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Abstract. Streaming Graph Processing Systems (SGPSs) are essential
for real-time analytics on dynamic graphs in domains such as social net-
works and knowledge graphs. Despite increasing interest and a growing
number of SGPSs, practical performance comparisons remain limited due
to architectural heterogeneity and inconsistent evaluation practices.
This work presents a unified benchmarking workflow for empirically eval-
uating SGPSs across latency, resource usage, and energy efficiency. We se-
lect three representative systems—GraphStream (GS), GraphBolt (GB),
and RisGraph (RG)—to reflect non-incremental and incremental design
philosophies, and evaluate them using two common graph algorithms
(BFS and SSSP) across diverse real-world datasets.

Our results reveal distinct trade-offs: RG excels in low-latency tasks but
supports only monotonic algorithms; GB achieves strong batch perfor-
mance and broader algorithm support; GS maintains stable latency at
the cost of higher memory. We also conduct the first empirical compari-
son of SGPS energy efficiency.

Our findings offer practical guidance for system selection and provide a
reproducible foundation for future SGPS benchmarking and optimiza-
tion.

Keywords: Streaming Graph Processing Systems (SGPSs) - Streaming
Graphs - Benchmarking - Architecture Comparison.

1 Introduction

Streaming graph processing systems (SGPSs) have emerged as a critical infras-
tructure for real-time analytics on dynamic graphs, supporting applications rang-
ing from fraud detection to social network monitoring [1]. Unlike static graph
frameworks, SGPSs are designed to handle continuous data changes and real-
time queries, enabling dynamic updates and immediate insights into evolving
network states [13]. Such capabilities are critical for applications where timely
responses to graph mutations—such as newly formed links, disappearing connec-
tions, or shifting node attributes—directly influence decision-making and user
experience.
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Over the past few years, a number of streaming graph systems have been
proposed [14, 1,12, 4], each embodying different design philosophies. Some em-
phasize fine-grained update granularity, while others adopt batch-oriented or
hybrid processing models.

Although several surveys have captured the landscape of SGPS development
and some efforts have been made to benchmark selected systems [4, 6], there is a
lack of a unified and rigorous empirical comparison across these diverse designs.
This makes it difficult for system designers and practitioners to understand the
practical trade-offs involved.

Fine-grained metrics such as latency are challenging to evaluate in an auto-
mated and comparable manner due to the fundamentally different architectures
and diverse algorithms across systems. Nevertheless, understanding these trade-
offs is crucial: for system designers, to guide architectural choices; and for users,
to select the most suitable system for their needs.

We reviewed a range of existing SGPSs[3| and selected three representative
systems—RisGraph (RG) [7], GraphBolt (GB) [12], and GraphStream (GS) [5],
based on their open-source availability, algorithmic capabilities, and architec-
tural diversity. These systems not only support common algorithms for compar-
ison but also represent distinct design paradigms. GS adopts a recomputation-
based model, while RG and GB are incremental systems. RG supports only
monotonic algorithms, whereas GB additionally supports non-monotonic algo-
rithms. These systems cover key design dimensions relevant to our evaluation,
including update models, computation paradigms, and interface types.

We further design a benchmarking workflow that enables the measurement
of multiple performance metrics, including latency, resource usage, and energy
consumption. Based on this benchmarking workflow, we conduct a fine-grained
empirical study.

Our key contributions are summarized as follows:

— We identify the lack of unified empirical comparison as a critical bottleneck
in understanding streaming graph system design.

— We develop a comprehensive benchmarking framework that covers both non-
incremental and incremental systems, simulating realistic graph dynamics
and query patterns.

— Our evaluation reveals that incremental systems are well-suited for low-
latency tasks, while non-incremental systems show potential in high-throughput
scenarios. We also investigate resource usage and energy efficiency, finding
that RG and GB are more efficient than GS.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work, and Section 3 introduces the background and compares three repre-
sentative SGPS architectures. Section 4 describes the benchmarking workflow,
datasets, algorithms, and evaluation metrics. Section 5 presents the experimental
results and analysis. Section 6 concludes the paper and outlines future directions.
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2 Related Work

Several benchmarking frameworks have been proposed for evaluating stream-
ing graph processing systems (SGPSs). GraphTides [6] provides a benchmark
targeting latency and scalability, but its limited extensibility restricts support
for new workloads and emerging system designs. G-Bench [10] offers a more
comprehensive methodology, proposing best practices for fair evaluation across
SGPSs.

