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Abstract—We show experimental evidence and argue that
communication-centric modelling of complex embedded com-
puting systems provides predictive power over the workload
dependent behaviour of these systems. System and external
observables included in this behaviour can be utilised in the
system’s analysis. We provide the preliminary results from our
detection (monitoring) and imitation (simulation) phases, both
part of a larger workflow in development.

Index Terms—System of systems, Communication-centric mod-
elling, Performance monitoring, Distributed Cyber-Physical Sys-
tems (DCPS)

I. INTRODUCTION

Multi-core processor usage has been on the rise through-
out the full spectrum of embedded computing systems and
their modern applications depend on it. Software components
running on these systems also have grown and incorporate
complex functionality. Such advancements have been adding
to the overall complexity of stand-alone embedded systems.
In addition, modern industrial systems are made up of many
such stand-alone embedded computing systems, creating a het-
erogeneous, distributed, networked real-time system, involving
many nodes. Such systems have highly dynamic behaviour
throughout their operational cycle. Accordingly, the challenge
of improving and optimising such behaviour is a profound
one [1]. In this paper, we present and discuss an approach
towards the aforementioned conundrum, based on high-level
modelling and simulation, simplifying analysis (and later on
prediction) of the system’s performance behaviour. This could
make efficient anomaly detection, anomaly prediction and
design space exploration feasible, in a complex computing
system’s domain of possibilities. Such anomaly analyses will
result in improved reliability and availability for software
components of complex embedded computing systems, in turn
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improving the reliability and availability of the system itself.
Our eventual high-level workflow of such a solution will
involve phases such as, detection, imitation, prediction and
enhancement of the system under scrutiny.

One structural characteristic shared amongst complex em-
bedded computing systems is the presence of one, or more
underlying communication subsystems. This is a necessity,
as such systems involve many nodes working in tandem and
they need to intercommunicate. Communication subsystems
predominantely act as a proxy, i.e., a broker between producers
and consumers of data. As for the software engineering
aspects, different flavours of the broker software pattern can be
considered, especially publish-subscribe software pattern [2].

As the main contribution, we show that communication-
centric modelling of complex embedded computing systems
(i.e., cyber-physical systems) can grasp the performance be-
haviour of the whole system. That is, to understand the
behaviour of a complete complex computing system, studying
the behaviour from the perspective of its underlying com-
munication subsystem would suffice. This statement means
that the process of understanding complex computing system
behaviour, performing analysis based on it, and providing
improvements to the system, is facilitated. To demonstrate
the potential of our communication-centric modelling method-
ology, we have performed initial experiments on production
industrial systems, introduced in the following section.

II. INDUSTRIAL USE-CASE

ASML’s photolithography machines are typical examples
of heterogeneous, distributed and networked real-time cyber-
physical systems. These machines are used in the micro-
fabrication process of semiconductor manufacturing. As a
result of extreme complexity of these systems, looking into
their functional behaviour for deriving high-level models and
exploratory purposes is a futile effort. To be able to create
an abstraction, sufficiently reflecting the signature behaviour
of such a complex system, we have employed our analysis
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methodology. We have substituted full system behaviour with
the behaviour observed from the system’s communication
subsystem. As depicted in Fig. 1, it is important to mention
that this approach will result in missing parts of the behaviour
originating from those processes that are independent of the
communication subsystem.

Process

ProcessProcessProcess

Process

Process

Process

Process

Process

Broker

Observed behaviour

Full real system behaviour

Virtual 
process

Simulation framework

Virtual broker

Virtual 
process

Virtual 
process

Virtual 
process

Virtual 
process

Trace-driven virtual processes

Resource manager 
model

CPU Memory

Resource requests

Communication

Trace feed

Resource request

Fig. 1. Capturing and replaying the part of the real system behaviour,
represented by the communication subsystem

III. ANALYSIS PHASES

Here, we present the first two phases of our workflow,
detection and imitation phases.

A. Monitoring the complex computing system

Our detection phase, i.e., system monitoring, involves cap-
turing system parameters, as well as message-passing-specific
communication and computation events, e.g., writing and
reading data. The motivation is that by capturing the behaviour
reflected at the broker, we will be capturing a high portion of
the whole system behaviour, enough to base further analyses
on. Benefiting from the fact that all users of the commu-
nication broker will utilise its various functionalities, much
like a software library, the monitoring is performed in an
invasive fashion. This is done by instrumenting the broker’s
code and capturing intended parameters, e.g., event initiation
timestamps, message sizes, etc., as seen in Fig. 1.

B. Trace-driven simulation

At the imitation phase, which encapsulates automated high-
level model generation and its execution as a simulation, a

model is auto-inferred from our collected monitoring data.
This model includes virtual processes, representing every
detected real process using the broker (about 1/6th of the
total application processes for our use-case), a virtual process
representing the broker itself, as well as communication links,
representing different subscriptions and the communication
topology, connecting producers and consumers (shown in
Fig. 1). The model is executed as a simulation, using the
OMNEST simulation framework [3].

As an initial step, we have opted for a discrete-event sim-
ulation, replaying communication subsystem specific events
from the trace of the observed real system execution. However,
we have also developed alternative, more flexible simulation
policies, allowing us to assess different what-if scenarios.

C. Preliminary results

Fig. 2 shows one of the metrics we have considered so far
to evaluate system behaviour matching, CPU utilisation. The
experiment has been performed with a variety of workloads on
a production grade ASML system. Workloads consist of dif-
ferent numbers of wafers to be exposed by the machine. Some
workloads involve a queue of different wafer batches, e.g., 2
wafers plus 10 wafers. The CPU utilisation trend of the total
system is closely matched with the combined CPU utilisation
of processes using the communication subsystem specifically.
We have compared both accumulated utilisation values cap-
tured via the UNIX ‘top’ command and from our tracing
events (collected via resource usage library, ‘getrusage’),
with total system utilisation values from ‘top’. The absolute
difference between CPU utilisation of the processes involved
with the communication subsystem and total CPU utilisation
of the full system represents the amount of undetected be-
haviour. Fig. 2 depicts this undetected behaviour with small
amounts of dispersion (of which, between 0.7% to 8.7%
are outliers), indicating a matching behaviour throughout the
execution time. Actual utilisation values are confidential and
cannot be presented.

The blue box plot is based on a graph resulting from
the absolute difference between full system CPU utilisation
and observed CPU utilisation for every point in time, all
from system parameters (‘top’). It shows median values of
10.10%, 11.35%, 11.35% and 11.30%. The red box plot is
generated similarly, with the only difference that observed
CPU utilisations are based on recorded communication events
data (‘getrusage’) and shows median values of 10.50%,
11.94%, 12.01% and 11.91%.

IV. CONCLUSION AND FUTURE STEPS

We have presented our communication-centric modelling
methodology for complex embedded computing systems. It is
our intention to complement our claim with more experimental
evidence, showing that a communication-centric view encom-
passes all kinds of observables resulting from a workload.
We also aim to deploy our more flexible simulation policies,
allowing us to explore the change in behaviour of the system,
given different operational parameters, e.g., different process
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Fig. 2. CPU utilisation differences for multiple workloads, total system vs.
communication-centric view

scheduling policies. Following that, we will complete other
phases of our methodology.
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