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Abstract—Using Heterogeneous Multi-Processor System-on-
Chips (HMPSoCs) for Deep Neural Network (DNN) inference
has become commonplace in edge devices. However, reducing
the DNN inference latency on resource-constrained edge devices
remains a first-class constraint. Early-Exit (EE) DNNs offer
variable, input-dependent inference latency, aiming to reduce
average inference latency by lowering the latency of simple inputs
at the cost of increased latency for complex inputs. However,
the overheads introduced by exit branches reduce the potential
performance gains with EE DNNs.

Furthermore, existing CPU- or GPU-only implementations
of EE DNN inference under-utilize the HMPSoC. To address
this limitation, we propose a cooperative and parallel CPU-
GPU execution approach1 for EE DNN inference that effectively
distributes computations across all HMPSoC processors, min-
imizing latency variations. Our approach allows EE DNNs to
achieve reduced average latency on HMPSoCs relative to their
static counterparts, significantly reducing average- and worst-
case inference latencies and enhancing the speed-up of EE DNN
compared to the best single-processor inference. On average, the
worst-case inference latency decreased by 24.8% across three
commonly used EE DNNs, providing latency comparable to a
static model without compromising accuracy on an RK3399PRO
HMPSoC.

Index Terms—Edge Computing, Dynamic Networks, Early-
Exit Networks, Inference Acceleration, Embedded Systems

I. INTRODUCTION

Executing Deep Neural Networks (DNNs) on-chip in edge
devices offers several benefits, such as improved privacy,
responsiveness, availability, and efficiency [1]. However, high
DNN inference latency on resource-constrained edge devices
remains challenging [2]. Early-Exit (EE) DNNs reduce the
overall inference latency and computational cost of edge
Machine Learning (ML) tasks by adjusting computational in-
tensity based on the complexity of the input data. An EE DNN
integrates intermediate exit branches into its model, allowing it
to halt inference partway if specific policies, such as inference
reaching a high confidence level, are met. Therefore, they
utilize fewer layers (computations) rather than processing the
entire model for simple inputs. Previous studies have shown
that EE DNNs [3, 4] can significantly reduce average latency.
For example, in self-distillation [3], adding three exit branches
to ResNet18 on the CIFAR100 dataset showed that the EE
model can achieve a 3x speed-up over static ResNet18.

However, EE DNNs show higher latency for complex in-
puts. When the input data is complex, the EE DNN model
needs to process all DNN layers and evaluate the output of all

1Source code available at: https://github.com/Saeed-Khalilian/EEDNN on
HMPSoCs.git

exit branches, which increases worst-case latency even more
than a static network. This high latency can be problematic
for mission-critical applications, such as autonomous cars,
where low latency is crucial. Moreover, in scenarios where
most inputs to the model are complex, the exit branches can
introduce significant latency overhead to the model. Current
EE DNNs on edge devices under-utilize the system, leading
to an avoidable high worst-case latency.

Heterogeneous Multi-Processor System-on-Chips (HMP-
SoCs) power most of the state-of-the-art edge devices.
HMPSoCs tightly integrate a high-performance inference-
capable Central Processing Unit (CPU) and Graphic Process-
ing Unit (GPU) [5]. For example, an ARM-based HMPSoC
integrates a big.Little asymmetric multi-core CPU with a Mali
GPU. However, current implementations only support CPU-
or GPU-only EE DNN inference, severely under-utilizing the
HMPSoC and limiting potential worst-case latency. A coop-
erative CPU-GPU execution approach that parallelizes the EE
DNN inference across the HMPSoCs can significantly improve
the average- and worst-case EE DNN inference latency.

Motivational Example: Figure 1 motivates using the entire
HMPSoC for EE DNN inference. A static ResNet18 has
four building (backbone) blocks, each comprising multiple
DNN layers. Executing backbone blocks in parallel among
HMPSoC processors is challenging because of dependencies
in the data that require a serial processing approach. A static
ResNet18 on the GPU achieves the lowest DNN inference
latency of 36.62 ms. In comparison, EE ResNet18 adds three
exit branches to the network, one after each backbone block
except the last one, which increases the worst-case latency
of ResNet18 to 48.75 ms on the GPU in a serial execution.
However, the exit branches can run parallel to the subsequent
backbone blocks. Figure 1 shows a parallelized execution of
EE ResNet18 on all processors of an HMPSoC – big CPU,
Little CPU, and the GPU. This approach takes advantage
of the concurrent execution of exit branches and backbone
blocks. It also exploits the placement of the branches and
blocks to HMPSoC processors that execute them the fastest.
Results show that even after accounting for the parallelization
overheads, the parallelized execution can reduce the worst-
case DNN inference latency for EE ResNet18 to 35.30 ms, a
27.56% improvement over the best single-processor inference.

