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Abstract. Neural Architecture Search (NAS), which automates the dis-
covery of efficient neural networks, has demonstrated substantial poten-
tial in achieving state of the art performance in a variety of domains
such as image classification and language understanding. In most NAS
techniques, training of a neural network is considered a separate task or
a performance estimation strategy to perform the architecture search.
We demonstrate that network architecture and its coefficients can be
learned together by unifying concepts of evolutionary search within a
population based traditional training process. The consolidation is re-
alised by cleaving the training process into pieces and then put back
together in combination with evolution based architecture search oper-
ators. We show the competence and versatility of this concept by using
datasets from two different domains, CIFAR-10 for image classification
and PAMAP2 for human activity recognition. The search is constrained
using minimum and maximum bounds on architecture parameters to re-
strict the size of neural network from becoming too large. Beginning the
search from random untrained models, it achieves a fully trained model
with a competent architecture, reaching an accuracy of 92.5% and 94.36%
on CIFAR-10 and PAMAP2 respectively.

Keywords: Neural Networks · Neural Architecture Search · AutoML ·
Constraint Optimization

1 Introduction

Recent work to discover efficient neural networks automatically has proven to
be highly efficient methodology, where the discovered neural network architec-
tures are outperforming the hand-crafted ones. Popular approaches for Neural
Architecture Search (NAS) use reinforcement learning [26, 37] and evolutionary
algorithms [23, 27]. However they take tens to thousands of GPU days to pre-
pare, search and converge. Most of these methods rely on resource heavy training
to guide the search process. In this paper, we look at NAS from a different per-
spective by exploring the possibility of finding optimal architectures during the
training process itself as opposed to accuracy prediction or training as a separate
performance estimation strategy.

Moreover, most of recent work in NAS techniques is focused on image classi-
fication tasks such as for CIFAR-10 [18] and Imagenet [11] leading to innovative
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research on complex search spaces that are highly suited to vision tasks. These
search spaces are derived from hand-crafted previous state-of-the-art such as
residual connections [16], cell based designs such as inception [32], dense net [17]
or generated in a graph-like fashion [31]. While these search spaces have proven
to be extremely efficient, these are not always easy to understand, train and
implement. Most medium complexity tasks and domains such as human activ-
ity recognition [33], earth sciences [25, 20] and astronomical studies [9] deploy
plain convolutional networks as they are considered sufficient as well as easy
to understand by scientists from non-AI background. A tool to find an efficient
Convolutional Neural Network (CNN) in a few GPU days and to be usable in
any domain by non-AI experts is also a step forward in simplifying and democ-
ratizing AI. In this paper we look at the Human Activity Recognition (HAR)
domain with the PAMAP2 [29] dataset where inputs from multiple body worn
sensors are used to predict the activity being undertaken by the wearer. We also
demonstrate versatility of our approach using a very different CIFAR-10 dataset
for image classification.

The main contribution of this paper is a novel NAS algorithm that searches
for an efficient CNN architecture for a given task and converges in a few GPU
hours. Our work leverages a population based computing technique which al-
lows a group of CNNs to train in parallel. During this training, evolutionary
operators are applied to some random CNNs at regular intervals which leads to
architecture modification and hence exploration of the search space. A new ar-
chitecture derived like this is always partially trained already as it was modified
from another architecture undergoing training. In subsequent iterations derived
architectures continue to train. Towards the end of this algorithm, the best can-
didates are selected from the population, which can then be post processed or
trained further, if needed. All the CNNs generated and modified during search
are bound by minimum and maximum values for each architecture parameter.
These constraints are in place to make sure that architectures do not become
too big and limits the resource consumption of the final neural network. This
is an important factor to consider for tasks intended to be used on embedded
systems like wearables in HAR tasks.

The rest of the paper is organized as follows. We discuss related published
works for NAS in Section 2. We then present methodologies and detail our algo-
rithm in Section 3 and describe experimental setup and results of our evaluations
and validations in Section 4. Finally, we conclude the paper in Section 5.

