
VMODEX: A Visualization Tool for
Multi-Objective Design Space Exploration

Toktam Taghavi, Andy D. Pimentel
Computer Systems Architecture Group, Informatics Institute

University of Amsterdam, Amsterdam, The Netherlands
(Demonstration Paper)

{T.TaghaviRazaviZadeh, A.D.Pimentel}@uva.nl

Abstract—VMODEX is an interactive visualization tool to

support system-level Design Space Exploration (DSE). It provides
insight into the search process of Multi-Objective Evolutionary
Algorithms (MOEAs) that are typically used in the DSE process,
and therefore it facilitates the analysis of the DSE results. In our
tool, we provide several capabilities to be able to handle large
design spaces and filter design points according to their objective
values to see only preferred solutions.

I. INTRODUCTION
Modern embedded and reconfigurable systems come with

contradictory design constraints. On one hand, these systems
often target mass production and battery-based devices, and
therefore should be cheap and power efficient. On the other
hand, they need to achieve high (real-time) performance and
flexibility. The complexity of these systems forces designers to
simulate systems and their components early during the design
process to explore the wide range of design choices. Such
design space exploration (DSE), during which multiple criteria
should be considered simultaneously, is called multi-objective
DSE. Since objectives are often in conflict, there cannot be a
single optimum solution, which simultaneously optimizes all
objectives. Instead, a set of optimal solutions denoted as the
Pareto optimal set or non-dominated set has to be found. This
is the set of those solutions for which one objective cannot be
improved further without causing a simultaneous degradation
in at least one other objective. These optimal decisions provide
the designer trade-offs between the design objectives.

System-level simulation frameworks that are deployed for
DSE, usually use independent application and architecture
models. The application model describes the functional
behavior of the system expressed as processes (computations)
and channels (communications). The architecture model
represents the hardware components in the system, such as
processors, reconfigurable modules, memories, etc. Then,
different mappings of processes and communication channels
to various architectural components are evaluated by
simulation to find the optimum mapping solutions. Each
mapping decision taken in this step corresponds to a single
point in the design space.

In order to find a Pareto optimal set with respect to the
design criteria, the designer should ideally evaluate and
compare every single point in the design space. However, such
an exhaustive search is infeasible, as in real-scale problems the
design space is too large to be explored in an exhaustive
manner. Therefore, heuristic search techniques, such as multi-

objective Evolutionary Algorithms (MOEA), are often used to
search the design space for optimum design points using only a
finite number of design-point evaluations. As the searched
design space still is vast, interpreting all evaluation data and
understanding how the EA searches through or prunes the
design space is cumbersome. Such analysis is, however,
essential to the designer as it provides insight into the
“landscape” of the design space (e.g., indicating which design
parameters are more important than others).

To illustrate the need for good analysis tools, Fig. 1 shows a
sample of raw data generated by an EA. Here, each row
represents an evaluated design point in which the values of
objectives (processing time, energy consumption and cost) and
the chromosome string are comma separated. The way that
application tasks and their communications are mapped onto
the architecture components is encoded in a string of digits,
which is called the chromosome. It is evident that interpreting
and analyzing the evaluated data in this format is not possible.

Therefore, we have developed a novel interactive

visualization tool, VMODEX (Visualization of Multi-Objective
Design spacE eXploration), to understand how an evolutionary
algorithm searches the design space, where the optimum design
points are located, how design parameters influence each
objective, and provides insight into the relationship between
the different objectives. The main challenge that needs to be
addressed by such a visualization environment is how the raw
data (as illustrated in Fig. 1) can be represented in a visual
form such that it is possible to analyze the data – in a single
view – from different perspectives and for various aspects. To
this end, this paper proposes a visualization approach in which
we visualize the design space as a tree in which both design
parameters and objectives are shown.

The rest of the paper is organized as follows. Section II
describes related work. Section III introduces techniques we
have provided for visualizing multi-objective DSE. Section IV
illustrates the benefits of using visualization in the DSE
process. Finally, section V concludes the paper.

Fig. 1. Example of raw data generated by an EA

II. RELATED WORK
In the field of computer architecture simulation, and

especially in the area of system-level design space exploration,
little research has been undertaken on visualization of
simulation results in exploring alternative architectural
solutions. Most of the visualization work in this area focuses
on educational purposes (e.g., [1], [2]), or only provides some
basic support for the visualization of simulation results in the
form of 2D / 3D graphs.