Our Contributions: We make the following novel contri-
butions within the scope of this paper.

• We characterize the execution of several EE DNNs,
including ResNet18, ResNet50 [3], and VGG16 [6], on
an HMPSoC platform, demonstrating that conventional

https://github.com/Saeed-Khalilian/EEDNN_on_HMPSoCs.git
https://github.com/Saeed-Khalilian/EEDNN_on_HMPSoCs.git
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Fig. 1: Worst-case latency comparison between static ResNet18
and EE ResNet18 models on HMPSoCs for complex samples under
serialized and parallelized executions.

deployment strategy can increase inference latency, par-
ticularly for complex samples, compared to static models.

• We analyze the performance of EE ResNet18 with cor-
rupted samples [7] and observe that when most samples
are complex, the effectiveness of exit branches decreases
significantly, leading to a noticeable latency increase.

• We propose a framework that partitions the computation
graph of EE DNNs based on their latency across different
HMPSoC processors and utilizes a genetic algorithm to
determine the optimal processor allocation for each EE
DNN component. This approach enables exit branches
and backbone blocks to operate in parallel, significantly
reducing both the average and worst-case latency of EE
DNNs, while having no impact on the model’s accuracy.

• We evaluate the framework using Rock PI N10 embedded
board with RK3399PRO HMPSoC and show significant
real-world latency improvements for EE DNNs.

II. RELATED WORK

Dynamic networks [8] adjust their depth [4], width [9], rout-
ing [10], and parameters [11] during inference based on input
data. EE DNNs are a sub-type of dynamic networks introduced
with BranchyNet [4]. Initial EE DNNs incorporate additional

exit branches into the backbone model. The run-time termi-
nates inferencing with the DNN mid-inference if the prediction
confidence at an exit branch exceeds a specified threshold.
Numerous strategies, such as gate-classification layers [12],
accuracy classification [13], decision functions [14], exit pre-
dictor [6], self-distillation [3], and EE neural architecture
search [15], have been proposed to improve the performance of
EE DNNs by optimizing architectures, determining the optimal
exit branch position, and enhancing training and inference
mechanisms. These techniques have led to next-generation EE
DNNs, such as ClassyNet [16], EExNAS [15], EDANAS [17],
and EENet [18]. However, while these techniques enhance the
accuracy and speed-up of EE DNNs, complex inputs can still
introduce latency overhead, which results in inference latency
higher than that of static DNNs.

Several works have tried to optimize the inference latency
and throughput of static DNNs on HMPSoCs. The authors
of [19] parallelized the computation of DNNs over big and
Little CPU core clusters of ARM big.Little asymmetric multi-
core processors for high inference throughput. The authors
of [20] parallelized the DNN workload over an ARM CPU
and an Nvidia Tegra GPU for high inference throughput. The
authors of [21] parallelized the computation of DNNs over an
ARM big.Little asymmetric multi-core processor and a Mali
GPU for low latency. The authors of [22] parallelized the
calculations of multiple DNNs running simultaneously over
an ARM big.Little asymmetric multi-core processor and a Mali
GPU for high throughput. The study in [23] examines ’filter
sizes’ in convolution kernels within DNNs as an additional
factor to consider when optimizing concurrent execution for
efficient partitioning between the CPU and GPU on HMP-
SoCs. Previous research [24] showed that by considering
the idle power consumption of the HMPSoC and the active
power of processors, parallel execution over a shorter period
results in lower overall energy consumption compared to serial
execution on a single processor over a longer duration. As a
result, reducing the average execution time can also benefit
energy-constrained edge devices. However, previous works
only parallelized the inference computations within HMPSoC
processors for static DNNs, not EE DNNs. We are the first
to distribute the computations of EE DNNs within HMPSoC
processors to reduce inference latency.

III. EE DNN INFERENCE ON HMPSOCS

Figure 2 provides an overview of our framework, which
aims to optimize the allocation of EE DNNs on HMPSOCs to
reduce latency variations by dividing the model into several
execution graphs and running each graph on a separate pro-
cessor. We implement the framework using the ARM Compute
Librart (ARM-CL) library. Firstly, we outline the standard
process for DNN inference within ARM-CL and then explain
the adjustments we made to facilitate EE DNN parallelization.