2 Related Work

There are many published works in the field of NAS, roughly divided into three
groups - reinforcement learning based, evolutionary and one-shot architecture
search. In reinforcement learning (RL) and evolutionary search methods, train-
ing the neural network completely with each iteration is mandatory to evaluate
its performance. In RL methods [4, 26, 37], the reward of the RL agent is depen-
dent on the validation performance of the trained architecture. By continuously
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rewarding the agent the search is guided towards better performing neural net-
works. RL based approaches require the construction of an appropriate agent,
which often itself is another neural network and its optimization also requires
considerable effort in designing and fine tuning.

Evolutionary approaches [8, 27, 28, 35, 22] use genetic algorithms to optimize
the neural architecture. These are population based algorithms where every iter-
ation trains and evaluates all the architectures in the population. The subsequent
generation of neural networks is chosen based on their prediction accuracy and
average performance of the whole population increases with time leading to dis-
covery of a highly efficient neural network architecture at convergence.

Unfortunately, a lot of these approaches require large computational re-
sources as they need to train and validate hundreds to thousands of architectures.
RL method [37] trained over 10,000 of neural architectures, requiring thousands
of GPU days and another very efficient evolutionary search [13] still takes 56
GPU days to converge. Some works use proxy tasks and helpers such as hyper-
networks [5], predictors [4, 10] and controllers[26] to speed up the search, but
even so they need significant preparation and construction time prior to the ac-
tual search. Our approach converges in a few GPU hours to a couple of GPU
days without using any additional helper or proxy task.

One-Shot Architecture Search is another promising approach where NAS is
modeled as a single training process of a super-network that comprises of all
possible sub-networks. DropPath [38] drops out each path with some fixed prob-
ability and use the pre-trained super-network to evaluate architectures, which
are sub-networks created by randomly zeroing out paths. DARTS [21] introduces
an architecture parameter in addition for each path and jointly train weight pa-
rameters and architecture parameters using standard gradient descent. Other
approaches might need to utilize proxy tasks to be viable such as [6] employs a
memory-efficient scheme where only few paths are updated during search . The
approaches which require the entire super-network to reside in GPU memory
during NAS are restricted to relatively small architecture size, usually a cell
that can be stacked to form multiple times to form the whole network. They
usually also face a meta-architecture design problem after the search regarding
number of cells to be used and how to connect them to build the actual model.
Besides, a repeated single cell type may not be optimal for every application.

3 Methodology

We call our proposed approach Evolutionary Piecemeal Training, where piecemeal-
training refers to training a neural network with a small ‘data-piece’ of size δk.
A traditional continuous training is interceded by an evolutionary operator at
regular intervals and the interval of intervention is dictated by the value of δk.
An evolutionary operator modifies the architecture and the training further con-
tinues. This process is done for multiple neural networks forming a population
and the candidates which are not able to achieve high accuracy during training
keep dropping out from the population. This can also be seen as early training
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termination of candidates that are performing poorly. In this section, we give
details of the key concepts and then outline the complete Algorithm.

3.1 Search Space

The search space for our algorithm is focused on plain Convolutional Neural
Networks (CNNs), which consist of convolutional, fully-connected and pooling
layers without residual connections, branching etc. Batch normalization and non-
linear activations are configurable and can be added to the network. CNN archi-
tectures are defined by a group of blocks, each block is of a specific layer type
and is bounded by minimum and maximum number of layers it can have. Addi-
tionally, each layer has upper and lower bounds on each of its parameters. For
example, a convolutional layer will have bounds on the number of units, kernel
sizes and stride sizes possible. Section 4.2 defines the architecture search spaces
for CIFAR-10 and PAMAP2 respectively. The search space specifications along
with its bounds are encoded as a collection of genes, also called a genotype. All
possible combinations of parameters together form the gene pool from which
individual neural networks are created and trained.

3.2 Population based training

We employ a population based training process where an initial population of
neural networks is randomly created from the defined gene pool. In each itera-
tion, all candidates of the population are piecemeal-trained and then evaluated
using the validation set. Depending upon the available resources, all candidates
can be trained in any combination of parallel and sequential manner. The size of
the population is kept constant throughout the algorithm, though the candidates
of the population keep changing as they are altered through the evolutionary op-
erators applied in each iteration. The number of candidates in the population
needs to be large enough to maintain enough diversity of CNN architectures in
the population, while still satisfying the constraints applied to it.

