
An Evolutionary Optimization Algorithm for Gradually
Saturating Objective Functions

Dolly Sapra
University Of Amsterdam
Amsterdam, Netherlands

d.sapra@uva.nl

Andy D. Pimentel
University Of Amsterdam
Amsterdam, Netherlands
a.d.pimentel@uva.nl

ABSTRACT
Evolutionary algorithms have been actively studied for dynamic
optimization problems in the last two decades, however the re-
search is mainly focused on problems with large, periodical or
abrupt changes during the optimization. In contrast, this paper
concentrates on gradually changing environments with an addi-
tional imposition of a saturating objective function. This work is
motivated by an evolutionary neural architecture search methodol-
ogy where a population of Convolutional Neural Networks (CNNs)
is evaluated and iteratively modified using genetic operators dur-
ing the training process. The objective of the search, namely the
prediction accuracy of a CNN, is a continuous and slow moving
target, increasing with each training epoch and eventually saturat-
ing when the training is nearly complete. Population diversity is an
important consideration in dynamic environments wherein a large
diversity restricts the algorithm from converging to a small area of
the search space while the environment is still transforming. Our
proposed algorithm adaptively influences the population diversity,
depending on the rate of change of the objective function, using
disruptive crossovers and non-elitist population replacements. We
compare the results of our algorithm with a traditional evolution-
ary algorithm and demonstrate that the proposed modifications
improve the algorithm performance in gradually saturating dy-
namic environments.

CCS CONCEPTS
•Computingmethodologies→Genetic algorithms; •Theory
of computation → Evolutionary algorithms;

KEYWORDS
Genetic Algorithms, Dynamic Optimization

ACM Reference Format:
Dolly Sapra and Andy D. Pimentel. 2020. An Evolutionary Optimization
Algorithm for Gradually Saturating Objective Functions. In Genetic and
Evolutionary Computation Conference (GECCO ’20), July 8–12, 2020, Cancún,
Mexico. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3377930.
3389834

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3389834

1 INTRODUCTION
In traditional optimization problems, all environment variables and
constraints are previously known and remain static throughout
the optimization task. In real life optimization problems however,
an environment may change due to several factors such as fault
occurrence, slow degradation, planned updates and modifications
over a long period of time [16, 30]. These are called dynamic opti-
mization problems (DOPs) wherein objective functions, constraints
or parameters change over time [32]. For static optimization prob-
lems the optimization model is predetermined and designed for a
specific non-moving Objective. If an environment changes infre-
quently after long time frames, the dynamic optimization problem
can be treated as a sequence of static optimization tasks. However,
in continuously changing dynamic optimizations, the model might
require continuous adaptations along with the changing parameters
and/or moving optimum.

Evolutionary Algorithms (EAs) are considered to be a good can-
didate for dynamic optimizations, which are randomized heuristics
based on principles of natural evolution, and easily adapt to changes
in the environment. Evolutionary Dynamic Optimization (EDO)
[20] in literature is focused on recurrent or abrupt changes in the
environment. There are various methodologies to detect sudden
changes in the landscape [12, 38], memory based approaches to
handle recurring behavior (For e.g. [28, 35]), and prediction strate-
gies to predict the moving optimum or the population suitable in
the new environment [15, 17, 37]. In a gradually changing environ-
ment, these techniques are too complicated and somewhat of an
overkill. Approaches based on maintaining diversity are more suit-
able in such scenarios. High diversity in the population restricts the
convergence of the optimization algorithm to a small search space,
consequently preventing it from getting stuck in a local optimum.
This allows the algorithm to monitor diverse parts of the search
space so the optimization can be efficient while the environment
changes slightly with each iteration.

Our focus on dynamic environments with gradually changing
objective function which have a tendency to saturate, hence turn-
ing the dynamic optimization into pseudo-static optimization after
saturation. This work is motivated by an evolutionary neural archi-
tecture search methodology where a population of neural networks
is trained in parallel on a dataset and their architecture is modified
during the training using genetic operators [26]. The objective of
the search is to find a neural network topology that is efficient with
high prediction accuracy. However, the prediction accuracy is a
continuous and slow moving target during the training process.
The maximum achievable accuracy increases with each training
epoch and eventually starts to saturate when the training is nearly
complete. The importance for high diversity in the population in

https://doi.org/10.1145/3377930.3389834
https://doi.org/10.1145/3377930.3389834
https://doi.org/10.1145/3377930.3389834

GECCO ’20, July 8–12, 2020, Cancún, Mexico Dolly Sapra and Andy D. Pimentel

saturated stages is not crucial, it might actually counteract the
need for the algorithm to converge to good points now that the
optimization problem is pseudo-static.