The work presented in [3] provides advanced and generic
visualization support, but tries to do so for a wide range of
computer system related information which may not
necessarily be applicable to computer architecture simulations
and in particular to design space exploration, with its own
domain-specific requirements.

In [4], an interactive visual tool is presented to visualize the
results from system-level DSE experiments. The simulation
results are visualized using a coordinated, multiple-view
approach, which enables users to understand the information
through different perspectives. But this tool does not provide
any insight in the searching process as performed by e.g. a
MOEA. For example, there is no way to find out which parts of
the design space are not searched at all.

III. DEMONSTRATION OVERVIEW
A. Modeling the Design Space as a Tree

As it is conceptually shown in Fig. 2, we model the design
space as a tree. The tree has three sections: the Parameters
section, Cost section and Design Points section.

Fig. 2. Modeling the design space as a tree

In the Parameters section, each level shows one parameter of
the design space, such as the number of processors in the
architecture platform. So, the number of levels in this section is
equal to the total number of parameters in the design space. For
example, in the tree illustrated in Fig. 2, the design space has
four parameters: number of processors, processor type, number
of memories and memory type. In this example, the platform
architecture consists of two Application Specific Integrated
Circuits (ASICs), two MicroBlazes (MBs), one Static RAM
(SRAM) and one Dynamic RAM (DRAM).

The design points’ section includes the design points
searched by the MOEA. Here, a design point is defined as a

specific instance of the architecture platform as well as a task
and communication mapping. Each point is shown as a node,
which is a child of its corresponding architecture. Design
points are distributed in three levels: main Pareto, local Pareto
and non-Pareto.

The main Pareto level shows the global Pareto points found
by the MOEA. The solutions at this level are better than all
other solutions in the entire design space but they are non-
dominated by each other. On the other hand, each point, which
is not part of the main Pareto set, is dominated by at least one
main Pareto point. At the local Pareto level, the local Pareto
points are shown. A design point is called a local Pareto point
if within the design points with the same architecture (but with
different mappings), there is no point dominating that one.
However, in the entire design space, a design point might exist
which dominates the local Pareto point. It is clear that all the
main Pareto points are local Pareto points as well. However,
not all the local Pareto points are main Pareto points and
therefore we use a relation node at the main Pareto level to
make a connection between them and the previous level. These
nodes are labeled with “R” in Fig. 2.

All the other design points are placed at the non-Pareto level.
Each one becomes a child of a local Pareto point that
dominates it. If a design point is dominated by more than one
local Pareto point, we calculate the Euclidean distance (in the
objective space) between the dominated point and each
dominating local Pareto point and the design point becomes the
child of the local Pareto point with the smallest distance. A
smaller distance means that the points are more similar
according to the objectives.

For easier interpretation and better analysis of the design
points, the children of a local Pareto point are categorized into
three groups according to their Euclidian distance from their
parent. The solutions, which are equivalent to the local Pareto
point with respect to all objectives, are put under the “Zero”
distance node. If the distance between a solution and its
corresponding local Pareto point is more than a certain
threshold (determined by the designer), it becomes a child of a
“High” distance node, otherwise it becomes a child of a “Low”
distance node.

The color and thickness of edges show the Euclidean
distance (in the objective space) from the nearest main Pareto
point. The edges in the path from the root to the main Pareto
points are the thickest and darkest since the distance is zero. As
the distance increases the edges become thinner and lighter.

B. Showing objectives in the tree
 In this paper, we consider three objectives: processing time,

energy consumption (i.e., power consumption times processing
time) and architecture cost. The cost of each design point is
dependent on the architectural components forming it. So, all
solutions with the same architecture have the same cost. After
the parameters section, the architecture cost can be computed
since all components are known. Therefore, we add an extra
section (Fig. 2) between the parameters section and design
points section, which is called the cost section and shows the
costs of the different architectures. Since the cost is an
objective and not a design parameter, we represent it with a

different shape; a circle. For a better view, the size of the circle
becomes bigger as the cost increases.

The other two objectives are dependent on the mapping and
are therefore shown in a design point node. The size and color
of the third dimension of a design point node shows the energy
consumption. As the energy consumption increases, the size of
the third dimension becomes bigger and its color becomes
darker. The color of the node itself represents the processing
time. Colors are varied from yellow to red with all color grades
in between. Nodes with the lowest processing time are yellow
and nodes with the highest processing time are red.