From a conceptual standpoint, Besta et al. 3] present a detailed taxonomy
of SGPSs, categorizing systems by update models, computational paradigms,
and consistency guarantees. While comprehensive, this work remains theoretical
and lacks empirical validation. Our system selection and evaluation strategy are
informed by such taxonomies, but we focus on architectural traits that directly
impact performance, including latency, resource usage, and energy efficiency.

In parallel, hardware accelerators such as Graphicionado [9] and MEGA [§]
offer significant performance benefits for dynamic graph processing through cus-
tom architectures. However, these approaches target different levels of the system
stack and are not directly comparable to software-based SGPSs.

Our work complements these prior efforts by introducing a benchmarking
workflow with fine-grained performance breakdowns and by conducting an in-
depth empirical evaluation of three representative SGPSs across diverse datasets
and workloads.

3 Background and System Overview

3.1 Streaming Graph Processing

Streaming graph processing refers to the continuous computation over evolving
graph structures. Existing systems differ in how they represent graph states and
propagate updates.

Each system has its own support for update types, such as node addi-
tion/deletion, edge addition/deletion, or weight modification [3]. Some systems
support per-update processing with a batch size of one, while others allow config-
urable batch sizes and apply optimizations accordingly [7, 12, 5]. Certain systems
push updates to the engine based on a threshold number of accumulated updates,
while others do so periodically at fixed intervals.

Some systems rely on full recomputation, while others perform incremental
computation [3]. It is also worth noting that different systems support different
subsets of algorithms due to their underlying processing models.

The diversified landscape of streaming graph processing offers a variety of
options, but also presents significant challenges in understanding, comparing,
and selecting suitable systems.

3.2 Target Systems: Design Highlights

As stated in Table 1, to conduct a focused and meaningful evaluation, we select
systems based on three main criteria: open-source availability, algorithmic
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Table 1: Comparison of target systems in terms of computation model and sup-
ported algorithm types

System Computation Model Supported Algorithms
RG (RisGraph) Incremental, Parallel Hybrid Monotonic only

GB (GraphBolt) Incremental, Batch-based (BSP) Monotonic and Non-monotonic
GS (GraphStream)  Per-update Recomputation Basic iterative algorithms

coverage, and architectural diversity. These systems not only implement
widely-used graph algorithms, enabling consistent comparison, but also exem-
plify different system designs. Specifically, GS follows a recomputation-based
strategy, while both RG and GB adopt incremental update mechanisms. Among
the two incremental systems, RG is limited to monotonic algorithms, whereas
GB extends support to non-monotonic workloads. Collectively, the three sys-
tems span core dimensions of interest in our study, including update handling
strategies, computation models, and API-level design.

RG leverages inter-update parallelism and RDMA, enabling fast updates
via localized data structures. GB employs a BSP-based, batch-oriented model
with dependency-aware refinement. GS recomputes the entire graph per query
without batching, prioritizing simplicity but at higher cost. Together, these sys-
tems span key architectural dimensions including update granularity, depen-
dency tracking, and query consistency.

For streaming systems, throughput and latency are primary concerns. Ad-
ditionally, system sustainability—particularly under long-term, high-frequency
workloads—is an important yet underexplored aspect. Currently, there is a lack
of practical, fine-grained comparison across systems. These architectural differ-
ences motivate a systematic evaluation across latency, throughput, and memory
usage.

4 Evaluation Methodology

To systematically evaluate representative SGPSs, this section presents our bench-
marking methodology, including the experimental platform, datasets, algorithms,
and evaluation metrics.

4.1 Benchmarking Workflow

We design a benchmarking workflow that breaks down the key stages of how
different systems perform updates and execute computations, as illustrated in
Fig. 1. For all systems, update latency refers to the time required to apply graph
mutations. Query latency, however, differs by system type: non-incremental sys-
tems perform full recomputation, while incremental systems update dependen-
cies and apply localized refinements.
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Fig. 1: Benchmarking Workflow and Latency Breakdown.

4.2 Datasets and Graph Characteristics

Table 2: Graphs used in the experiments.

Graphs Abbr. Vertices Edges Type Root node
Wikipedia [11] WK 2.39M 5.02M Talk 2
LiveJournal [11] LJ 4.85M 69.0M Social 0
StackOverflow [11] SO 2.60M 63.5M Q&A 13
Pokec [11] PC 1.63M 30.6M Social 2
Berkeley-Stanford [11] BS 685K 7.60M Web 1

To ensure fairness and simulate realistic streaming scenarios, we follow the
approach used in KickStarter [14], GraphBolt [12], and RisGraph [7]. Specifically,
we shuffle each dataset’s edge list, load 80% of the edges as the initial graph,
and treat the remaining 20% as insertions. The same batch of updates is used
across different systems and repeated experiments. An equal number of edges
from the loaded portion are randomly selected for deletion. Each update batch
consists of 10,000 operations: 5,000 additions and 5,000 deletions.