Gradually Saturating Optimization Problems (GSOPs) can be
found in real life problems as well, especially where the environ-
ment start to settle down after phases of small disruptions. For
example, in dynamic knapsack auction problems [4] with sequen-
tial bidding for fixed total space on a commodity such as an ad-
vertisement page, assuming that bids change in value over time
from different bidders, the objective is to maximize the revenue.
The maximum revenue saturates after some iterations with bids
being guided from market values, other bidders and historic data
on such bids [27].

In this paper, we propose a new adaptive diversity control ap-
proach based evolutionary algorithm to solve dynamic optimization
for Gradually Saturating Objective Functions (GSOF). We define
two levels of diverseness within the population and modify the
algorithm with disruptive crossovers and non-disruptive mutations
while keeping the diverseness levels in mind. By introducing con-
trolled diversity into the population through these genetic operators
we are able to guide the optimization to achieve better results as
proved by our experimental results. The main contributions of this
paper are:

(1) Defining and discussing the dynamic Gradually Saturating
Optimization Problems (GSOPs) and its challenges.

(2) Proposing an evolutionary algorithm modification that adap-
tively influences population diversity suitable for Gradually
Saturating Objective Functions (GSOF).

(3) Validating the proposed algorithm modification through
comparisons of the result of our algorithm with a baseline
standard evolutionary algorithm.

The rest of the paper is organized as follows: In Section 2, we re-
view related work in the field of dynamic optimization and diversity
maintenance approaches. In Section 3, we discuss the specifics of
our problem and formally define it. In Section 4, we outline the pro-
posed methodology with details of the algorithm and how diversity
is adaptively maintained in the population. Section 5 is dedicated
to the experiments and evaluation of our approach. Finally, we
conclude the paper in Section 6 with some directions for future
work.

2 RELATEDWORK
Dynamic optimization problems (DOPs) are characterized by a
variety of mechanisms that can cause a change in the problem en-
vironment during the optimization process. Some of the attributes
that outline a dynamic behavior are frequency, severity and pre-
dictability of the change. In evolutionary solutions for DOPs, these
environmental changes are handled in various ways such as mem-
ory based approaches , multi-population based techniques, predic-
tion based methods and diversity based approaches. Some hybrid
approaches such as memetic algorithms [34], that combine differ-
ent aspects of these approaches have also been proposed over the
years. An appropriate approach is chosen depending on the type of
dynamism present in the optimization problem’s environment.

For periodical changes, memory based approaches are suitable
where some candidates from the population are stored for later use.

It reduces the computation complexity by making good candidates
readily available in recurring situations. Memory can be implicitly
encoded in genotype [35] or explicitly stored externally [28, 36]. For
sudden and irregular changes, the main concern is to detect when
the change occurs and to adapt the population to be suitable for
the new optimum as quickly as possible. A change can be indicated
by population statistics [24] or external sensors [25].

Multi-population approaches divide the population into multiple
sub-populations, and each one tracks the optimum in different
promising search areas [6, 7, 19, 21]. Sub-populations are generally
independent of one another and each one might employ its own
search technique or track different optimum in multi-objective
optimization problems. Sub-populations usually remain disparate
throughout the process, but some algorithms combine them after
some iterations to combine the search space explored individually
by each sub-population [22].

For gradually changing targets, which is the focus of this pa-
per, the techniques for maintaining diversity are more relevant.
Diverse individuals keeps the search space broad and prevents
the algorithm from prematurely converging. This allows a wider
exploration and lets algorithm move its focus in the search area
with moving optimum. The benefits of diversity in evolutionary
algorithm has been surveyed and analyzed in [29]. A classification
of diversity maintaining, controlling and learning mechanisms is
discussed extensively in [10].

Hyper-mutation [9] and random immigrants [13] are two well-
known techniques and are widely used for introducing diversity in
the evolutionary algorithms. Hyper-mutation increases mutation
rate for a period of time when a change is detected and random
immigrants introduces randomly generated individuals into the
population with each generation. Variable local search [33] is simi-
lar to hyper-mutation, it increasesmutation strength upon detecting
a change, instead of changing the mutation rate. Fitness sharing
[5] penalizes similar individuals to encourage diversity in the pop-
ulation. In dynamic problems where high diversity is critical, the
problem is converted to a multi-objective optimization problem
with diversity as an extra objective to be maintained throughout
the optimization process [31].

