from the
reconfiguration – then the system should re-map the application tasks
to improve system efficiency, and otherwise not. This can be seen as
throttling the adaptivity. Although a similar trade-off for costs and
benefits of reconfiguration can be made in terms of optimizing for
power consumption, we will focus on performance in the remainder
of the discussion. To make the adaptivity support in MPSoC systems
more effective, the resource scheduler should therefore be capable of
explicitly making these reconfiguration decisions (i.e., provide sup-
port for adaptivity throttling) whenever workload scenarios change.
In the SARA framework, this is taken care of by the ARS component.

To determine a reconfiguration decision, three parameters are
required: the performance improvement of re-mapping tasks (t− t ′),
the scenario execution duration (u), and the reconfiguration cost (c).
These three parameters are, however, unknown before the system
reconfiguration. As a consequence, prediction models should be used
to predict each of these values. Figure 4 illustrates how the ARS
component conditionally reconfigures the target system based on
the outcome of the prediction models (i.e, ∆t > c). The information
about the target applications and hardware architecture used in the
performance prediction model as well as the reconfiguration cost
prediction model should have be prepared at design time, and depends
on the type of models used for these predictions (as discussed below).
Also notice that the reconfiguration cost consists of two parts: 1)
the overhead of SARA itself which includes the determination of
a new mapping and making a reconfiguration decision, and 2) the
task migration cost during system reconfiguration. The overhead of

ARS

Detected Old Mapping Generated New Mapping

t t' u c

Scenario Duration
Prediction Model

Execution
history

Reconfiguration Cost
Prediction Model

Arch.
info

App.
info

Old&New Mapping

Performance Prediction
Model

App.
info

Arch.
info

Old&New Mapping

(t-t')*u > c

Statistics

Yes Reconfigure the
system under the

new mapping

Keep the system
under the old

mapping

No

RSM RMG

Figure 4: Overview of adaptive system reconfiguration in ARS

SARA can be determined by means of measurements. However, the
overhead of the task migration should still be predicted.

The prediction models in ARS cannot be computationally inten-
sive as they have to efficiently make a reconfiguration decision at
run time. For the performance and reconfiguration cost prediction,
relatively simple regression models or analytical models such as the
performance model from [4] can therefore be applied. However, the
prediction of scenario execution duration needs a different approach
as it involves a dynamic parameter that could be heavily influenced
by user behavior. A commonly used predictor for such kind of
parameters, which has also been used in our ARS component, is
a history-based predictor such as a last value predictor, table-based
predictor or the Statistical Metric Model (SMM) [8]. They can predict
the future value of a parameter – in our case the duration of a newly
detected workload scenario – based on its history information.

After deriving a reconfiguration decision based on the three pre-
dictive models for performance, reconfiguration cost and scenario
duration, the ARS will either reconfigure the system according
to the new mapping or keep the old mapping. By applying such
adaptivity throttling, our adaptive MPSoC system is able to cope
with fine-grained workload scenarios for which it is not beneficial to
reconfigure the system.

V. EVALUATION AND CONCLUSION

To illustrate the effectivity of our SARA framework, we present a
case study using the open-source Sesame system-level MPSoC simu-
lator [3]. Figure 5 provides an overview of the SARA implementation
within the Sesame simulator. The target hardware architecture is a
bus-based heterogeneous MPSoC platform containing five different
processing elements, a shared memory and a controlling processor
that runs the SARA framework. In this SARA implementation, the
RMG adopts the Energy-aware Iterative multi-application Mapping
(EIM) algorithm from [5]. However, in this evaluation we only focus
on performance, measured as system throughput, as the run-time
mapping optimization objective. The performance and reconfiguration
cost predictors in the ARS use linear regression models to reduce
the run-time computation complexity. With regard to the scenario
duration predictor, a slightly modified SMM [8] predictor, referred
as Accumulated SMM, has been implemented in the ARS.

For the target applications, as the actual functionality of the

Application
information

Architecture
information

Workload
scenario

RSM

APP0-
Mode1

APP2-
Mode0

......

Pre-optimised
Mapping

SARA P0 P1

Mem P2 P3 P4

BUS

MPSoC with SARA framework

Scenario
Detection

RMG

Mapping of
each active

app.

A0-M1

A2-M0

......