3.3 Evolutionary operators

Evolutionary algorithms are iterative population based algorithms where we
evolve a better population over subsequent iterations. During each evolutionary
step, candidates from the population of CNNs are altered using evolutionary
operators called recombination and mutation operators.

Recombination works with two neural networks and swaps all layers in a gene-
block of the same type. In this replacement, the layers being swapped are roughly
in the same phase of feature extraction. The input and output feature map sizes
of layer block being swapped are also identical in both of the selected networks.
Fig.1 illustrates the recombination operator for swapping convolutional layers
from two networks. Recombination is not a function preserving operator, but
in the experiments they were found to be important to introduce diversity in
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the population by changing the total number of layers in a candidate through
swapping. To reduce the negative effect of loss incurred due to recombination,
we used a cooling-down approach to the recombination rate. In earlier iterations,
where the training loss is already high, there are more swaps happening than in
the later ones, where training loss is very low.

Fig. 1: Recombination operator on two neural networks swapping convolution
layers

Mutation changes a layer’s parameters such as number of kernels or ker-
nel size and are designed to be function preserving. We apply the Net2Wider
operator from [7] to increase the number of units and pruning [19] to reduce
the number of filters in the layer. Filters are centrally cropped or zero-padded
when their size is changed. Every mutation disrupts the ongoing training of
the mutated candidates and some additional loss is incurred in the training-in-
process. However, these specific operators were chosen because these are either
completely or partially function preserving in nature, which means that the loss
incurred from these operators is as small as possible and recoverable in later
piecemeal-training.

3.4 Algorithm

Algorithm 1 outlines the complete algorithm, the goal is to find neural networks
satisfying the architecture constraints with minimum prediction error.

InitializePopulation() generates a neural network population of size Np us-
ing a factory pattern class for the genotype and initializes them by training
them for 1 epoch. Afterwards, this iterative algorithm runs for Ng generations.
PiecemealTrain() trains all individuals with randomly selected data of size δk
using τparams training parameters. V alidationPopulation() evaluates the pop-
ulation using the validation set and BestSelection() selects α best individuals
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Algorithm 1: Evolutionary Piecemeal Training

Evolutionary Inputs: Ng, Np, Pr, Pm, α
Training Inputs : τparams, δk

1 ℘o ← InitializePopulation(Np)
2 for i← 0 .... Ng do
3 ℘i ← PiecemealTrain(℘i, τparams, δk)
4 Ev ← V alidationPopulation(℘i)
5 ℘best ← BestSelection(α, ℘i, Ev)
6 ℘r ← random((1− α) ∗ ℘i)
7 update ℘i ← ℘best + ℘r

8 ℘rc ← Recombine(℘i, Pr)
9 ℘mu ←Mutate(℘i, Pm)

10 update ℘i ← ℘mu + ℘rc + ℘remaining

11 end
12 return BestCandidatesOf(℘Ng

)

using the accuracy on validation set achieved so far. α is kept at very high ratio
> 0.95∗Np so only a few candidates are rejected in every iteration. By doing this
our focus is on rejecting poor performing architectures, as opposed to promoting
an architecture that learns fast but might not be able to reach very high accuracy
in the end. Population size, Np, is kept constant by randomly selecting 1 − α
networks from survivors and added back to the pool. Random selection ensures
that children generations are not overwhelmed by only one type of architecture
which might have reached high accuracy by luck. Recombine() and Mutate()
are evolutionary operators, they select individuals from the population with se-
lection probability of Pm and Pr respectively. Pr is linearly cooled to ≈ 0 from
its initial value. The algorithm returns the best candidates of CNNs from the
final population. Best candidates can be further processed, modified or trained
as needed outside this algorithm.

4 Experiments

In this section, we evaluate our algorithm using two datasets and outline the
experimental setup. We present the datasets and data augmentation techniques
used, their respective constrained search spaces and finally the results obtained.
We have used the Java based Jenetics library [1] for evolutionary computation
and the Python based Caffe2 [3] library for training and testing. We used the
ONNX [2] format to represent and transfer the neural networks across different
modules. Our experiments run on only one GPU (GeForce RTX 2080).