Our approach is closer to hyper-mutation and variable local
search approaches, where a disruptive genetic operator is used
to introduce diversity in the population. However, that is where
the similarity ends. There is little need to detect the changes in
gradually moving functions, moreover high population diversity is
not a requisite near the saturation points. Our work differs from
most diversity maintenance techniques in the way diversity level is
explicitly guided in an adaptive manner based on the rate of change
of the moving optimum.

3 PROBLEM DEFINITION
This work is motivated from neural architecture search method-
ology where we train a population of neural networks and the
objective is to find a good topology, such that the accuracy of the
neural network is maximum (for the given dataset) upon completion
of the training. In this section, we give an overview of neural net-
works and introduce their training function as a GSOF and finally
define the objective of the optimization.

An Evolutionary Optimization Algorithm for Gradually Saturating Objective Functions GECCO ’20, July 8–12, 2020, Cancún, Mexico

Figure 1: Linear chain structured topology where all layers
are grouped into clusters of same type and have same con-
straints.

3.1 Neural Network
A neural network ñn is defined by its topology T , activation func-
tions ϕ and coefficients ω ∈ R .

ñn = (T ,ϕ,ω)

In this work, a neural network topology is considered as a linear
chain of layers, where output from one layer serves as input to the
next layer, grouped into clusters of same layer type and constraints.
Figure 1 illustrates this concept.

T = {I ,C1,C2...Cl ,O},

Ck = {Lk1, Lk2...Lkn } : βmin ≤ n ≤ βmax

Lki = {L| L ∈ [C
k
type , ηki , πki]} : ηklow ≤ ηki ≤ ηkup

{βmin, βmax , ηklow ,η
k
up ∈ N

+}

where I and O are input and output layers respectively; Ck is
a cluster of n layers bounded by minimum and maximum values
(βmin, βmax). Each layer is defined by the parents cluster’s layer
type (e.g. convolution, pooling, fully connected), along with the
number of neurons and layer specific parameters, πki , such as ker-
nel size and stride in a convolutional layer. The number of neurons
in a layer are bounded by (ηklow ,η

k
up), the values of which are speci-

fied by the parent cluster and the parameters πki are independent of
other layers in the same cluster. All layer parameters are designed
to keep constant input-output feature map size in the cluster.

3.2 Training a Neural Network
To start training a neural network, all available data is split into
train and test sets. The train data set is used to train the neural
network while the test data is set aside for performance evaluation.
With each training iteration, the coefficients of the neural network
get updated. A neural network during training can be considered
a function of time, ñn (t) and is trained on a subset of train data
using ftrain () upto τmax time. ñn (0) is initialized with random
coefficients.

ñn (t) = (T ,ϕ,ω (t))

∀ 1 ≤ t ≤ τmax , ñn (t) = ftrain (ñn (t − 1))

Every Neural network ñn ∈ ÑN , where ÑN is a set of all possible
neural networks and every topologyT ∈ T̃ , where T̃ is the set of all
possible topologies, with predefined constraints. We use validation
accuracy on test data, Acc(ñn), as the main performance metric
of a neural network, which is dependent on topology as well as
its training time or the number of iterations of the evolutionary
algorithm.

Figure 2: Example of training curves. Train and test accuracy
are evaluated on the train and test data set respectively.

Figure 2 illustrates an example of a neural network performance
during the training process, also called as training curves. The
training curve represents the iterative performance of a neural
network during the training and closely resembles an increasing
saturating function such as functions from the power law or the
sigmoidal family [11]. Accuracy during training is defined as:

∀ 1 ≤ t ≤ τmax , Acc(ñn (t)) = Acc(ñn (t − 1)) +
∂(Acc(ñn))

∂t

In GSOF, ∂(Acc(ñn))∂t is small and in the saturation phase it is almost
zero.