ARM-CL Library: ARM-CL is a library of optimized ML
functions for ARM Cortex-A CPUs and Mali GPUs. ARM-
CL uses NEON and Open Computing Library (OpenCL) for



Backbone Block 1

Early Exit Branch 1

C
onvolution

W

B

C
onvolution

W

B

C
onvolution

W

B

C
onvolution

W

B

Fully
C

onnected

W

B

RGB
Image

Early Exit Brach 2

C
onvolution

W

B

C
onvolution

W

B

Fully
C

onnected

W

B

Early Exit Branch 3

C
onvolution

W

B
C

onvolution

W

B

Fully
C

onnected
W

B

Backbone Block 2

C
onvolution

W

B

C
onvolution

W

B

Backbone Block 3

C
onvolution

W

B

C
onvolution

W

B

Backbone Block 4

C
onvolution

W

B

C
onvolution

W

B
Fully

C
onnected

W

B

Tensor

Early Exit

Early Exit

Early Exit
big CPU

Little CPU

GPU

Terminate Signal 

Simple Images Moderately Complex
Images

Highly Complex
Images

Most Complex
Images

Image Complexity

1

2

3

4

5

6

7

Fig. 2: An abstraction showing an overview of the distribution of exit branches and backbone blocks across various HMPSoC processors,
allowing the exit branches to be processed independently without disrupting the backbone operations.

vectorized parallel computations on CPU and GPU, respec-
tively. It represents DNNs as a graph, where the input and
output layers map to Input and Output nodes. Hidden layers
are defined by Main nodes, each linked to its own Weight and
Bias nodes. The graph links all nodes in a chain sequence
of consumer-producer connections. ARM-CL is initialized by
creating a graph for the DNN model and setting up the CPU
and GPU environment. For the CPU, it generates worker
threads based on core count or user input. For the GPU,
it gathers details such as core count and model and then
creates an OpenCL context with an optimized scheduler for the
detected device. ARM-CL determines tensor properties such as
shape and data types from an input layer, allocates memory for
weights and biases, and loads them with model parameters. It
then serializes the kernels and prepares them for execution on
the target processor. The input node first loads the image into
memory to start the processing. For CPUs, computations split
across worker threads, filling the output tensor with results. On
GPUs, ARM-CL sends kernels to the OpenCL execute queue.

Cooperative Processor Allocation for Early Exits: In EE
DNNs, when the model reaches an exit branch, it processes
the branch and checks the exit policy, typically based on
softmax confidence. However, halting the backbone model at
each branch can increase latency for complex inputs, even sur-
passing that of static models. Unlike static models, where each
layer depends on the previous layer output, EE DNNs only
require the preceding backbone’s output after each branch.
Parallelizing the computation of exit branches eliminates the
backbone waiting time during branch processing. Therefore,
we distribute the backbone blocks and exit branches across
all processors, allowing the model to continue processing the

backbone on one processor while simultaneously evaluating
the branch on the other.

We divide the original ARM-CL graph into sub-graphs
to facilitate multi-processor inference. Therefore, each exit
branch has its sub-graph and sub-graphs for the backbone
blocks. New transfer and receiver nodes manage synchronized
data transfer between these sub-graphs, allowing component
switching during inference. The receiver node waits on the
transfer node of the previous sub-graph by using a wait queue,
freeing up computing resources. Once a sub-graph completes
its process, its transfer node interrupts the corresponding
receiver node to transfer data. Algorithm 1 provides the
pseudocode for the framework.

Optimization: Each exit branch and backbone block in the
model exhibits varying latencies across different processors.
By redistributing these blocks and branches, we can adjust the
best-, average-, and worst-case latency of EE DNNs. We first
measure the latencies of all backbone blocks and exit branches
on each processor to identify the optimal processor allocation
for each block and exit branch. A Genetic Algorithm (GA)
determines the best configuration using the collected data. The
GA begins with a random allocation of processors to each
block and exit branch, then iteratively refines the allocation to
minimize average latency while ensuring that the worst-case
latency remains below a specified target (e.g., the latency of
the static model). Additionally, we account for the following
system constraint during the search: the initialization of GPU
is performed by big CPU. When big CPU and GPU run
concurrently, this creates an overhead on the big CPU, which
GA takes into account.