Parameter nodes, however, do not represent single design
points and therefore do not have the direct notion of processing
time or energy consumption. For this reason, there are some
options to color the parameter nodes: based on the average,
minimum, or maximum of either processing time or energy
consumption of the design points in their sub trees. The color
of parameter nodes that have no data node (i.e., do not have
any DSE data) is white. In Fig. 2, the minimum processing
time is chosen for coloring parameter nodes.

C. Benefits of Tree Visualization
 Modeling the design space based on a tree structure, as
presented in this paper, has the following benefits:

Firstly, both the design space parameters and the objective
values can be seen in one view. Therefore, it is easy to
understand where the optimum design points are located and
what objectives they have. Secondly, there is no limitation on
the number of design variables since each parameter is located
at one level of the tree. Therefore, modeling the design space
as a tree enables us to easily visualize multivariate data. Lastly,
it can easily be extended to show more than three objectives.
Each node has some attributes like shape, orientation, size,
color, transparency, texture, border, etc. Each attribute can be
assigned to one objective. In this paper, only color and size are
used to show objectives.

D. Handling Large Trees
In reality, DSE trees can become extremely large. Therefore,

we provide the following techniques to handle large trees.

 1) Satellite View: Satellite view, gives an overall, smaller
scale view of the entire scene, which allows the user to
navigate quickly across the view. It also enables the user to
zoom in on certain parts of the scene to focus on certain nodes
without losing track of the position in the entire scene.
 2) Hiding Sub Trees without Exploration Data: Since some
areas of the design space may not have been visited by the
searching algorithm (e.g., they are not interesting enough so we
do not have any evaluated design points for those parts), it is
possible to hide the sub trees of the nodes that have no data.
This way, the designer can focus on the sub trees which are
more important and can easily see which parts of the tree are
searched by the EA.
 3) Hiding Uninteresting Sub Trees: If the designer is not
interested in some parts of the tree, then he is able to hide them
in order to make the tree smaller and pay more attention to
other nodes. By double clicking on a node, its sub tree

collapses and a blue triangle appears at the bottom of the node
specifying that the children of the node are hidden. The size of
the triangle represents the size of the sub tree. The bigger the
triangle is, the more nodes in the sub tree exist. By double
clicking again, the sub tree becomes visible and the blue
triangle is removed.
 4) Filtering: In some cases, the designer wants to consider
only design points with some specific objective values. The
value of each objective is controlled by a range slider bar, in
which the designer can set upper and lower limits on that
objective. Design points with objective values inside the
selected ranges are visible and the others become invisible.
Therefore, the designer has the ability to easily view only
preferred design points. There is an option to view all design
points that fall within the filtering conditions or to only show
local Pareto points or only main Pareto points.

E. Detailed information
The DSE tree shows an overall view of the design space. For

example, it shows where in the design space more design
points have been evaluated or where the optimum design points
(with respect to all objectives) are located. However, if the
designer wants to know more about a specific design point, it is
possible to select the design point to see more details. Two
kinds of detailed information are provided for each design
point: mapping decision and utilization.

 1) Showing Mapping Decision: In our case, the application
behavior is modeled as a process network. A process network
is a computational model of the application and uses a directed
graph notation, where each node represents a process and each
edge represents a one-way FIFO communication channel
between two processes. The Fig. 3a represents an example
process network graph, which has five processes and six
communication channels.

A

D

C

B E 1

2

4

6 3

5

A B

C

D

E 1

2

4

6 3

5

Fig. 3. a) An example of process network b) mapping decision visualization

 We visualize the process network graph in a way that shows
the mapping decisions as well. That means that it shows how
the application is being mapped to the underlying architecture
both in terms of processes and communication channels. The
shape and the color of each node in the graph represent the type
of the processor executing the corresponding process (i.e., a
green rectangle for one processor type and a blue pentagon for
another type). If there are multiple processors of the same type
in the platform architecture, then they are differentiated using
different variants of the same color such as light green and dark
green.

If two communicating processes are mapped onto the same
processor, then their communications are done internally and
therefore communication channel(s) between them are mapped
onto the processor in question. In the process network graph, a
solid line represents these internal communications with the

same color as the corresponding processor. In the case that a
channel is mapped onto an external memory, a dashed line is
drawn with the color representing the memory type. Similar to
the processors, memories with the same type are shown by a
different variant of the same color.