3.3 Optimization Objective
A population of several neural networks is trained in parallel on
a given dataset. The optimization objective is to find the neural
network topology with maximum performance evaluation. Given, T̃
as the set of all possible topologies and ÑN as the set of all possible
neural networks. Mathematically, the objective is to find neural
network ñn′ with topology (T ′ ∈ T̃), such that

maxñn′ ∈ Ñ N Acc(ñn′(T ′,ϕ,ω(t)),

and feasible(T ′) = true

4 METHODOLOGY
This section describes the evolutionary algorithm for GSOP and
other design choices pertaining to the it.

4.1 Topology Representation and Diversity
To reduce computational complexity, we have a fixed sized genotype
representation of the topology by fixing the number of clusters for
every topology. For different problems with each a different dataset,
the number of clusters and constrains in a cluster may vary. Even
though the number of clusters is fixed, each cluster can have a
variable number of layers, resulting in a different total number of
layers in every randomly created topology. In a population based
evolutionary methodology, there are many diversity maintenance
techniques as discussed in Section 2. Diversity in this paper refers
to the distance between individual neural network topologies. We
do not measure the distance between individuals explicitly, instead

GECCO ’20, July 8–12, 2020, Cancún, Mexico Dolly Sapra and Andy D. Pimentel

we define two coarse-grained levels of diverseness. That is, two
individuals are dissimilar if the total number of layers or layer
types are different from each other. Two individuals are similar to
each other when the total number of combined layers as well as
type of each layer is same for both. Individual layer parameters
(πl) may be different for every layer. The layer parameters play
a big role in making a neural network more efficient than others
even when having exactly same layer types. Two individuals with
similar diversity level does not imply they have similar prediction
accuracy. We explore these layer parameters during the algorithm
through the mutation operator, but mutation does not influence
the diversity as the number of layers remain unchanged.

4.2 Genetic Operators
By defining two levels of diverseness, we can differentiate the be-
havior of mutation and crossover operators w.r.t. the diversity level
it introduces in the population. We implement a disruptive genetic
crossover operator to introduce more diversity by creating children
with a different number of total layers, whereas mutations operate
on a layer’s parameters only, therefore not contributing to a change
in diversity levels of the population. We describe both operators
below.

4.2.1 Mutation. Our mutate operator randomly selects a layer
from the neural network topology and changes only one the layer
parameters (πl) by a small value. Change in the number of neurons
of selected layer is constrained by ϱm%. The number of layers in
the offspring remain the same creating a similar individual in terms
of diversity. The mutate operations are designed to be function
preserving taken from [8, 18], which means that the disturbance on
the training process and on the current performance of the child
topology is minimal. As the training continues, coefficients values
of the child topology change and these little changes may contribute
to a better performing topology towards the convergence of the
optimization algorithm. Algorithm 1 describes the mutate operator
on a topology, Tparent , and returns the mutated topology Tchild .

Algorithm 1:Mutate
Inputs :Tparent , ϱm

1 Lm ← randomLayer (Tparent)

2 Lm ← ChanдeParameterO f (Lm, ϱm)

3 Tchild ← Merдe(Tparent , Lm)

4 return Tchild

4.2.2 Crossover. Out crossover operates on two individuals, ran-
domly selects cluster position and swaps the whole cluster between
both the topologies. Figure 3 exemplify a swap operator with topol-
ogy having four clusters. The reason for this being a disruptive
operator comes from the fact that even though the layers being
swapped are roughly at the same position in the layer chain, the
number of layers present in each cluster are different. One cluster
of two convolutional layers might get swapped with another cluster
containing five convolutional layers, thus creating diverse dissim-
ilar offsprings. The clusters at that same positions are designed
to keep the same input-output feature map sizes, so the crossover

Figure 3: Example of crossover operation in two neural net-
works with 4 clusters each.

does not result in a corrupt neural network. There is some distur-
bance caused to the training process by the crossover operator,
but as training continues, the loss incurred is observed to have
recovered in after a few iterations. Algorithm 2 shows the steps for
the crossover operator, which accepts two parent topologies and
returns children topologies with the crossover applied.

Algorithm 2: Crossover
Inputs :Tparent1,Tparent2

1 k ← random(Tparent1.Numcluster)

2 Tchild1,Tchild2 ← SwapClusterAt(k,Tparent1,Tparent2)

3 return Tchild1,Tchild2

4.3 Adaptive diversity
The desired level of population diversity for the optimization varies
depending on the rate of change in the GSOF at any given time.
High diversity is advantageous when the rate of change of the objec-
tive function is high and vice versa. In the proposed methodology,
we adaptively influence the diversity via crossover probability mod-
ification throughout the iterative process. Crossover probability is
an individual’s selection probability to undergo crossover operation.
When the shape of the objective function is known apriori, it is
possible to setup an offline adaptive control function with expected
rate of change to guide it. In absence of this prior knowledge, the
average rate of change of the objective function over a short inter-
val gives a good indication of diversity needed at any given time
point. We call this an online adaptive diversity control function.