Algorithm 1 Cooperative Processor Allocation for Early Exits:
Finding the optimal processor allocation using GA, creating
subgraphs, and deploying subgraphs for edge inference

1: Initialization: Processors, EE DNN
2: function ALLOCATE PROCESSORS
3: Input: EE DNN , Processors
4: components latency = []
5: for each component in EE DNN do
6: for each processor in Processors do
7: l=latency(processor, component)
8: components latency.add(l)
9: end for

10: end for
11: optimal allocation = GA(components latency)
12: sub graphs = []
13: for each component in optimal allocation do
14: if component.processor is changed then
15: graph = new sub graph()
16: graph.add(transfer node)
17: graph.add(receiver node)
18: sub graphs.add(graph)
19: end if
20: sub graphs[-1].add(component)
21: end for
22: return sub graphs
23: end function
24: function DEPLOYMENT ON EDGE
25: Input: sub graphs, thresholds
26: run all(sub graphs) // run all graphs in parallel
27: for each sub graph in sub graphs do
28: if sub graph[0] is backbone then
29: sub graph.receive(feature map)
30: else if sub graph[0] is exit branch then
31: transfer(feature map) // to the next subgraph
32: else if sub graph.confidence > threshold then
33: return sub graph.output
34: end if
35: end for
36: end function

Figure 2 illustrates a possible sub-graph structure for
ResNet18 with three exit branches, highlighting our core
innovation. We process exit branches in parallel on the GPU
and big CPU, independently of the backbone, allowing it to
run without interruption. This parallel execution significantly
reduces the end-to-end backbone’s latency. Furthermore, if the
branch output meets the criteria for early termination, a signal
is sent to the backbone to terminate further processing, thereby
reducing the extra computational cost.

IV. EXPERIMENTS

In this section, we first analyze three EE DNNs – ResNet18,
ResNet50, and VGG16 – along with their backbone models,
assessing latency and accuracy for both in-distribution and out-
of-distribution data. We then examine the best-, average-, and

TABLE I: Technical details for the experimental setup.

Experimental Setup Details

Board Rock Pi N10

HMPSoC RK3399PRO

CPU ARM big.Little

big CPU Dual-core ARM Cortex-A72+

big CPU L1 cache 48 KB/32 KB I/D cache

big CPU L2 cache 1 MB

Little CPU Quad-core ARM Cortex-A53

Little CPU L1 cache 32 KB/32 KB I/D cache

Little CPU L2 cache 512 KB

GPU Quad-core ARM Mali-T860 MP4 GPU

GPU L2 cache 256 KB

Main NPU Rockchip NPU

Interconnect Coherent Communication Interface 500 (CCI-500)

Memory LPDDR3 3 GB (NPU 1 GB + CPU 2 GB)

OS Android 8.1

Framework ARM-CO-UP [24] based on ARM-CL v18.03

worst-case latencies of these DNNs across various HMPSoCs
processors. Finally, we evaluate the impact of our framework
on average- and worst-case inference latency, comparing it
with that of static models.

A. Experiment Setup

Models and Dataset. We employ three previously proposed
EE DNNs: ResNet18 [3], ResNet50 [3], and VGG16-BN [6].
ResNet18 and ResNet50 incorporate three intermediate exit
branches into the backbone model, featuring complex attention
and scaling modules. In contrast, VGG16-BN has two inter-
mediate exit branches, characterized by a more straightfor-
ward structure comprising three and two convolutional layers,
respectively. All models are pre-trained on CIFAR-100 [25],
and we primarily focus on reducing latency while maintaining
accuracy. We employ the CIFAR100-C [26] dataset for the
performance evaluation with corrupted data. CIFAR100-C con-
tains 18 corruption types: Gaussian Noise, Shot Noise, Impulse
Noise, Defocus Blur, Glass Blur, Motion Blur, Zoom Blur,
Snow, Frost, Brightness, Contrast, Elastic Transformation,
Pixelate, JPEG Compression, Speckle Noise, Gaussian Blur,
Spatter, and Saturate—each with five severity levels.