4.1 DataSets

For experiments, we use the CIFAR-10 dataset for image classification and the
PAMAP2 dataset of human activity recognition. CIFAR-10 consists of 60, 000
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labeled images of dimensions 32×32×3, comprising of 50, 000 training and 10, 000
testing images. The images are divided into 10 classes. We use 5, 000 images from
the training set as a validation set and we use only this validation set to guide
the search process. The test set is used only in the end to check final accuracy
of the network, which is what we report in this paper. We use standard data
augmentation as described in [14, 30] with small translations, cropping, rotations
and horizontal flips. For piecemeal-training, δk random images are picked from
the training set from which approximately 50% are augmented images.

The PAMAP2 dataset provides recordings from three Inertial Measurement
Units (IMU) and a heart rate monitor. Together, the input data is in the form
of time-series from 40 channels. In this dataset, nine subjects performed twelve
different household, sports and daily living activities. We do not consider the
optional activities performed by some subjects. Following [15], recordings from
participants 5 and 6 are used as validation and testing sets respectively. IMUs’
recordings are downsampled to 30 Hz and a sliding window approach with a
window size of 3s (100 samples) and step size of 660ms (22 samples) is used
to segment the sequences. To augment the data, a sliding window is moved by
different step sizes while keeping the window size the same at 3s.

4.2 Search Space

Table 1 and Table 2 describe the search space specifications. Total design points
for CIFAR-10 and PAMAP2 are to the order of 108 and 105 respectively. Number
of units per layer can be multiples of 16 for CIFAR-10 and 8 for PAMAP2.

Table 1: Cifar-10 Architecture Search Space

Layer Type Layers Units/Layer Kernel-size Stride
Lmin Lmax Umin Umax Kmin Kmax St

Convolution 2 5 48 96 3x3 7x7 1
MaxPool 1 1 1 1 2x2 2x2 2
Convolution 2 7 80 320 3x3 7x7 1
MaxPool 1 1 1 1 2x2 2x2 2
Convolution 2 7 256 640 3x3 7x7 1
MaxPool 1 1 1 1 2x2 2x2 2
Fully Connected 2 3 128 1024 - - -
SoftMax 1 1 1 1 - - -

4.3 Training Setup

We trained the CIFAR-10 dataset with 80 generations and population size of
80. δk for piecemeal training is set to 4k random images. Each convolution and
fully connected layer is followed by ReLu activation. Training was done using the
Adam optimizer and batch size of 80 with initial learning rate of 5e−4 with step
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Table 2: PAMAP2 Architecture Search Space

Layer Type Layers Units/Layer Kernel-size Stride
Lmin Lmax Umin Umax Kmin Kmax St

Convolution 2 4 64 128 3x1 7x1 1
MaxPool 1 1 1 1 2x1 2x1 2
Convolution 2 5 96 256 3x1 7x1 1
GlobalMaxPool 1 1 1 1 2x1 2x1 2
Fully Connected 1 3 128 512 - - -
SoftMax 1 1 1 1 - - -

learning rate decay, after every 20 iterations learning rate was reduced by 1e−4.
Both evolutionary selection probabilities Pm and Pr are initialized to 0.3. Pm

stays constant, while Pr is linearly decayed to reach 0.01 at the last iteration.
PAMAP2 was trained for 30 generations and population size of 50. δk for

piecemeal training is set to 20k random sensor samples . Each convolution and
fully connected layer is followed by ReLu activation. Training was done using
the Adam optimizer and batch size of 100 with initial learning rate of 1e−4

with constant learning rate. Evolutionary selection probabilities Pm and Pr are
initialized to 0.3 and 0.3 respectively. As with the CIFAR-10 experiment, Pm

stays constant and Pr is linearly decayed.
Neural networks for CIFAR-10 are larger than for PAMAP2, with a single

GPU with 11 GB memory 4 parallel training threads for CIFAR-10 and 7 par-
allel training threads could run simultaneously. The limitation on the level of
parallelism was defined by the available memory on the GPU. Also to fasten up
the search there was no Batch Normalization used as it consumes more memory
and reduces possible parallelism. After the search, the best candidate was mod-
ified and every convolutional layer was appended with a batch normalization
layer and further trained for 100 epochs.