The datasets used are summarized in Table 2, covering diverse domains such
as social networks, Q&A platforms, and web graphs, with varied structural char-
acteristics. The “Root Node” column indicates the starting point for traversal
algorithms (e.g., BFS, SSSP).

Graph Characteristics: Table 3 summarizes the degree distribution using
five-number summaries (Min, Q1, Median, Q3, Max) and the Gini coefficient
to reflect skewness. These structural properties significantly impact SGPS per-
formance, especially under parallelism. Highly skewed datasets (e.g., SO, WK)
may cause load imbalance and overhead, while more uniform datasets (e.g., PC)
yield more stable performance.
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Table 3: Degree distribution summary of the datasets.
Dataset Min Degree Q1 Median Q3 Max Degree Gini Coeff

WK 1 1 1 2 100032 0.74
LJ 1 3 8 28 22889 0.71
SO 1 2 7 22 194806 0.85
PC 1 5 17 49 20518 0.62
BS 1 5 9 19 84290 0.66

4.3 Algorithms

Breadth-First Search (BFS) and Single-Source Shortest Path (SSSP) are funda-
mental graph traversal algorithms commonly used in graph processing bench-
marks. We select these algorithms to ensure a fair comparison across systems
with differing algorithmic capabilities. For instance, RisGraph supports only
monotonic algorithms, while GraphBolt supports both monotonic and non-monotonic
ones. BFS and SSSP are supported by all evaluated systems, making them suit-
able for consistent and comparable evaluation.

4.4 Metrics

To evaluate SGPS performance, we consider three key metrics:

Latencies: Query latency is measured per batch, indicating real-time re-
sponsiveness. Addition and deletion latency represent the average time to
insert or remove edges, computed by dividing total addition/deletion time by
the number of operations. The overall update latency A, combines addition
(A,) and deletion latency (Ag), weighted by the number of operations (N,
Ng), as shown in Equation 1 and illustrated in Fig. 1.

N, Ny
R T S C N 1
Not N, O NN 1)

Resource Utilization: CPU usage reflects processing efficiency, while
memory usage indicates scalability, with lower usage generally preferred.

Energy Consumption: Measured at the CPU and system levels, this met-
ric captures the energy efficiency of SGPSs, particularly relevant for resource-
constrained environments.

A, = A,

4.5 Hardware

We conducted our experiments on a cluster node [2] equipped with two AMD
EPYC 7282 processors, each with 16 cores and support for hyper-threading,
providing a total of 64 logical CPUs. The system includes 256 GB of main
memory and 128 GB of swap space.
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5 Performance Analysis of Three SGPSs

We evaluate RG, GB, and GS across multiple workloads, analyze how batch size
affects performance, and highlight key observations for future system design.
To strengthen the wvalidity of our observations, we repeat each experiment five
times and report the mean and standard deviation. Error bars are included in all
latency-related plots.

5.1 Performance Comparison

Based on the workflow in Section 4.1, we are able to fairly compare GS, RG,
and GB, which represent the non-incremental SGPS and incremental ones re-
spectively.

Latencies Fig. 2 shows the latency results of RG, GB, and GS running BFS
and SSSP on five datasets, comparing query, update, addition, and deletion
operations. We set the batch size to 1 x 10*

RG consistently achieves the lowest query latency, followed by GB and then
GS, due to its parallel design and optimization for monotonic algorithms. GB
adds dependency management overhead, while GS performs full recomputation,
leading to the highest latency. In SSSP on LJ, GS is over three orders of magni-
tude slower than RG.

Update latency follows a similar trend. RG benefits from its Indexed Adja-
cency Lists for fast edge access and modification, while GB is a bit slower. GS
remains the slowest due to its implementation. For instance, in BS-SSSP, GS
reaches over 107 ns, while RG stays in the 106 range. However, the difference in
update latency across systems is less pronounced than that in query latency.

Addition and deletion costs vary. RG has higher addition cost due to index
updates but handles deletions efficiently. GB favors additions but incurs more
overhead on deletions. GS shows the highest variability, with deletions on skewed
datasets like WK and SO exceeding 107 ns due to supernode effects. SSSP con-
sistently shows higher latency than BFS due to its complexity. GB exhibits the
smallest BFS-SSSP gap, thanks to its dependency-tracking mechanism.

Resource Usage Fig. 3 compares CPU and memory usage of the three systems
running BFS and SSSP on five datasets.