HMPSoC Setup. Table I details the Rock Pi N10 embedded
board used in this work. The platform features a hexa-core
ARM big.Little CPU with asymmetric multi-core clusters:
a quad-core Little CPU cluster containing four Cortex-A53
cores with a maximum frequency of 1.4 GHz and a dual-
core big CPU cluster with two Cortex-A72 cores operating at
1.8 GHz. The HMPSoC includes a quad-core ARM Mali-T860
MP4 GPU running at 0.8 GHz, with 3 GB of LPDDR3 main
memory allocated for the CPU clusters and GPU. The platform
runs on Android v8.1, and on top of that, we use ARM-CO-
UP [24], based on ARM-CL 18.03, for DNN inference in
this work. Our methodology builds on ARM-CO-UP’s existing
capabilities while integrating additional functionalities tailored
to this study. Furthermore, even though we present the results



TABLE II: Latency and accuracy trade-off evaluation of ResNet18, ResNet50, and VGG16 EE DNNs at different confidence thresholds,
including the percentage of samples classified at each exit on CIFAR-100.

Models Confidence Classifiers’ Utility (%) Accuracy
Threshold 1 2 3 4

ResNet18 [3]
1.0 0 0 0 100 81.76
0.9 55.09 10.02 7.58 27.31 81.48
0.8 64.28 10.27 7.30 18.15 81.04
0.6 77.67 9.95 5.76 6.62 79.97
0.4 90.49 5.95 2.16 1.40 78.03

ResNet50 [3]
1.0 0 0 0 100 83.66
0.9 68.86 6.79 3.51 20.84 83.53
0.8 75.94 7.08 3.69 13.29 83.86
0.6 86.16 6.17 2.50 5.17 83.56
0.4 94.77 3.28 1.01 0.94 82.68

VGG16-BN [6]
1.0 0 0 100 - 73.02
0.9 1.54 10.90 87.56 - 72.97
0.8 3.38 16.30 80.32 - 72.62
0.6 9.08 26.93 63.99 - 70.39
0.4 20.03 37.58 42.39 - 64.00
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Fig. 3: Percentage of samples classified by the first and the last classifiers in the EE ResNet18 model on CIFAR100-C, with a confidence
threshold of 0.9. The dataset includes 18 corruption types, each with five severity levels.

on one specific board, the proposed methodology applies to
conventional embedded devices wherein the GPUs and CPUs
have comparable performance.

GA Setup. We employ a GA [27] for meta-heuristic op-
timization with the following parameters: a population size
of 500, 250 generations, crossover probability of 0.8, and
mutation probability of 0.5. The fitness function includes
average-case (objective) and worst-case (constraint) latencies.

Profiling Time. The Graph Manager component in ARM-
CO-UP [24] has a profiling feature that reports the average
execution time across all frames upon request. It also monitors
timing for inter-processor communication, input, and output
operations. The best- and worst-case latency corresponds to
the latency of the first exit branch and the final classifier,

respectively. We calculate the average latency by multiplying
the percentage of samples classified by each classifier by
the latency of the corresponding exit branch, summing these
values, and then dividing by the total number of test samples.
We calculate the speed-up by dividing the EE DNN’s average-
case latency by the latency of the static model.

B. Trade-off between Latency and Accuracy

The trade-off between latency and accuracy in EE DNNs
depends on factors such as the architecture of the exit branches
and the exit policy based on the confidence of the predicted
label. Table II analyzes three EE DNNs: ResNet18, ResNet50
[3] (with complex exit branches), and VGG16 [6] (with a
simple exit branch). The exit policy relies on a confidence



TABLE III: Comparison of static model latency with the best-, average-, and worst-case latency of EE ResNet18, ResNet50, and VGG16
when processing on a single processor. Latency overhead indicates the increase in latency of EE DNNs compared to static models when
input data is complex. The models are trained on CIFAR-100, and the confidence threshold during inference is set to 0.6.

Model Processor Static Model Latency (ms) EE Model Latency (ms) Latency Overhead for

Best Average Worst Complex Samples (ms)

ResNet18
big CPU 36.91 16.24 21.12 52.04 15.13 (37.9%)

Little CPU 37.10 23.66 28.69 60.78 23.68 (63.8%)

GPU 36.62 13.86 18.60 48.75 24.08 (33.12%)

ResNet50
big CPU 180.01 79.89 97.98 272.59 92.58 (51%)

Little CPU 160.11 90.59 107.88 273.59 113.48 (70.4%)

GPU 204.29 76.8 98.911 320.55 116.26 (56.9%)

VGG16-BN
big CPU 62.24 3.48 45.67 66.42 4.18 (6%)

Little CPU 60.97 4.54 45.84 65.93 4.96 (8%)