4.4 Results

In this section, we evaluate our algorithm and compare with other state-of-
the-art. Figure 2 shows the training curves for experiments on CIFAR-10 and
PAMAP2, with each iteration there is a general increase in average accuracy of
the population as well as the best accuracy of an individual in the population.
The best model might change from an iteration to the next. The best models
found at the end of all iterations were further trained to achieve final accuracy
as reported in Figure 2.

For CIFAR-10, the search took 2-GPU days and the best prediction accu-
racy was found to be 92.5% on the test set. Table 3 shows comparisons with
other evolutionary approaches. We know that 92.5% is relatively low compared
to other published works, but this is on a very simple and plain CNN without
any architectural enhancements or advance data augmentation like mixup[36]
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Fig. 2: Training curves. Average Accuracy refers to the average performance of
whole population at the given search iteration. Best accuracy refers to best found
performance of an individual model from the population.

or cutout[12]. Other approaches use a hybrid search space where different ar-
chitecture blocks or cell modules as well as arbitrary skip connections are used.
Instead of stacking conventional layers, these stack different blocks. The best
model found in our experiments has 13 convolutional layers followed by 2 fully
connected layers.

Table 3: CIFAR-10 Accuracy Comparisons with Evolutionary Approaches

Model Search Space GPU-days Accuracy(%)

CoDeepNeat [23] hybrid - 92.7
GeneticCNN [35] hybrid 17 92.9
EANN-Net [8] hybrid - 92.95
AmoebaNet [27] cell 3150 96.6
NSGANet [22] hybrid 8 96.15
Evolution [28] hybrid 1000+ 94.6
EPT (ours) plain CNN 2 92.5

For the PAMAP2 dataset, we report the classification accuracy as well as the
weighted F1-score(F1w) and mean F1-score (F1m), as this is an unbalanced set.
These scores consider the correct classification of each class equally, using the
precision, recall and the proportion of class in the dataset. These are calculated
as below:

F1w =
∑
i

2× ni
N
× precisioni × recalli
precisioni + recalli

F1m =
2

N
×

∑
i

precisioni × recalli
precisioni + recalli
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where, ni is the number of samples for each class k ∈ K and N is the total
number of samples in the dataset. Compared with the classification accuracy, the
F1-scores are more convenient for evaluating the performance of the networks on
highly unbalanced datasets. We calculate both F1-scores to compare our result
with different published results.

Our approach shows very promising results on the PAMAP2 dataset. For
PAMAP2, the search took only 10 GPU-hours and the best prediction accuracy
was 94.36%. Table 3 compares our algorithm to other published works. In com-
parison, grid search [15] on CNN for PAMAP2 was able to achieve 93.7% and
a hand-crafted CNN [24] was able to reach 93.21% clearly demonstrating that
our approach is more efficient than naive search methods such as random or grid
search, while also being resource efficient by evaluating far less design points.
The best performance was found on a neural network that has 7 convolutional
layers followed by 3 fully connected layers.

Table 4: PAMAP2 Accuracy Comparisons

Model Accuracy(%) F1w(%) F1m(%)

Hand Designed [24] 93.13 93.21 -
Grid Search (CNN) [15] - - 93.7
D2C [34] - - 92.71
D2CL [34] - - 93.2
EPT (ours) 94.36 94.17 94.36

5 Conclusion

In this paper, we presented a novel approach called Evolutionary Piecemeal
Training which traverses the search space of plain CNNs to find an efficient
architecture within reasonable constraints for a given task. We validated our
algorithm on two different datasets which demonstrates the versatility of our
method. We showed that for moderate complexity tasks such as the PAMAP2
dataset, our approach is better and more efficient than random or grid search
methodologies.

We perceive that this process can easily be extended to perform multi-
objective optimization, which allows the neural network to be optimized simul-
taneously for resource utilization along with its performance. As future work we
aim to modify this search algorithm to incorporate hardware metrics and reduce
resource usage of the neural network on the designated embedded system.
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