The Fig. 3b represents how our visualization model shows
the process network graph from Fig. 3a. As can be seen in this
figure, processes A, B, C and channels 1 and 2 are mapped to
the same processor (ASIC_1). Process D is executed on the
same processor type but on a different processor as process A
(ASIC_2). The type of the processor executing process E is
different from the others since it is shown with a blue pentagon
(MB_2). Channels 3,4,5 and 6 are mapped to memories (not
processors) as they are shown with dashed lines. Channels 3
and 4 are mapped to the same memory (DRAM_1). Channel 6
is mapped to another memory but with the same type
(DRAM_2) and Channel 5 is mapped onto a different memory
type because it has a different color (SRAM).
 2) Showing Utilization: For showing utilization, the platform
architecture is shown as a directed graph. Each node represents
an architectural component and the edges show connectivity
between components. Each node (component) is filled with its
corresponding colour, which is discussed in the above section,
in a way that the size of the coloured part represents the
percentage of the time the corresponding component was busy.

Fig. 4 shows an example of utilization visualization for a
platform architecture consisting of two Application Specific
Integrated Circuits (ASICs), two MicroBlazes (MBs), one
Static RAM (SRAM) and two Dynamic RAMs (DRAM).

Fig. 4. Utilization visualization

In this example, the utilization of ASIC_1 and DRAM_1 is
100% while for the Bus it is almost 75% and for the other
components it is less than 50%.

IV. EVALUATION
VMODEX enables designers to easily and clearly

understand the DSE process and analyse the results from
different aspects. Due to the lack of the space, a detailed study
of the design space exploration data for a particular design is
not presented here. However, to illustrate the benefits of using
our tool in the DSE process, in the following, we mention some
interesting conclusions that a designer can immediately draw
just by looking at the visualization and could not be made so
easily by using only the raw data or traditional 2D/3D graphs.

First of all, it shows which parts of the design space are not
searched at all (no design point is evaluated there). As we
mentioned before, nodes with a white colour and dashed line have
no data. Furthermore, it illustrates which parts of the design
space are searched more often by the EA (more design points
are evaluated there). In these areas, the tree provides more

nodes so the sub trees of the corresponding nodes are bigger.
Moreover, it shows the parts of the design space that contain
the main Pareto points. Therefore the designer can immediately
recognize which combinations of architectural components
yield optimum design points. Our visualization enables the user
to see the design variables (architecture components) of the
Pareto points and their objective values in one view.
 Next, it points out the poor design points. By poor, we mean
the distance (in objective space) between them and the nearest
main Pareto point is big. The edges between them and their
parents are thinner and lighter.

As we mentioned before, for each architecture instance, the
best design points with respect to the design criteria are located
at the local Pareto level. Therefore, the designer can easily
compare the best design points of different architecture
instances with each other.

By coloring the parameter nodes, it is possible to do some
statistical analysis. The designer can compare different
architectures (in terms of number and type of the processors
and memories) according to the minimum, maximum or
average of each of the design criteria.

By visualizing the mapping decision, it is easy to investigate
the influence of the different mappings on each objective. In
addition, by visualizing the utilization, the effect of different
mappings on the utilization of the architecture components can
be easily compared.

By using the filtering option, the designer can select to see
only design points with desirable objective values and
understand which parts of the design space contain the
preferred design points.

V. CONCLUSION
In this paper, we presented a visualization tool, VMODEX,

which helps designers to understand the search behavior in
MOEA based design space exploration as well as to gain
insight into the landscape of the design space. That is,
understanding the characteristics of the optimum design points
with respect to the design criteria, the relationships between
design parameters and their effects on the objectives, the
effects of mapping decisions on the design criteria and the
correlations among multiple objectives.

In our tool, we provide several capabilities to be able to
handle large design spaces and filter design points according to
their objective values to see only preferred solutions. Besides,
we discussed some of the interesting conclusions that can be
immediately drawn by looking at our visualizations.

REFERENCES
[1] P. Marwedel, B. Sirocic. Multimedia components for the visualization of

dynamic behavior in computer architectures, in the Proc. of the
Workshop of Computer Architecture Education, 2003.

[2] C. Yehezkel, W. Yurcik, M. Pearson, D. Armstrong. Three simulator
tools for teaching computer architecture: Easycpu, little man com- puter,
and rtlsim, Journal on Educational Resources in Computing (JERIC),
vol. 1, no. 4, pp. 60-80, 2001.

[3] R. Bosch, et al, “Rivet: A flexible environment for computer systems
visualization”, SIGGRAPH Computer Graphics, vol. 34, no. 1, 2000.

[4] T. Taghavi, A. D. Pimentel, and M. Thompson. “Visualization of
Computer Architecture Simulation Data for System-level Design Space
Exploration”, in Proc. SAMOS '09’, July 2009.