4.3.1 Offline Adaptive. For an offline adaptive crossover prob-
ability function, we select an exponential decay function which
loosely represents the inverted accuracy function during training.
Where α is the decay factor, crossover probability, Pr as a function
of time is defined as:

Pr (t) = Pr (0) ∗ α t , : 0 < α < 1 (1)

4.3.2 Online Adaptive. For the online adaptive crossover proba-
bility function, the change in objective function is monitored and
crossover probability is modified based on its current rate of change.
This generic function can be applied to any GSOF based optimiza-
tion. With γ as the scale factor, crossover probability is modified
by the following:

Pr (t) = Pr (0) ∗ γ ∗
∂(Acc(ñn))

∂t
(2)

An Evolutionary Optimization Algorithm for Gradually Saturating Objective Functions GECCO ’20, July 8–12, 2020, Cancún, Mexico

4.4 Selection and Replacement
In dynamic optimization, selection and replacement policies play
an important role in managing diversity as well as retaining the
good individuals. We adopt a remove-worst strategy to select the
next generation of the population with a very low replacement rate,
Ω, of about 2-5% of the total population. The worst performing
individuals are removed from the next generation and from the re-
maining population individuals are selected for reproduction based
on mutation probability(Pm) and crossover probability(Pr). The
population size is kept constant, so some individuals may repro-
duce more than once. Since training in itself is a stochastic process,
there is a chance that an individual achieves much higher accuracy
as compared to the rest of population by accident. To prevent this
individual from crowding and dominating the search and resulting
in a loss in diversity, we follow a non-elitist random selection policy.
Every individual has an equal chance of being selected to create an
offspring which replaces the worst performing individual.

4.5 Algorithm
Here we consolidate all the concepts in one place and outline the
modified evolutionary algorithm for GSOPs. Algorithm 3 outlines
the complete approach.

Algorithm 3: Evolutionary Optimization
Evolutionary Inputs :Nд , Np , Pr , Pm , Ω
Training Inputs :τparams , δk

1 ℘o ← InitializePopulation(Np)

2 for i ← 0 Nд do
3 ℘i ← Train(℘i−1, τparams , δk)

4 Acci ← EvaluatePopulation(℘i)

5 ℘best ← BestSelection(Ω, ℘i ,Acci)

6 ℘r ← randomFrom(Ω, ℘i)

7 update ℘i ← ℘best + ℘r
8 ℘mu ← MutatePopulation(℘i , Pm)

9 P ′r ← updateCrossoverProbability(Pr , i,Acci)

10 ℘rc ← CrossoverPopulation(℘i , P
′
r)

11 ℘r emaininд ← UnchanдedPopulation()

12 update ℘i ← ℘mu + ℘rc + ℘r emaininд
13 end
14 return BestCandidatesOf(℘Nд)

InitializePopulation() generates a population of neural networks
of size Np using a factory pattern class for the topology genotype
based on clusters and initializes them by training them for one
epoch. Afterwards, this iterative algorithm runs for Nд generations.
Train() trains all individuals with randomly selected data, from the
train dataset, of size δk using τparams training parameters, such
as learning rate and batch size. δk defines the interval at which
genetic operators are applied for topology modification during
the training process. EvaluatePopulation() evaluates the popula-
tion using the test set and BestSelection() selects the (1 − Ω)%
best individuals using the accuracy on the validation set achieved
so far. To keep population size constant, Ω% randomly selected
individuals are added back to the pool. MutatePopulation() and

CrossoverPopulation() are evolutionary operators, they select indi-
viduals from the population with selection probability of Pm and
Pr respectively and use Algorithms 1 and 2 to operate on selected
individuals. The main modification of this algorithm comes from
the function updateCrossoverProbability() , which is called in ev-
ery iteration to modify the Crossover probability rate depending
on the chosen approach, i.e. according to equation (1) or (2). Finally,
the algorithm returns the best candidates of neural networks from
the final population.

5 EXPERIMENTAL STUDY
In this section, we evaluate our algorithm using PAMAP2 [23]
dataset for human activity recognition and outline the setup of our
experiments. We have used the Java based Jenetics library [1] for
evolutionary computation and the Python based Caffe2 [3] library
for training and testing. We used the ONNX [2] format to represent
and transfer the neural networks across different modules. Our
experiments use one GPU (GeForce RTX 2080) for training the
neural networks, however the algorithm is scalable and is able to
use multiple GPUs in parallel during each iteration.