GPU 56.83 6.49 46.50 65.68 8.85 (15.5%)

threshold. If the confidence of a sample in an exit branch
exceeds this threshold, it will exit at that branch. We varied
the threshold from 1 (where all exits are disabled) to 0.4,
measuring the percentage of samples exiting at each branch.
Lowering the threshold allows more samples to exit earlier,
reducing latency but potentially lowering accuracy. For ResNet
models, with their complex exit branches, more than 90%
of the samples exit through the first exit branch using a
lower threshold, resulting in a significant latency reduction
with minimal accuracy drop. However, in VGG16, where exit
branches have only two or three convolutional layers, most
samples exit at the last classifier, and lowering the threshold
leads to an accuracy drop.

Performance of Exit Branches with Corrupted Data. The
latency of EE DNNs depends on the complexity of the input
samples. As shown in Table II for ResNet18 and ResNet50
with a threshold of 0.6, fewer than 10% of samples must be
classified by the last classifier, which indicates they are con-
sidered complex samples. However, since the first exit branch
has fewer layers than the backbone model, its generalizability
is limited. The performance of the exit branch can decrease
when the data distribution of the samples changes, resulting in
more samples needing to be processed by the final classifier.

Figure 3 illustrates the performance of the first and last
exit branches of ResNet18 with a confidence threshold of
0.9. It shows the percentage of samples classified by the
initial and final classifiers when testing the model on standard
inputs (CIFAR100) and corrupted inputs (CIFAR100-C) with
various types of corruption. Figure 3 shows that 55% of the
samples are classified by the first exit branch when there is no
corruption. However, this percentage significantly drops for
corrupted samples, with the final classifier processing more
samples. Specifically, for certain types of corruption, such as
Gaussian noise, the percentage of samples classified by the
first exit branch decreases sharply to less than 10%. These
results demonstrate that when more samples are out of distri-
bution, the latency reduction with an EE DNN can be greatly

reduced since more samples are considered complicated These
samples also lead to a substantial latency overhead, as all exit
branches must process them, in addition to the backbone and
final classifier. This overhead leads to a significant increase in
overall inference latency compared to static DNNs.

C. EE DNNs on Single Processor

Table III presents the latency of static models alongside the
best- (first exit), average-, and worst-case (last exit) latencies
for EE ResNet18, ResNet50, and VGG16, compared to the
static models when processed on single processors. A com-
parison of static models latencies across different processors
shows that ResNet50 had lower latency on the CPU, while
ResNet18 and VGG16 exhibited lower latency on the GPU. For
EE DNNs, EE ResNet18 demonstrated lower average latency
on the GPU, while EE ResNet50 and EE VGG16 exhibited
lower average latency on the CPU.

Comparing the static model latency with the best- and
average-case latencies of EE DNNs demonstrates that EE
DNNs effectively reduce average latency. However, consid-
ering the worst-case (latency for more complex samples), the
exit branches introduce a latency overhead for these cases.
The latency overhead for different target processors varies
from 33.12% to 63.8%, 51% to 70.4%, and 6% to 15.5% for
ResNet18, ResNet50, and VGG16, respectively.

Our results indicate that the conventional strategy of de-
ploying EE DNNs across different processors can lead to
varying latency. However, latency variations can be significant,
often surpassing the static model. This variation is especially
noticeable when the exit branches are more complex, resulting
in a considerable increase in latency overhead. For instance,
the latency overhead for the EE ResNet50 was approximately
100 ms higher than the static model. This overhead is problem-
atic for applications where low latency or latency consistency
is crucial.



TABLE IV: Comparison of static model latency(with the best processor) with the best-, average-, and worst-case latency of EE ResNet18,
ResNet50, and VGG16 when processing the backbone and exit branches in parallel on different processors. Latency overhead represents
the increase in latency of EE DNNs compared to static models for complex input data. Speed-up is calculated by dividing the EE model’s
average latency, measured on the best single processor and after deployment on multiple processors, by the latency of the static model. The
models are trained on CIFAR-100, with a confidence threshold of 0.6 during inference.