RG shows the highest CPU utilization, attributed to its parallel architecture
and efficient memory design optimized for rapid dependency updates. GS con-
sistently uses the most memory due to its in-memory graph structures and lack
of dependency-aware optimizations. While implementation languages contribute
slightly, the primary factor is architectural: RG and GB leverage efficient, incre-
mental data structures, whereas GS’s classical design leads to higher memory
usage and recomputation costs.
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Fig. 2: Latency Comparison of RG, GB, and GS Across Five Datasets.
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Fig.4: Energy Consumption Heatmap (J) for RG, GB, and GS Across Five
Datasets under BFS and SSSP Operations.

Energy Consumption Fig. 4 compares the package (PKG) energy consump-
tion of RG, GB, and GS for BFS and SSSP algorithms on five datasets. PKG
energy represents the total energy consumed by the CPU, including the com-
putational load of cores and additional components like memory controllers,
providing a comprehensive view of energy efficiency. Energy consumption was
measured using the LIKWID toolkit, which uses hardware performance counters
for reasonably accurate energy estimates.

Among the systems, RG exhibits the lowest PKG energy consumption due to
efficient parallelized computation, followed by GB with moderate consumption.
GS consumes the most energy, reflecting its reliance on computationally intensive
in-memory structures.

5.2 Influence of Batch Size on Latencies

To evaluate system behavior under varying update intensities, we test with
batch sizes of 10', 103, and 10°, representing interactive, moderate, and high-
throughput workloads, respectively. This setup enables us to observe how latency
evolves under increasing ingestion pressure.

For update, addition, and deletion operations, both RG and GB show clear
latency reduction as batch size increases—particularly in GB, where per addition
latency drops from over 10° ns to below 102 ns. This improvement reflects re-
duced synchronization and amortized overhead in batch processing. In contrast,
GS exhibits flat or inconsistent trends, as it lacks batch-aware optimizations.

Query latency behaves differently. RG’s query latency increases significantly
with batch size—by over three orders of magnitude in BFS—due to cumula-
tive dependency processing. GB shows a more moderate rise, while GS remains
largely constant across batches because it performs full recomputation regardless
of update size.

Overall, RG excels under small batches with low-latency updates, whereas
GB is more robust under large batches, thanks to its dependency resolution
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Fig. 5: Latency Trends Across Different Batch Sizes for RG, GB, and GS on the
LJ, Averaged per Operation within Each Batch.

and batching mechanisms [12]. GS, without incremental design, shows limited
adaptability. These results highlight the trade-offs between fine-grained efficiency
and batch scalability in SGPS design.

5.3 Key Findings and Design Implications

System-level summary. Empirical results reveal clear trade-offs among RG,
GB, and GS. RG achieves the lowest latency and energy consumption, but uses
more CPU and supports only monotonic algorithms. GB scales better with batch
size, supporting broader workloads at stable cost. GS, despite higher latency and
resource usage, handles complex workloads and may be more suitable at very
high throughput (e.g., batch size < 107).

Our findings suggest three directions for future SGPS optimization: Hybrid
update models. To handle varying throughput demands, SGPSs should inte-
grate both incremental and non-incremental mechanisms. Incremental updates
are preferable for small, frequent batches, while non-incremental processing is
more stable for large batch sizes. Adaptive update handling.The cost of ad-
ditions and deletions varies with graph structure, which may shift over time in
streaming settings. Designing distribution-aware and workload-adaptive update
strategies is key to maintaining performance under dynamic conditions. Energy-
aware architectures. For low-power or resource-constrained scenarios, incre-
mental SGPSs may offer energy advantages due to their lower computational
overhead, and could be prioritized where applicable, subject to validation on
target hardware.
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6 Conclusion and Future Work

In this work, we addressed the lack of empirical understanding of streaming
graph processing systems by conducting a systematic evaluation of representative
platforms.

We introduced a unified benchmarking workflow to compare non-incremental
and incremental SGPS architectures and conducted a detailed analysis of three
systems—RG, GB, and GS—across multiple datasets and workloads. Our results
reveal key trade-offs in latency and resource usage. In particular, we provide the
first empirical comparison of energy efficiency across SGPSs.

These insights provide practical guidance for system designers and users in
selecting appropriate platforms and optimizing performance under varying work-
load scenarios. The proposed benchmarking methodology offers a reproducible
and extensible foundation for future SGPS evaluation.

In future work, we plan to extend the benchmark to additional systems,
incorporate more complex algorithm classes such as subgraph pattern queries,
and evaluate system behavior under dynamic and bursty update streams.
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