5.1 Setup
5.1.1 DataSet. The PAMAP2 dataset provides recordings from

three body worn Inertial Measurement Units (IMU) and a heart
rate monitor. Together, the input data is in the form of time-series
from 40 channels performing 12 activities. We do not consider
optional activities in this experiment. Following [14], recordings
from participants 5 and 6 are used as testing set. IMUs’ recordings
are downsampled to 30 Hz and a sliding window approach with
a window size of 3s (100 samples) and a step size of 660ms (22
samples) is used to segment the sequences. To augment the data, a
sliding window is moved by different step sizes while keeping the
window size the same at 3s.

5.1.2 Topology. The topology structure for PAMAP2 has five
clusters, with the total number of layers varying between 7 and
20. Table 1 indicates each cluster’s details and various constraints.
Every layer is followed by a ReLu activation layer and number of
neurons are modified in steps of 8 during the mutation operation
resulting in total design points to the tune of 107.

Table 1: Topology Search Space

CLuster Type Layers Neurons Kernel
βmin βmax ηlow ηup Kmin Kmax

C1:Convolution 2 7 64 128 3x1 7x1
C2:MaxPool 1 1 1 1 2x1 2x1
C3:Convolution 2 7 96 256 3x1 7x1
C4:GlobalMaxPool 1 1 1 1 2x1 2x1
C5:Fully Connected 1 4 128 512 - -

5.1.3 Algorithm Parameters. The parameters of the algorithm
for all variants were the same and are summarized in Table 2. The pa-
rameters were determined during preliminary experiments. Train-
ing parameters (τparams) are learning rate and batch size as listed in

GECCO ’20, July 8–12, 2020, Cancún, Mexico Dolly Sapra and Andy D. Pimentel

Figure 4: Accuracy values for all of the neural networks evolving during an experiment each for offline adaptive, online
adaptive and standard evolutionary algorithms.

the Table 2, which were used with the Adam optimizer for training
the neural networks.

Table 2: Algorithm parameter values in experiments

Parameter Value

Mutation change rate ϱm 0.12
Mutation selection probability Pm 0.3
Initial Crossover selection probability Pr (0) 0.4
Adaptive offline decay factor α 0.95
Adaptive online scale factor γ 60
Population size Np 50
No of iterations Nд 50
Population replacement rate Ω 0.03
Training interval size δk 20,000
Training Parameters τparams
Learning rate 1e−4
Batch size 50

5.2 Results
Figure 4 illustrates how the population of neural networks is evolv-
ing while training during one run each of offline adaptive, online
adaptive and standard evolutionary algorithms. Each algorithm
takes approximately 10 hours to complete with majority of time
spent in training a neural network. The population size is fixed dur-
ing the genetic iterations, so the total number of training operations
are same for all the algorithms. We consider standard evolution-
ary algorithm to have static mutation and crossover probabilities.
Experimental results of mean of average and best accuracy after
completion of optimization algorithm are presented in Table 3. All
presented numbers are average of 10 independent runs. Figure 6
shows the performance of offline adaptive, online adaptive and the
standard evolutionary algorithm with best and average accuracy
found during each iteration.

Table 3: Experimental results of the mean average accuracy
and best accuracy in the final iteration

Algorithm Average Best

Offline adaptive 0.739(±0.012) 0.859(±0.010)
Online adaptive 0.718(±0.009) 0.842(±0.016)
Standard 0.688(±0.015) 0.809(±0.012)

Figure 5: Crossover probability during iterations of online
adaptive evolutionary algorithm.

It is clear from the results that both of the adaptive diversity
control evolutionary algorithms outperform the standard evolu-
tionary algorithm. Among the adaptive varieties, the offline version
performs slightly better than the online version. It is to be expected
as the rate of change of accuracy function can have small blips
because of stochastic nature of training process, which leads to a
lower or a higher crossover probabilities for short intervals. Figure
5 shows that the graph of crossover probability with respect to
the algorithm iterations is not as smooth as the exponential decay

An Evolutionary Optimization Algorithm for Gradually Saturating Objective Functions GECCO ’20, July 8–12, 2020, Cancún, Mexico

(a) Average accuracy of population

(b) Best accuracy

Figure 6: Training curves. Average accuracy refers to the av-
erage performance of whole population at the given opti-
mization iteration. Best accuracy refers to best found per-
formance of an individual model from the population.

function of offline adaptive algorithm. However, the trend is simi-
lar and we see decreasing values of crossover probability over the
iterations.