Model
Static Model

Latency (ms)

EE DNN Speed-up

on Single Processor

EE DNN on Multi processors

Processors
Best

Latency

Average

Latency

Worst

Latency

Latency

Overhead
Speed-up

ResNet18 36.62 (G) 1.96 (G) BGLGLBL 15.3 18.12 35.3 -0.32 (0%) 2.01

ResNet50 160.11 (L) 1.63 (B) BGLBLBL 79.21 89.05 181.66 21.55 (13.4%) 1.79

VGG16-BN 56.83 (G) 1.24 (B) BLBLG 5.94 40.36 58.03 1.2 (2.11%) 1.40

D. EE DNNs on HMPSoCs

This paper strives to minimize latency variations, particu-
larly for more complex samples, thereby reducing the average-
and worst-case latency of EE DNNs. Our framework chooses
the most appropriate processor for each exit branch and back-
bone block, allowing for the parallel execution of exit branches
alongside the backbone based on their execution times, as
detailed in Section III. Table IV compares the static model la-
tency (when running the backbone on the best processor) with
the best-, average-, and worst-case latency of EE ResNet18,
ResNet50, and VGG16 at a 0.6 confidence threshold under
this configuration. Additionally, the speed-up is determined
by dividing the EE model’s average latency—measured on
the best single processor and after deployment across multiple
processors (with the optimal processor for each component
determined by GA)—by the lowest latency of the static model.

For EE ResNet18, the results showed that our method reduce
both the average- and worst-case inference latency compared
to the model running on a single processor (see Table III). As
a result, the latency overhead decreased by over 33%, reaching
35.3 ms, lower than the static model. Furthermore, for static
ResNet50, the lowest latency was observed on the Little CPU.
Comparing the static latency with the worst-case latency in EE
ResNet50 revealed that the latency overhead was significantly
reduced by 37.6%, along with a decreased average latency.
Similarly, for EE VGG16 with two simple exit branches, we
see a reduction in both the average- and worst-case latency.
Compared to the lowest inference latency of the static model
running on GPU, the latency overhead decreases by 3.89%.

Comparing the latency of EE DNNs on multiple processors
to that on a single processor demonstrated that, across all mod-
els, both the average- and worst-case latencies were reduced
relative to the best single-processor setup. This decrease in
latency led to a slight improvement in speed-up, as shown in
Tables III and IV. The results show that deploying EE DNNs,
unlike the static DNNs, on an HMPSOC can cause substantial
latency variations, which may limit their full potential. How-
ever, leveraging the diverse processors within an HMPSoC
can effectively minimize these variations, making them highly
beneficial for latency-sensitive applications.

We primarily focused on EE DNNs, a common type of
dynamic model. However, our framework is adaptable and
can facilitate the deployment of other dynamic networks,
such as skipping layers [28] and dynamic routing [10] on
HMPSoC platforms. For example, in dynamic routing, routes
can be replaced with exit branches, while in skipping layers,
skip connections can be treated as exit branches within the
framework. This generates subgraphs for each route or skip
branch, enabling, multiple routes to execute and communicate
in parallel efficiently. This approach can improve model speed-
up and reduce overall latency while ensuring the worst-case
latency remains within the bounds of static models. Further-
more, since there are no modifications to the exit policies or
the model’s parameters and weight values, this framework does
not impact the model’s accuracy. Therefore, we can apply it
to pre-trained EE DNNs before deployment on HMPSOCs.

V. CONCLUSION AND FUTURE WORK

We examined the challenge of latency variations in EE
DNNs, which can complicate their deployment in real-world
applications. We demonstrated that the waiting time caused
by exit branches can increase the latency of complex sam-
ples beyond that of static models. Our findings showed that
the latency of different processors in HMPSoC is similar.
Therefore, we can utilize multiple HMPSoC processors to
reduce this waiting time. We reduced the worst-case latency to
35.3 ms for ResNet18, 181.66 ms for ResNet50, and 58.03 ms
for VGG16 by modifying the computation graph and distribut-
ing the EE DNNs across different processors. This approach
reduces latency variations in EE DNNs, achieving a modest
improvement in speed-up over single-processor deployment
while preserving model performance.

We explored the impact of a widely used dynamic model on
HMPSoC devices. Future works could extend this investigation
by optimizing these dynamic models for other tasks, such as
object detection on edge devices, to reduce overall latency.
Moreover, instance-aware model compression techniques, such
as instance-aware [29] or partial [30] quantization inference,
which adaptively compress the model based on input data
during inference, present another promising direction for ex-
ploration on HMPSoC devices. These models can leverage



multiple processors to provide consistent latency for all sample
types and facilitate the deployment of deep learning models
on edge devices, especially the larger models.
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