Mapping
Generation

EIM
algorithm

Design Time
Prepared

Information

ARS

New
Mapping

Perf.
predictor

Reconf.
cost

predictor
Duration
predictor

ASMM

Reconf.
Decision

Reconf.
Benefit

Figure 5: An implementation of the SARA framework

applications is not important in our experiment, we have used five
synthetic streaming applications to simplify the simulation process.
Each application contains only a single execution mode, which makes
the total number of workload scenarios 31 (25 − 1). Using these
workload scenarios, three different workload scenario sequences –
specifying the different workload scenarios occurring over time –
have been generated in which the percentage of workload scenarios
with a short duration (i.e., fine-grained scenarios) is varied. Figure 6
shows the results of our experiment, where the x-axis shows the
percentage of coarse-grained scenarios in the scenario sequence.
In this experiment, we compared our SARA framework with three
alternative approaches. Firstly, an approach in which all applications
are statically mapped (i.e., no run-time mapping takes place) using a
mapping which has shown to be optimal on average for all possible
workload scenarios (STATIC in Figure 6). Secondly, an approach that
always reconfigures the system whenever a new workload scenario
has been detected according to a corresponding pre-optimized map-
ping derived at design time (MIGRATE-OPT in Figure 6). Please
note that this approach, which is similar to how many state-of-the-
art run-time mapping techniques operate, stores 31 mappings (one
mapping for each workload scenario) in total on the system. Finally,
we also compare to SARA without adaptivity throttling (SARA-NOTH
in Figure 6). From Figure 6, we can clearly see that our SARA
framework with throttling shows the best performance of all run-time
mapping approaches. Because of its ability to throttle adaptivity, it
even performs relatively well in the case when 70% of the workload
scenarios have a short duration and for which reconfiguring the
system is not beneficial. In this particular case, the static mapping
approach works best as this approach does not suffer from any run-
time overheads. Besides the performance improvement of SARA, it
also only needs to store 5 pre-optimized mappings (one mapping for
each application) on the target system instead of the 31 mappings
stored by MIGRATE-OPT. These savings in memory footprint will
become even more apparent when the number workload scenario
increases.

In conclusion, adaptivity becomes an increasingly important feature
for improving the efficiency of future MPSoC systems executing
highly dynamic application workloads. To design such adaptive
systems, the problems of scalability and adaptivity throttling should

0.75$

0.8$

0.85$

0.9$

0.95$

1$

1.05$

30%$ 50%$ 60%$

N
or
m
al
iz
ed

+to
ta
l+

sc
en

ar
io
+e
xe
cu
2o

n+
2m

e+
+

Percentage+of+coarse9grain+scenarios+

SARA<NOTH$ MIGRATE<OPT$ STATIC$ SARA$

Figure 6: Performance comparison of different mapping approaches
for scenario sequences with varying percentages of coarse-grained
scenarios (coarse-grained scenarios/all scenarios).

be carefully considered. In this work, we have proposed the SARA
framework for adaptive MPSoCs that addresses these issues. Experi-
mental results demonstrate that this framework provides a promising
approach for improving the performance of MPSoC systems under a
variety of dynamic application workloads while trying to reduce the
required design-time preparation effort in terms of both space and
time.

REFERENCES

[1] S. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Ma-
magkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. Van-
deputte, and K. D. Bosschere. System-scenario-based design of dynamic
embedded systems. ACM Trans. Design Autom. Electr. Syst., 14(1), 2009.

[2] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
G. Palermo, C. Silvano, and V. Zaccaria. An industrial design space
exploration framework for supporting run-time resource management on
multi-core systems. In Proc. of DATE’10, pages 196 –201, march 2010.

[3] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to
exploring embedded system architectures at multiple abstraction levels.
IEEE Trans. Computers, 55(2):99–112, 2006.

[4] R. Piscitelli and A. D. Pimentel. Design space pruning through hybrid
analysis in system-level design space exploration. In Proceedings of the
Int. Conference on Design, Automation, and Test in Europe (DATE ’12),
pages 781–786, 2012.

[5] W. Quan and A. D. Pimentel. An iterative multi-application mapping
algorithm for heterogeneous mpsocs. In Embedded Systems for Real-
time Multimedia (ESTIMedia), 2013 IEEE 11th Symposium on, pages
115–124. IEEE, 2013.

[6] W. Quan and A. D. Pimentel. A scenario-based run-time task mapping
algorithm for mpsocs. In Proceedings of the 50th Annual Design
Automation Conference, DAC ’13, pages 131:1–131:6, New York, NY,
USA, 2013. ACM.

[7] W. Quan and A. D. Pimentel. Towards exploring vast mpsoc mapping
design spaces using a bias-elitist evolutionary approach. In Proceedings
of the 17th Euromicro Conference on Digital System Design, 2014.

[8] R. Sarikaya, C. Isci, and A. Buyuktosunoglu. Runtime application
behavior prediction using a statistical metric model. Computers, IEEE
Transactions on, 62(3):575–588, March 2013.

[9] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele.
Scenario-based design flow for mapping streaming applications onto on-
chip many-core systems. In Proc. of CASES’12, pages 71–80, 2012.

[10] A. K. Singh, A. Kumar, and T. Srikanthan. Accelerating throughput-
aware runtime mapping for heterogeneous mpsocs. ACM Trans. Des.
Autom. Electron. Syst., 18(1):9:1–9:29, Jan. 2013.

[11] P. van Stralen and A. D. Pimentel. Scenario-based design space
exploration of mpsocs. In Proc. of IEEE ICCD’10, pages 305–312,
October 2010.

[12] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano,
and V. Zaccaria. Linking run-time resource management of embedded
multi-core platforms with automated design-time exploration. Computers
Digital Techniques, IET, 5(2):123–135, 2011.