We see better results in the Offline adaptive version, where the
crossover probability curve is smooth and diversity is tightly con-
trolled over iterations. Results illustrate that whenever the GSOF
is known, it is preferable to design the diversity control function
based on this knowledge. However, evolutionary algorithm with
online adaptive diversity function still performs better than the
standard evolutionary algorithm with fixed crossover probability
suggesting that in saturation phase, having less diversity is better
to explore local search space. Best neural networks found through
these algorithms can be further processed, modified or trained as
needed outside this algorithm. The best one found through offline
adaptive diversity control approach was modified to add Batch
Normalization layers after every convolutional layer and trained
further with a dropout ration of 0.2, to achieve 94.3% accuracy.

6 CONCLUSION
This paper proposed an adaptive diversity control based methodol-
ogy for evolutionary algorithms suitable for dynamic optimization
of GSOFs. By defining coarse grained diversity levels and design-
ing genetic operators specific to each level, we can influence the
population diversity meaningfully. We validated our approach by
performing topology search during training of neural networks
with accuracy function as the objective of the optimization. We
showed that for GSOFs, adaptive diversity control based on the
rate of change of objective function provides better candidates with
higher accuracies than standard evolutionary algorithm.

As future work we would like to work on benchmark generator
for GSOFs. Another task would be to measure diversity of the
population explicitly and modify the adaptive control function
through direct feedback.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 Research and Innovation programme under grant agree-
ment No. 780788.

REFERENCES
[1] 2019. Jenetics library. (2019). https://jenetics.io/
[2] 2019. ONNX: Open Neural Network Exchange Formet. (2019). https://onnx.ai/
[3] 2019. PyTorch: An open source deep learning platform. (2019). https://pytorch.

org/
[4] Gagan Aggarwal and Jason D Hartline. 2006. Knapsack auctions. In Proceedings

of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. Society
for Industrial and Applied Mathematics, 1083–1092.

[5] HCAndersen. 1991. An investigation into genetic algorithms, and the relationship
between speciation and the tracking of optima in dynamic functions. Brisbane,
Australia: Honors, Queensland Univ (1991).

[6] Tim Blackwell and Jürgen Branke. 2006. Multiswarms, exclusion, and anti-
convergence in dynamic environments. IEEE transactions on evolutionary compu-
tation 10, 4 (2006), 459–472.

[7] Chenyang Bu, Wenjian Luo, and Lihua Yue. 2016. Continuous dynamic con-
strained optimization with ensemble of locating and tracking feasible regions
strategies. IEEE Transactions on Evolutionary Computation 21, 1 (2016), 14–33.

[8] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. 2015. Net2net: Accelerating
learning via knowledge transfer. arXiv preprint arXiv:1511.05641 (2015).

[9] Helen G Cobb. 1990. An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent nonstationary
environments. Technical Report. Naval Research Lab Washington DC.

[10] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and ex-
ploitation in evolutionary algorithms: A survey. ACM computing surveys (CSUR)
45, 3 (2013), 1–33.

[11] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding up
automatic hyperparameter optimization of deep neural networks by extrapolation
of learning curves. In Twenty-Fourth International Joint Conference on Artificial
Intelligence.

[12] David Fagan and Michael O’Neill. 2017. Exploring Target Change Related Fitness
Reduction in theMoving Point Dynamic Environment. In International Conference
on Theory and Practice of Natural Computing. Springer, 63–74.

[13] John J Grefenstette et al. 1992. Genetic algorithms for changing environments.
In PPSN, Vol. 2. 137–144.

[14] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. 2016. Deep, convolutional,
and recurrent models for human activity recognition using wearables. arXiv
preprint arXiv:1604.08880 (2016).

[15] Iason Hatzakis and David Wallace. 2006. Dynamic multi-objective optimization
with evolutionary algorithms: a forward-looking approach. In Proceedings of the
8th annual conference on Genetic and evolutionary computation. 1201–1208.

[16] Yaochu Jin and Jürgen Branke. 2005. Evolutionary optimization in uncertain
environments-a survey. IEEE Transactions on evolutionary computation 9, 3 (2005),
303–317.

[17] Wee Tat Koo, Chi Keong Goh, and Kay Chen Tan. 2010. A predictive gradient strat-
egy for multiobjective evolutionary algorithms in a fast changing environment.
Memetic Computing 2, 2 (2010), 87–110.

[18] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).

https://jenetics.io/
https://onnx.ai/
https://pytorch.org/
https://pytorch.org/

GECCO ’20, July 8–12, 2020, Cancún, Mexico Dolly Sapra and Andy D. Pimentel

[19] Wenjian Luo, Juan Sun, Chenyang Bu, and Ruikang Yi. 2018. Identifying species
for particle swarm optimization under dynamic environments. In 2018 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 1921–1928.

[20] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke. 2012. Evolutionary
dynamic optimization: A survey of the state of the art. Swarm and Evolutionary
Computation 6 (2012), 1–24.

[21] Daniel Parrott and Xiaodong Li. 2006. Locating and tracking multiple dynamic
optima by a particle swarm model using speciation. IEEE Transactions on Evolu-
tionary Computation 10, 4 (2006), 440–458.

[22] Hani Pourvaziri and B Naderi. 2014. A hybrid multi-population genetic algorithm
for the dynamic facility layout problem. Applied Soft Computing 24 (2014), 457–
469.

[23] Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked dataset for
activity monitoring. In 2012 16th International Symposium onWearable Computers.
IEEE, 108–109.

[24] Hendrik Richter and Franz Dietel. 2010. Change detection in dynamic fitness
landscapes with time-dependent constraints. In 2010 Second World Congress on
Nature and Biologically Inspired Computing (NaBIC). IEEE, 580–585.

[25] Shaaban Sahmoud and Haluk Rahmi Topcuoglu. 2016. Sensor-based change
detection schemes for dynamic multi-objective optimization problems. In 2016
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 1–8.

[26] Dolly Sapra and Andy D Pimentel. 2020. Constrained evolutionary piecemeal
training to design convolutional neural networks. In International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems.
Springer.

[27] Shamik Sengupta and Mainak Chatterjee. 2008. Designing auction mechanisms
for dynamic spectrum access. Mobile Networks and Applications 13, 5 (2008),
498–515.

[28] Anabela Simões and Ernesto Costa. 2011. Memory-based CHC algorithms for the
dynamic traveling salesman problem. In Proceedings of the 13th annual conference
on Genetic and evolutionary computation. 1037–1044.

[29] Dirk Sudholt. 2020. The benefits of population diversity in evolutionary al-
gorithms: a survey of rigorous runtime analyses. In Theory of Evolutionary
Computation. Springer, 359–404.

[30] Christopher LE Swartz and Yoshiaki Kawajiri. 2019. Design for dynamic
operation-A review and new perspectives for an increasingly dynamic plant
operating environment. Computers & Chemical Engineering (2019).

[31] Andrea Toffolo and Ernesto Benini. 2003. Genetic diversity as an objective in
multi-objective evolutionary algorithms. Evolutionary computation 11, 2 (2003),
151–167.

[32] Krzysztof Trojanowski and Zbigniew Michalewicz. 2000. Evolutionary optimiza-
tion in non-stationary environments. Journal of Computer Science & Technology
1 (2000).

[33] Frank Vavak, KA Jukes, Terrence C Fogarty, et al. 1998. Performance of a ge-
netic algorithm with variable local search range relative to frequency of the
environmental changes. Genetic Programming (1998), 22–25.

[34] Hongfeng Wang, Dingwei Wang, and Shengxiang Yang. 2009. A memetic algo-
rithm with adaptive hill climbing strategy for dynamic optimization problems.
Soft Computing 13, 8-9 (2009), 763–780.

[35] Shengxiang Yang. 2003. Non-stationary problem optimization using the primal-
dual genetic algorithm. In The 2003 Congress on Evolutionary Computation, 2003.
CEC’03., Vol. 3. IEEE, 2246–2253.

[36] Shengxiang Yang and Xin Yao. 2008. Population-based incremental learning with
associativememory for dynamic environments. IEEE Transactions on Evolutionary
Computation 12, 5 (2008), 542–561.

[37] Aimin Zhou, Yaochu Jin, and Qingfu Zhang. 2013. A population prediction
strategy for evolutionary dynamic multiobjective optimization. IEEE transactions
on cybernetics 44, 1 (2013), 40–53.

[38] Juan Zou, Qingya Li, Shengxiang Yang, Jinhua Zheng, Zhou Peng, and Tingrui
Pei. 2019. A dynamic multiobjective evolutionary algorithm based on a dynamic
evolutionary environment model. Swarm and evolutionary computation 44 (2019),
247–259.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem definition
	3.1 Neural Network
	3.2 Training a Neural Network
	3.3 Optimization Objective

	4 Methodology
	4.1 Topology Representation and Diversity
	4.2 Genetic Operators
	4.3 Adaptive diversity
	4.4 Selection and Replacement
	4.5 Algorithm

	5 Experimental Study
	5.1 Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

